
Parallel Processing
in Python

DS 5110: Big Data Systems

Spring 2025

Lecture 6

Yue Cheng

Some material taken/derived from:
• Wisconsin CS 320 by Tyler Caraza-Harter.

@ 2025 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

• Describe the execution model of
• process-level parallelism

• thread-level parallelism

• task-level parallelism

• Know how to measure the speedup metric

• Understand the difference of strong scaling vs.
weak scaling

Y. Cheng UVA DS5110 Spring '25 2

Outline

• Motivation

• Three parallel execution models

• Demo

• Measuring speedup metric

• Task parallelism in Dask

• Demo

Y. Cheng UVA DS5110 Spring '25 3

Y. Cheng UVA DS5110 Spring '25 4

Code Data

Instruction pointer

(also called “program counter”)

Y. Cheng UVA DS5110 Spring '25 5

Code Data

Instruction pointer belongs to a thread within the process

Process

Y. Cheng UVA DS5110 Spring '25 6

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Y. Cheng UVA DS5110 Spring '25 7

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Running: 1, 2

Ready: 3, 4

Y. Cheng UVA DS5110 Spring '25 8

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Running: 1, 2

Ready: 3, 4

Y. Cheng UVA DS5110 Spring '25 9

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Running: 1, 3

Ready: 2, 4

Y. Cheng UVA DS5110 Spring '25 10

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Running: 1, 3

Ready: 2, 4

The more cores we have, the more

tasks we can run simultaneously

Parallel execution models

• Process-level parallelism

• Thread-level parallelism

• Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 11

Parallel execution models

• Process-level parallelism

• Thread-level parallelism

• Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 12

Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 13

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 14

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Clones

Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 15

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Running: 2, 3

Ready: 1, 4

Compute

Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 16

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Running: 2, 4

Ready: 1, 3

Compute

Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 17

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Running: 3, 4

Ready: 1, 2

Compute

Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 18

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Send data back

Running: 1

Ready: 2, 3, 4

Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 19

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Process-level parallelism in Python

Y. Cheng UVA DS5110 Spring '25 20

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

from multiprocessing import Pool

def f(x):

 return x*x

if __name__ == ‘__main__’:

 with Pool(3) as p:

 print(p.map(f, [1,2,3]))

https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html

Parallel execution models

• Process-level parallelism

• Thread-level parallelism

• Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 21

Thread-level parallelism

22

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Threads give us multiple instruction pointers

in a process, allowing us to execute multiple

parts of the code at the same time!

1

2

3

Thread-level parallelism

23

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Running: 1, 3

Ready: 2

1

2

3

In general, threads help:

• Use multiple cores

• Do useful work when threads are blocking

Thread-level parallelism in Python

24

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Running: 1

Ready: 3

Blocked: 2

1

2

3

In general Python, threads help:

• Use multiple cores (b/c of the GIL)

• Do useful work when threads are blocking

Wasted https://wiki.python.org/moin/GlobalInterpreterLock

https://wiki.python.org/moin/GlobalInterpreterLock

Thread-level parallelism in Python

25

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Running: 1

Ready: 3

Blocked: 2

1

2

3

In general Python, threads help:

• Use multiple cores (b/c of the GIL)

• Do useful work when threads are blocking

Wasted

Recommendation: Don’t use threads unless

you learn a lot on asynchronous processing

and/or coroutines

https://wiki.python.org/moin/GlobalInterpreterLock

https://docs.python.org/3/library/asyncio-task.html

https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/asyncio-task.html

Demo …

Y. Cheng UVA DS5110 Spring '25 26

Parallel execution models

• Process-level parallelism

• Thread-level parallelism

• Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 27

Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 28

T6

T4 T5

T1 T2 T3

Data

Task DAG

(Directed Acyclic Graph)

Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 29

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 30

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

S2: Schedule T1 to W1, T2 to W2, T3

to W3

Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 31

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

S2: Schedule T1 to W1, T2 to W2, T3

to W3

S3: Run T4 after T1 on W1, run T5

after T2 on W2; after T3, W3 is idle

Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 32

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

S2: Schedule T1 to W1, T2 to W2, T3

to W3

S3: Run T4 after T1 on W1, run T5

after T2 on W2; after T3, W3 is idle

S4: After T4 and T5 ends, run T6 on

W1; after T5, W2 is idle

Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 33

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

Degree of parallelism is the largest

amount of parallelism possible in the

DAG:

• How many tasks can be run in

parallel at most

Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 34

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

Degree of parallelism is the largest

amount of parallelism possible in the

DAG:

• How many tasks can be run in

parallel at most

Overtime degree of parallelism drops!

Resource wastage on idle workers

Observations:

Parallel program DAGs

Y. Cheng 35

SVD1: Singular Value Decomposition

SVD2

TSQR: Tall-and-
Skinny QR

Factorization

GEMM: General
Matrix Multiplication

Quantify benefit of parallelism: Speedup

Y. Cheng UVA DS5110 Spring '25 36

Speedup =
Completion time given 1 worker

Completion time given N worker

Quantify benefit of parallelism: Speedup

Q: Given N workers, can we get a speedup of N?

Y. Cheng UVA DS5110 Spring '25 37

Speedup =
Completion time given 1 worker

Completion time given N worker

Quantify speedup

Y. Cheng UVA DS5110 Spring '25 38

Speedup (fixed data size)

1

4

8

12

1 4 8 12

Linear

speedup

Sublinear

speedup

Number of workers

Strong scaling

Quantify speedup

Y. Cheng UVA DS5110 Spring '25 39

1

4

8

12

1 4 8 12

Linear

speedup

Sublinear

speedup

Speedup (increased data size)

0.5

1

1 4 8 12

Linear

speedup

Sublinear

speedup

Number of workers # workers and data size

2

Strong scaling Weak scaling

Speedup (fixed data size)

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring '25 40

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10

Task completion time varies

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring '25 41

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 • Job completion time is always

bounded by the longest path

in the DAG

Task completion time varies

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring '25 42

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 • Job completion time is always

bounded by the longest path

in the DAG

• Potential optimization: The

scheduler can elastically

release a worker if it knows

the worker will be idle till the

end

• Can save $ cost in cloud

Task completion time varies

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring '25 43

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 Q: What’s the job completion

time with 1 worker?

Q: What’s the job completion

time with 3 workers?

Q: What’s the speedup?

Task parallelism in Dask

Y. Cheng UVA DS5110 Spring '25 44

* https://docs.dask.org/en/stable/
* https://docs.dask.org/en/stable/scheduling.html

https://docs.dask.org/en/stable/
https://docs.dask.org/en/stable/scheduling.html

Dask’s task graph and workflow

Y. Cheng UVA DS5110 Spring '25 45

import dask

import dask.array as da

x = da.random.normal(size=1_000_000, chunks=100_000)

Dask’s task graph and workflow

Y. Cheng UVA DS5110 Spring '25 46

import dask

import dask.array as da

x = da.random.normal(size=1_000_000, chunks=100_000)

data = x.compute()

Lazy evaluation: Dask computation can be
triggered manually, e.g., .compute()

• only when the result is needed

Dask’s task graph and workflow

Y. Cheng UVA DS5110 Spring '25 47

import dask

import dask.array as da

x = da.random.normal(size=1_000_000, chunks=100_000)

data = x.compute()

Lazy evaluation: Dask computation can be
triggered manually, e.g., .compute()

• only when the result is needed

dask.visualize(x)

Dask task graph

Draw the task graph using .visualize()

Demo …

Y. Cheng UVA DS5110 Spring '25 48

	Slide 1: Parallel Processing in Python
	Slide 2: Learning objectives
	Slide 3: Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Parallel execution models
	Slide 12: Parallel execution models
	Slide 13: Process-level parallelism
	Slide 14: Process-level parallelism
	Slide 15: Process-level parallelism
	Slide 16: Process-level parallelism
	Slide 17: Process-level parallelism
	Slide 18: Process-level parallelism
	Slide 19: Process-level parallelism
	Slide 20: Process-level parallelism in Python
	Slide 21: Parallel execution models
	Slide 22: Thread-level parallelism
	Slide 23: Thread-level parallelism
	Slide 24: Thread-level parallelism in Python
	Slide 25: Thread-level parallelism in Python
	Slide 26: Demo …
	Slide 27: Parallel execution models
	Slide 28: Task-level parallelism
	Slide 29: Task-level parallelism
	Slide 30: Task-level parallelism
	Slide 31: Task-level parallelism
	Slide 32: Task-level parallelism
	Slide 33: Task-level parallelism
	Slide 34: Task-level parallelism
	Slide 35: Parallel program DAGs
	Slide 36: Quantify benefit of parallelism: Speedup
	Slide 37: Quantify benefit of parallelism: Speedup
	Slide 38: Quantify speedup
	Slide 39: Quantify speedup
	Slide 40: Idle resources in task-level parallelism
	Slide 41: Idle resources in task-level parallelism
	Slide 42: Idle resources in task-level parallelism
	Slide 43: Idle resources in task-level parallelism
	Slide 44: Task parallelism in Dask
	Slide 45: Dask’s task graph and workflow
	Slide 46: Dask’s task graph and workflow
	Slide 47: Dask’s task graph and workflow
	Slide 48: Demo …

