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Learning objectives

• Describe the execution model of 
• process-level parallelism

• thread-level parallelism

• task-level parallelism

• Know how to measure the speedup metric

• Understand the difference of strong scaling vs. 
weak scaling
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Outline

• Motivation

• Three parallel execution models

• Demo

• Measuring speedup metric

• Task parallelism in Dask

• Demo
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Code Data

Instruction pointer

(also called “program counter”)
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Code Data

Instruction pointer belongs to a thread within the process

Process
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Code Data

Process 4
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Core

(CPU)

Multi-core processor (CPU)

Running: 1, 3

Ready:    2, 4

The more cores we have, the more 

tasks we can run simultaneously



Parallel execution models

• Process-level parallelism

• Thread-level parallelism

• Task-level parallelism
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Parallel execution models
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Process-level parallelism
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Process-level parallelism
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Process-level parallelism
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Process-level parallelism

Y. Cheng UVA DS5110 Spring '25 17

Code Data

Process 1

Core

(CPU)

Core

(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Running: 3, 4

Ready:    1, 2

Compute



Process-level parallelism
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Process-level parallelism
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Process-level parallelism in Python
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Code Data

Process 1
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Core

(CPU)

Multi-core processor (CPU)

from multiprocessing import Pool

def f(x):

 return x*x

if __name__ == ‘__main__’:

 with Pool(3) as p:

  print(p.map(f, [1,2,3]))

https://docs.python.org/3/library/multiprocessing.html 

https://docs.python.org/3/library/multiprocessing.html


Parallel execution models

• Process-level parallelism

• Thread-level parallelism

• Task-level parallelism
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Thread-level parallelism

22
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in a process, allowing us to execute multiple 

parts of the code at the same time! 
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Thread-level parallelism
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In general, threads help:

• Use multiple cores

• Do useful work when threads are blocking



Thread-level parallelism in Python
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In general Python, threads help:

• Use multiple cores (b/c of the GIL)

• Do useful work when threads are blocking

Wasted https://wiki.python.org/moin/GlobalInterpreterLock 

https://wiki.python.org/moin/GlobalInterpreterLock
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Running: 1

Ready:    3

Blocked: 2

1

2

3

In general Python, threads help:

• Use multiple cores (b/c of the GIL)

• Do useful work when threads are blocking

Wasted 

Recommendation: Don’t use threads unless 

you learn a lot on asynchronous processing 

and/or coroutines 

https://wiki.python.org/moin/GlobalInterpreterLock 

https://docs.python.org/3/library/asyncio-task.html 

https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/asyncio-task.html


Demo … 
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Parallel execution models

• Process-level parallelism

• Thread-level parallelism

• Task-level parallelism
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Task-level parallelism
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T6

T4 T5

T1 T2 T3

Data

Task DAG

(Directed Acyclic Graph)



Task-level parallelism

Y. Cheng UVA DS5110 Spring '25 29

Worker 1 Worker 2 Worker 3

T6
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T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers  



Task-level parallelism
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S1: Copy whole dataset to all workers  
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to W3
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Worker 1 Worker 2 Worker 3
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S1: Copy whole dataset to all workers  

S2: Schedule T1 to W1, T2 to W2, T3 

to W3

S3: Run T4 after T1 on W1, run T5 

after T2 on W2; after T3, W3 is idle



Task-level parallelism
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Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers  

S2: Schedule T1 to W1, T2 to W2, T3 

to W3

S3: Run T4 after T1 on W1, run T5 

after T2 on W2; after T3, W3 is idle

S4: After T4 and T5 ends, run T6 on 

W1; after T5, W2 is idle



Task-level parallelism
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Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

Degree of parallelism is the largest 

amount of parallelism possible in the 

DAG: 

• How many tasks can be run in 

parallel at most



Task-level parallelism
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Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

Degree of parallelism is the largest 

amount of parallelism possible in the 

DAG: 

• How many tasks can be run in 

parallel at most

Overtime degree of parallelism drops!

Resource wastage on idle workers

Observations:



Parallel program DAGs
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SVD1: Singular Value Decomposition

SVD2

TSQR: Tall-and-
Skinny QR 

Factorization

GEMM: General 
Matrix Multiplication



Quantify benefit of parallelism: Speedup
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Speedup = 
Completion time given 1 worker

Completion time given N worker



Quantify benefit of parallelism: Speedup

Q: Given N workers, can we get a speedup of N?
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Speedup = 
Completion time given 1 worker

Completion time given N worker



Quantify speedup
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Idle resources in task-level parallelism
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in the DAG

Task completion time varies



Idle resources in task-level parallelism
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Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 • Job completion time is always 

bounded by the longest path 

in the DAG

• Potential optimization: The 

scheduler can elastically 

release a worker if it knows 

the worker will be idle till the 

end

• Can save $ cost in cloud

Task completion time varies



Idle resources in task-level parallelism
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Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 Q: What’s the job completion 

time with 1 worker?

Q: What’s the job completion 

time with 3 workers?

Q: What’s the speedup?



Task parallelism in Dask
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* https://docs.dask.org/en/stable/
* https://docs.dask.org/en/stable/scheduling.html  

https://docs.dask.org/en/stable/
https://docs.dask.org/en/stable/scheduling.html


Dask’s task graph and workflow
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import dask

import dask.array as da

x = da.random.normal(size=1_000_000, chunks=100_000)



Dask’s task graph and workflow
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import dask

import dask.array as da

x = da.random.normal(size=1_000_000, chunks=100_000)

data = x.compute()

Lazy evaluation: Dask computation can be 
triggered manually, e.g., .compute()

• only when the result is needed



Dask’s task graph and workflow
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import dask

import dask.array as da

x = da.random.normal(size=1_000_000, chunks=100_000)

data = x.compute()

Lazy evaluation: Dask computation can be 
triggered manually, e.g., .compute()

• only when the result is needed

dask.visualize(x)

Dask task graph

Draw the task graph using .visualize()



Demo … 
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