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Learning objectives

• Describe the cache hierarchy

• Understand spatial locality and temporal locality

• Trace through access patterns with FIFO and 
LRU caching policies

• Calculate cache performance metrics
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Outline

• Challenge: latency

• Cache hierarchy
• CPU, RAM, SSD, Disk, Network

• Tradeoffs

• Data access patterns, data locality, data access 
granularity

• Spatial locality

• Temporal locality

• Cache lines and locality optimization

• What data should be cached?
• Eviction policies: FIFO, LRU
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Interaction between CPU and RAM
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Interaction between CPU and RAM
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Load and store
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Latency to load from RAM
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Latency

Y. Cheng UVA DS5110 Spring '25 8

CPU

6

4

7

r1:

r2:

r3:

RAM

“How much time” is a latency measure.

Throughput (bytes/second) depends on 

how many loads we can do simultaneously.

6

2

0

about 100ns, or 200 cycles



CPU Cache
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Latency measurements

• Latency metrics
• Average latency

• Median latency

• “Tail” latency (99th percentile, 99.9th percentile, etc.)

• Which metrics do we expect caching to help 
with the most?
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Cache hierarchy
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Resource tradeoffs

• File system caches file data in RAM
• Uses memory
• Avoids storage reads

• Browser caches recently visited pages as disk files
• Uses local storage space
• Avoids network transfers

• Python dictionary caches return values in a dict 
(key=args, val=return)

• Uses memory space
• Avoids repeated compute
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cache = {}

def f(x):

    if not x in cache:

        cache[x] = g(x)

    return cache[x]



Workload characteristics
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sum = 0

for i in range(0,1024): 

  sum += a[i]

Application A
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Workload characteristics
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sum = 0

for i in range(0,1024): 

  sum += a[i]

import random

sum = 0

random.seed(1234);

for i in range(0,512):

  sum += a[random.randint(0,1023)]

random.seed(1234) # same seed

for i in range(0,512):

  sum += a[random.randint(0,1023)]

Application A Application B
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Access patterns
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Access patterns
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Spatial Locality Temporal Locality
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Locality of data accesses

• Spatial locality: 
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data
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Locality of data accesses

• Spatial locality: 
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What is the implication of data locality to data 
systems applications?
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Locality optimization in Data Science

• Consider a matrix named data with 16*16 elements

• Each row is of size 16 floats and prefetching+caching means 1/2 row of 
accessed data item is brought to CPU cache at a time
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Locality optimization in Data Science

• Consider a matrix named data with 16*16 elements

• Each row is of size 16 floats and prefetching+caching means 1/2 row of 
accessed data item is brought to CPU cache at a time

• Program 1 

      for i in range(len(data[0]):

          for row in data:

              sum += row[i]

     

 16 x 16 = 256 CPU cache misses

   Not too hardware-efficient (not able to exploit prefetching+caching)
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Locality optimization in Data Science

• Consider a matrix named data with 16*16 elements

• Each row is of size 16 floats and prefetching+caching means 1/2 row of accessed 
data item is brought to CPU cache at a time

• Program 1 

      for i in range(len(data[0]):

          for row in data:

              sum += row[i]

     

 16 x 16 = 256 CPU cache misses

   Not too hardware-efficient (not able to exploit prefetching+caching)

• Program 2 

      for row in data:

        for element in row:

          sum += element

Only 16*2 CPU cache misses

• Each time  ½ row of data[i] is prefetched to cache so subsequent accesses are 
hits! 21UVA DS5110 Spring '25



Peeking behind the scene… 

• Data access granularity
• If a process reads one byte and misses, how much 

data should the CPU bring into the CPU cache?

• Tradeoff:
• Too little? Will have many more misses if we read nearby 

bytes soon (recall spatial locality)

• Too much? Wasteful to load data to cache that might never 
be accessed

• CPU caches data in units called cache lines
• Typically, 64 bytes for modern CPUs (8 float64 

numbers)
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Cache lines and misses
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Memory layout of a matrix 
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Memory layout of a matrix 
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Summing over row: 

data consolidated into a few cache lines (CPU cache friendly)
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Memory layout of a matrix 
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Row

Row

Row

Row

Matrix of numbers

Logically, 2-dimensional

Summing over column: each number is in its own cache line and triggers a cache miss

Row Row Row RowCode stack

Summing over row: 

data consolidated into a few cache lines (CPU cache friendly)

… 



Demo … 
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Caching policies

• When to load data to a cache?
• Whenever the program reads something, add it to 

cache (on demand)

• When to evict data from a cache (eviction 
policy)? Several policies:

• Random: select any data at random for eviction

• FIFO (first-in, first-out): evict whichever data that has 
been in the cache the longest

• LRU (least recently used): evict the data that has 
been used the least recently
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Worksheet … 
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