
Caching
DS 5110: Big Data Systems

Spring 2025

Lecture 4

Yue Cheng

Some material taken/derived from:
• Wisconsin CS 544 by Tyler Caraza-Harter.

@ 2025 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

• Describe the cache hierarchy

• Understand spatial locality and temporal locality

• Trace through access patterns with FIFO and
LRU caching policies

• Calculate cache performance metrics

Y. Cheng UVA DS5110 Spring '25 2

Outline

• Challenge: latency

• Cache hierarchy
• CPU, RAM, SSD, Disk, Network

• Tradeoffs

• Data access patterns, data locality, data access
granularity

• Spatial locality

• Temporal locality

• Cache lines and locality optimization

• What data should be cached?
• Eviction policies: FIFO, LRU

Y. Cheng UVA DS5110 Spring '25 3

Interaction between CPU and RAM

Y. Cheng UVA DS5110 Spring '25 4

CPU

3

4

0

r1:

r2:

r3:

RAMCPU clock has

billions of cycles
per second

CPU registers are

like variables built
into the CPU

Interaction between CPU and RAM

Y. Cheng UVA DS5110 Spring '25 5

CPU

3

4

7

r1:

r2:

r3:

RAM

Instruction:
r3 = r1 + r2

(fast)

Load and store

Y. Cheng UVA DS5110 Spring '25 6

CPU

3

4

7

r1:

r2:

r3:

RAM

Challenge: If we want to add some

numbers stored in RAM, we need to load

before adding and store after

6

2

0

Latency to load from RAM

Y. Cheng UVA DS5110 Spring '25 7

CPU

6

4

7

r1:

r2:

r3:

RAM

Very slow, but not long enough to switch to

a different thread…

6

2

0

about 100ns, or 200 cycles

Latency

Y. Cheng UVA DS5110 Spring '25 8

CPU

6

4

7

r1:

r2:

r3:

RAM

“How much time” is a latency measure.

Throughput (bytes/second) depends on

how many loads we can do simultaneously.

6

2

0

about 100ns, or 200 cycles

CPU Cache

Y. Cheng UVA DS5110 Spring '25 9

CPU

6

4

7

r1:

r2:

r3:

RAM

Idea: CPUs can have a small but very fast memory

built in for data that is frequently accessed

6

2

0

Cache

Copies of hot data

Latency measurements

• Latency metrics
• Average latency

• Median latency

• “Tail” latency (99th percentile, 99.9th percentile, etc.)

• Which metrics do we expect caching to help
with the most?

Y. Cheng UVA DS5110 Spring '25 10

Cache hierarchy

Y. Cheng UVA DS5110 Spring '25 11

Flash Storage (SSD)

CPU

Main
Memory

Magnetic Hard Disk Drive (HDD)

Cache

~10GB/s

~80GB/s

~100GB/s
~MBs

~$2/MB

~10GBs

~$5/GB

~TBs

~$200/TB

~10TBs

~$30/TB~100MB/s

Registers

*UCSD DSC 102: Systems for scalable analysis. Arun Kumar

Faster/

smaller

Bigger/

slower

Resource tradeoffs

• File system caches file data in RAM
• Uses memory
• Avoids storage reads

• Browser caches recently visited pages as disk files
• Uses local storage space
• Avoids network transfers

• Python dictionary caches return values in a dict
(key=args, val=return)

• Uses memory space
• Avoids repeated compute

Y. Cheng UVA DS5110 Spring '25 12

cache = {}

def f(x):

 if not x in cache:

 cache[x] = g(x)

 return cache[x]

Workload characteristics

13

sum = 0

for i in range(0,1024):

 sum += a[i]

Application A

Y. Cheng UVA DS5110 Spring '25

Workload characteristics

14

sum = 0

for i in range(0,1024):

 sum += a[i]

import random

sum = 0

random.seed(1234);

for i in range(0,512):

 sum += a[random.randint(0,1023)]

random.seed(1234) # same seed

for i in range(0,512):

 sum += a[random.randint(0,1023)]

Application A Application B

Y. Cheng UVA DS5110 Spring '25

Access patterns

15

Application A

Time

A
d

d
r …

Application B

Time

A
d

d
r …

Y. Cheng UVA DS5110 Spring '25

Access patterns

16

Application A

Time

A
d

d
r …

Application B

Time

A
d

d
r …

Spatial Locality Temporal Locality
Y. Cheng UVA DS5110 Spring '25

Locality of data accesses

• Spatial locality:
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

17Y. Cheng UVA DS5110 Spring '25

Locality of data accesses

• Spatial locality:
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What is the implication of data locality to data
systems applications?

18Y. Cheng UVA DS5110 Spring '25

Locality optimization in Data Science

• Consider a matrix named data with 16*16 elements

• Each row is of size 16 floats and prefetching+caching means 1/2 row of
accessed data item is brought to CPU cache at a time

19Y. Cheng UVA DS5110 Spring '25

Locality optimization in Data Science

• Consider a matrix named data with 16*16 elements

• Each row is of size 16 floats and prefetching+caching means 1/2 row of
accessed data item is brought to CPU cache at a time

• Program 1

 for i in range(len(data[0]):

 for row in data:

 sum += row[i]

 16 x 16 = 256 CPU cache misses

 Not too hardware-efficient (not able to exploit prefetching+caching)

20Y. Cheng UVA DS5110 Spring '25

Locality optimization in Data Science

• Consider a matrix named data with 16*16 elements

• Each row is of size 16 floats and prefetching+caching means 1/2 row of accessed
data item is brought to CPU cache at a time

• Program 1

 for i in range(len(data[0]):

 for row in data:

 sum += row[i]

 16 x 16 = 256 CPU cache misses

 Not too hardware-efficient (not able to exploit prefetching+caching)

• Program 2

 for row in data:

 for element in row:

 sum += element

Only 16*2 CPU cache misses

• Each time ½ row of data[i] is prefetched to cache so subsequent accesses are
hits! 21UVA DS5110 Spring '25

Peeking behind the scene…

• Data access granularity
• If a process reads one byte and misses, how much

data should the CPU bring into the CPU cache?

• Tradeoff:
• Too little? Will have many more misses if we read nearby

bytes soon (recall spatial locality)

• Too much? Wasteful to load data to cache that might never
be accessed

• CPU caches data in units called cache lines
• Typically, 64 bytes for modern CPUs (8 float64

numbers)

Y. Cheng UVA DS5110 Spring '25 22

Cache lines and misses

Y. Cheng UVA DS5110 Spring '25 23

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

c
a

c
h

e
 l
in

e
c
a

c
h

e
 l
in

e
fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

c
a

c
h

e
 l
in

e
c
a

c
h

e
 l
in

e

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

c
a

c
h

e
 l
in

e
c
a

c
h

e
 l
in

e

How many misses? How many misses? How many misses?

Memory layout of a matrix

Y. Cheng UVA DS5110 Spring '25 24

Row

Row

Row

Row

Matrix of numbers

Logically, 2-dimensional

Virtual address space

Row Row Row stack

Physically, those rows are arranged along 1-dimension in the virtual address space

Code Row

Memory layout of a matrix

Y. Cheng UVA DS5110 Spring '25 25

Row

Row

Row

Row

Matrix of numbers

Logically, 2-dimensional

Row Row Row RowCode stack

Summing over row:

data consolidated into a few cache lines (CPU cache friendly)

…

Memory layout of a matrix

Y. Cheng UVA DS5110 Spring '25 26

Row

Row

Row

Row

Matrix of numbers

Logically, 2-dimensional

Summing over column: each number is in its own cache line and triggers a cache miss

Row Row Row RowCode stack

Summing over row:

data consolidated into a few cache lines (CPU cache friendly)

…

Demo …

Y. Cheng UVA DS5110 Spring '25 27

Caching policies

• When to load data to a cache?
• Whenever the program reads something, add it to

cache (on demand)

• When to evict data from a cache (eviction
policy)? Several policies:

• Random: select any data at random for eviction

• FIFO (first-in, first-out): evict whichever data that has
been in the cache the longest

• LRU (least recently used): evict the data that has
been used the least recently

Y. Cheng UVA DS5110 Spring '25 28

Worksheet …

Y. Cheng UVA DS5110 Spring '25 29

	Slide 1: Caching
	Slide 2: Learning objectives
	Slide 3: Outline
	Slide 4: Interaction between CPU and RAM
	Slide 5: Interaction between CPU and RAM
	Slide 6: Load and store
	Slide 7: Latency to load from RAM
	Slide 8: Latency
	Slide 9: CPU Cache
	Slide 10: Latency measurements
	Slide 11: Cache hierarchy
	Slide 12: Resource tradeoffs
	Slide 13: Workload characteristics
	Slide 14: Workload characteristics
	Slide 15: Access patterns
	Slide 16: Access patterns
	Slide 17: Locality of data accesses
	Slide 18: Locality of data accesses
	Slide 19: Locality optimization in Data Science
	Slide 20: Locality optimization in Data Science
	Slide 21: Locality optimization in Data Science
	Slide 22: Peeking behind the scene…
	Slide 23: Cache lines and misses
	Slide 24: Memory layout of a matrix
	Slide 25: Memory layout of a matrix
	Slide 26: Memory layout of a matrix
	Slide 27: Demo …
	Slide 28: Caching policies
	Slide 29: Worksheet …

