
Processes and
Threads

DS 5110: Big Data Systems

Spring 2025

Lecture 3

Yue Cheng

Some material taken/derived from:
• Wisconsin CS 544 by Tyler Caraza-Harter.

@ 2025 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

• Describe the interaction between schedulers,
CPUs, processes vs. threads, and address
spaces

• Understand various basic CPU scheduling
policies: FIFO, SJF (STCF), RR
• And their pros and cons

• Use Linux commands to track running programs
and manipulate the scheduling behaviors of them

Y. Cheng UVA DS5110 Spring '25 2

Motivation

• Modern CPUs have many cores (maybe dozens)

• Trend: more cores rather than faster cores

• Problem: a simple Python program can use at
most ONE core
• Less if it accesses files or the Internet

• Understanding processes and threads will:
• Let us write programs that fully utilize CPU resources

• Decide the structure of our concurrent program
(processes or threads) depending on the situation

Y. Cheng UVA DS5110 Spring '25 3

Outline

• Virtual address spaces

• Processes vs. Threads

• CPU scheduling policies

• Demos

Y. Cheng UVA DS5110 Spring '25 4

Processes and address spaces

• Address spaces
• A process is a running program
• Each process has its own virtual address space

• The same virtual address generally refers to different
memory in different processes

• Regular processes cannot directly access physical
memory or other addr spaces

Y. Cheng UVA DS5110 Spring '25 5

0 N

Virtual address spaces

0 N

0 M

Physical memory

Physical addresses

Processes and address spaces

• Address spaces
• A process is a running program
• Each process has its own virtual address space
• The same virtual address generally refers to different memory in

different processes
• Regular processes cannot directly access physical memory or other

addr spaces
• Address spaces can have holes (N is typically much bigger than M)
• Physical memory for a process need not be contiguous

Y. Cheng UVA DS5110 Spring '25 6

0 N

Virtual address spaces

0 N

0 M

Physical memory

Physical addresses

What goes in an address space

Y. Cheng UVA DS5110 Spring '25 7

https://pythontutor.com

What goes here?

0 N

Virtual address space

https://pythontutor.com/

What goes in an address space

Y. Cheng UVA DS5110 Spring '25 8

0 N

Virtual address space
code

(Python)
stack heap

What goes in an address space

Y. Cheng UVA DS5110 Spring '25 9

0 N

Virtual address space
code

(Python)
stack heap

code

(C)

Some packages
(like numpy)

What goes in an address space

Y. Cheng UVA DS5110 Spring '25 10

0 N

Virtual address space
code

(Python)
stack heap

code

(C)

Instruction pointer

What goes in an address space

Y. Cheng UVA DS5110 Spring '25 11

0 N

Virtual address space
code

(Python)
stack heap

code

(C)

• CPUs
• CPUs are attached to at most one instruction pointer at any given time
• They run code by executing instructions and advancing the instruction

pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code,

which points to Python bytecode)

What goes in an address space

Y. Cheng UVA DS5110 Spring '25 12

0 N

Virtual address space
code

(Python)
stack heap

code

(C)

• CPUs
• CPUs are attached to at most one instruction pointer at any given time
• They run code by executing instructions and advancing the instruction

pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code,

which points to Python bytecode)

What goes in an address space

Y. Cheng UVA DS5110 Spring '25 13

0 N

Virtual address space
code

(Python)
stack heap

code

(C)

• CPUs
• CPUs are attached to at most one instruction pointer at any given time
• They run code by executing instructions and advancing the instruction

pointer
• Note: interpreter left out for simplicity (CPU points to interpreter code,

which points to Python bytecode)

Threads

Threads have their own instruction pointers and stacks, but share heap

Single-threaded process:

Multi-threaded process:

Y. Cheng UVA DS5110 Spring '25 14

Virtual address space
code

(Python)
stack heap

code

(C)

Virtual address space
code

(Python)
stack heap

code

(C)
stack

CPU scheduling

• CPU scheduling
• CPU scheduler is an important sub system in an

operating system
• A scheduler decides when to run which threads
• Context switch: change which thread a CPU is

running

Y. Cheng 15

context switch
same process, diff threads

context switch
thread in diff process

Process 1 Process 2 Process 3
UVA DS5110 Spring '25

Scheduling restrictions: blocked threads

• Threads can be in one of three states
• Running: CPU is executing it
• Blocked: waiting on something other than CPU

(network, input, disk, etc.)
• Ready: scheduler can choose to run it

Y. Cheng 16

Ready

Process 1 Process 2 Process 3

Running Running

Blocked

CPU cannot advance instruction
pointer until network request finishes

r = requests.get(URL)

total = sum(r.json())

print(total)

UVA DS5110 Spring '25

CPU scheduling policies

• Threads get queued up and the CPU scheduler
will select one from the ready queue for
execution

• The scheduling policies may have tremendous
effects on the system efficiency

Y. Cheng UVA DS5110 Spring '25 17

First-In, First-Out

Y. Cheng UVA DS5110 Spring '25 18

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

19Y. Cheng UVA DS5110 Spring '25

• First-In, First-Out: Run jobs in arrival order

FIFO

Proc Arrival time Runtime

P1 ~0 5

P2 ~0 5

P3 ~0 5

20Y. Cheng UVA DS5110 Spring '25

• First-In, First-Out: Run jobs in arrival order

FIFO

Proc Arrival time Runtime

P1 ~0 5

P2 ~0 5

P3 ~0 5

21Y. Cheng UVA DS5110 Spring '25

P1 P2
P3

5 10 150

Gantt chart

• First-In, First-Out: Run jobs in arrival order

FIFO

Proc Arrival time Runtime

P1 ~0 5

P2 ~0 5

P3 ~0 5

22Y. Cheng UVA DS5110 Spring '25

P1 P2
P3

5 10 150

What is the average turnaround time?
Def: turnaround_time = completion_time – arrival_time

Gantt chart

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

23Y. Cheng UVA DS5110 Spring '25

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

24Y. Cheng UVA DS5110 Spring '25

Example: big first job

25

What is the average turnaround time?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

Example: big first job

26

What is the average turnaround time?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1 P2 P3

80 85 900

Example: big first job

27

What is the average turnaround time?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1 P2 P3

80 85 900

Average turnaround time: (80+85+90) / 3 = 85

Convoy effect!!

28Y. Cheng UVA DS5110 Spring '25

Better schedule?

29

P1P2 P3

Y. Cheng UVA DS5110 Spring '25

Shortest Job First (SJF)

Y. Cheng UVA DS5110 Spring '25 30

Passing the tractor

• New scheduler: SJF (Shortest Job First)

• Policy: When deciding which job to run, choose
the one with the smallest runtime

31Y. Cheng UVA DS5110 Spring '25

Example: SJF

32

What is the average turnaround time with SJF?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

Example: SJF

33

What is the average turnaround time with SJF?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Example: SJF

34

What is the average turnaround time with SJF?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Average turnaround time: (5+10+90) / 3 = 35

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

35Y. Cheng UVA DS5110 Spring '25

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

36Y. Cheng UVA DS5110 Spring '25

What if jobs arrive at different time?

Y. Cheng UVA DS5110 Spring '25 37

Shortest Job First (arrival time)

38

What is the average turnaround time with SJF?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

Shortest Job First (arrival time)

39

What is the average turnaround time with SJF?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100

[P2, P3 arrive at 15]

Shortest Job First (arrival time)

40

What is the average turnaround time with SJF?

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100

Average turnaround time: (80+75+95) / 3 = ~83.3

P1: 80
P2: 75
P3: 95

A preemptive scheduler

• Previous schedulers: FIFO and SJF are non-
preemptive

• New scheduler:

 STCF (Shortest Time-to-Completion First)

• Policy: Switch jobs so we always run the one that
will complete the quickest

41Y. Cheng UVA DS5110 Spring '25

SJF

42

Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100

[P2, P3 arrive at 15]

Y. Cheng UVA DS5110 Spring '25

43

P1 P2P3

15 25 1100

[P2, P3 arrive]

45

P1

What is the average turnaround time with STCF?

STCF

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

44

P1 P2P3

15 25 1100

[P2, P3 arrive]

45

P1

P1: 110

P3: 10
P2: 30

Average turnaround time: (110+30+10) / 3 = 50

STCF

Y. Cheng UVA DS5110 Spring '25

Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

45Y. Cheng UVA DS5110 Spring '25

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

46Y. Cheng UVA DS5110 Spring '25

What if jobs do I/Os as well?

• No good if a program can only do pure CPU-
intensive compute

• A common execution pattern of the typical big
data applications (Hadoop, Spark, Dask)
• Completes the CPU burst, performs I/O (e.g., read

more CSV files from disk into DRAM), rejoins the
ready queue and completes the second CPU
bursts…

Y. Cheng UVA DS5110 Spring '25 47

Not I/O Aware

48

Poor use of resources

Y. Cheng UVA DS5110 Spring '25

Not I/O Aware

49

Poor use of resources

I/O-intensive CPU-intensive

Y. Cheng UVA DS5110 Spring '25

I/O Aware (Overlap)

50

Overlap allows better use of resources!

Y. Cheng UVA DS5110 Spring '25

• Each process gets a small unit of CPU time
 (time slice). After this time has elapsed, the process is
preempted and added to the end of the ready queue

• SJF

• RR (time slice = 1)

51

Round Robin (RR)

Y. Cheng UVA DS5110 Spring '25

Process Burst time

A ~5

B ~5

C ~5

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

52Y. Cheng UVA DS5110 Spring '25

Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

53Y. Cheng UVA DS5110 Spring '25

Demos …

Y. Cheng UVA DS5110 Spring '25 54

	Slide 1: Processes and Threads
	Slide 2: Learning objectives
	Slide 3: Motivation
	Slide 4: Outline
	Slide 5: Processes and address spaces
	Slide 6: Processes and address spaces
	Slide 7: What goes in an address space
	Slide 8: What goes in an address space
	Slide 9: What goes in an address space
	Slide 10: What goes in an address space
	Slide 11: What goes in an address space
	Slide 12: What goes in an address space
	Slide 13: What goes in an address space
	Slide 14: Threads
	Slide 15: CPU scheduling
	Slide 16: Scheduling restrictions: blocked threads
	Slide 17: CPU scheduling policies
	Slide 18: First-In, First-Out
	Slide 19: Workload assumptions
	Slide 20: FIFO
	Slide 21: FIFO
	Slide 22: FIFO
	Slide 23: Workload assumptions
	Slide 24: Workload assumptions
	Slide 25: Example: big first job
	Slide 26: Example: big first job
	Slide 27: Example: big first job
	Slide 28: Convoy effect!!
	Slide 29: Better schedule?
	Slide 30: Shortest Job First (SJF)
	Slide 31: Passing the tractor
	Slide 32: Example: SJF
	Slide 33: Example: SJF
	Slide 34: Example: SJF
	Slide 35: Workload assumptions
	Slide 36: Workload assumptions
	Slide 37: What if jobs arrive at different time?
	Slide 38: Shortest Job First (arrival time)
	Slide 39: Shortest Job First (arrival time)
	Slide 40: Shortest Job First (arrival time)
	Slide 41: A preemptive scheduler
	Slide 42: SJF
	Slide 43: STCF
	Slide 44: STCF
	Slide 45: Workload assumptions
	Slide 46: Workload assumptions
	Slide 47: What if jobs do I/Os as well?
	Slide 48: Not I/O Aware
	Slide 49: Not I/O Aware
	Slide 50: I/O Aware (Overlap)
	Slide 51: Round Robin (RR)
	Slide 52: Workload assumptions
	Slide 53: Workload assumptions
	Slide 54: Demos …

