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Learning objectives

• Describe the interaction between schedulers, 
CPUs, processes vs. threads, and address 
spaces

• Understand various basic CPU scheduling 
policies: FIFO, SJF (STCF), RR
• And their pros and cons

• Use Linux commands to track running programs 
and manipulate the scheduling behaviors of them
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Motivation

• Modern CPUs have many cores (maybe dozens)

• Trend: more cores rather than faster cores

• Problem: a simple Python program can use at 
most ONE core
• Less if it accesses files or the Internet

• Understanding processes and threads will:
• Let us write programs that fully utilize CPU resources

• Decide the structure of our concurrent program 
(processes or threads) depending on the situation
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Outline

• Virtual address spaces

• Processes vs. Threads

• CPU scheduling policies

• Demos
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Processes and address spaces

• Address spaces
• A process is a running program
• Each process has its own virtual address space

• The same virtual address generally refers to different 
memory in different processes

• Regular processes cannot directly access physical 
memory or other addr spaces
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Processes and address spaces

• Address spaces
• A process is a running program
• Each process has its own virtual address space
• The same virtual address generally refers to different memory in 

different processes
• Regular processes cannot directly access physical memory or other 

addr spaces
• Address spaces can have holes (N is typically much bigger than M)
• Physical memory for a process need not be contiguous
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What goes in an address space
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What goes here?
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What goes in an address space
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What goes in an address space
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What goes in an address space
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What goes in an address space
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What goes in an address space
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Threads

Threads have their own instruction pointers and stacks, but share heap

Single-threaded process:

Multi-threaded process:
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CPU scheduling

• CPU scheduling
• CPU scheduler is an important sub system in an 

operating system
• A scheduler decides when to run which threads
• Context switch: change which thread a CPU is 

running
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Scheduling restrictions: blocked threads

• Threads can be in one of three states
• Running: CPU is executing it
• Blocked: waiting on something other than CPU 

(network, input, disk, etc.)
• Ready: scheduler can choose to run it
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Ready

Process 1 Process 2 Process 3

Running Running

Blocked

CPU cannot advance instruction 
pointer until network request finishes 

r = requests.get(URL)

total = sum(r.json())

print(total)
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CPU scheduling policies 

• Threads get queued up and the CPU scheduler 
will select one from the ready queue for 
execution

• The scheduling policies may have tremendous 
effects on the system efficiency
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First-In, First-Out
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Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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• First-In, First-Out: Run jobs in arrival order 

FIFO

Proc Arrival time Runtime

P1 ~0 5

P2 ~0 5

P3 ~0 5
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• First-In, First-Out: Run jobs in arrival order 

FIFO

Proc Arrival time Runtime

P1 ~0 5

P2 ~0 5

P3 ~0 5
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• First-In, First-Out: Run jobs in arrival order 

FIFO

Proc Arrival time Runtime

P1 ~0 5

P2 ~0 5

P3 ~0 5
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What is the average turnaround time?
Def: turnaround_time = completion_time – arrival_time

Gantt chart



Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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Example: big first job
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What is the average turnaround time? 
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Example: big first job
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What is the average turnaround time? 
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Example: big first job
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What is the average turnaround time? 
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Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1 P2 P3

80 85 900

Average turnaround time: (80+85+90) / 3 = 85



Convoy effect!!
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Better schedule? 
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P1P2 P3
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Shortest Job First (SJF)
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Passing the tractor

• New scheduler: SJF (Shortest Job First)

• Policy: When deciding which job to run, choose 
the one with the smallest runtime
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Example: SJF
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What is the average turnaround time with SJF?
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Example: SJF
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What is the average turnaround time with SJF?
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Example: SJF

34

What is the average turnaround time with SJF?
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Proc Arrival time Runtime

P1 ~0 80

P2 ~0 5

P3 ~0 5

P1P2 P3

5 10 900

Average turnaround time: (5+10+90) / 3 = 35



Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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What if jobs arrive at different time?
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Shortest Job First (arrival time)
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What is the average turnaround time with SJF?
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Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10



Shortest Job First (arrival time)
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What is the average turnaround time with SJF?
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Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100

[P2, P3 arrive at 15]



Shortest Job First (arrival time)
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What is the average turnaround time with SJF?
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Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100

Average turnaround time: (80+75+95) / 3 = ~83.3

P1: 80
P2: 75
P3: 95



A preemptive scheduler

• Previous schedulers: FIFO and SJF are non-
preemptive

• New scheduler: 

  STCF (Shortest Time-to-Completion First)

• Policy: Switch jobs so we always run the one that 
will complete the quickest
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SJF
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Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10

P1 P3 P2

80 90 1100

[P2, P3 arrive at 15]
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P1 P2P3

15 25 1100

[P2, P3 arrive]
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P1

What is the average turnaround time with STCF? 

STCF
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Proc Arrival time Runtime
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P1 P2P3

15 25 1100

[P2, P3 arrive]

45

P1

P1: 110

P3: 10
P2: 30

Average turnaround time: (110+30+10) / 3 = 50

STCF
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Proc Arrival time Runtime

P1 ~0 80

P2 ~15 20

P3 ~15 10



Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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What if jobs do I/Os as well?

• No good if a program can only do pure CPU-
intensive compute 

• A common execution pattern of the typical big 
data applications (Hadoop, Spark, Dask)
• Completes the CPU burst, performs I/O (e.g., read 

more CSV files from disk into DRAM), rejoins the 
ready queue and completes the second CPU 
bursts… 
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Not I/O Aware
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Poor use of resources
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Not I/O Aware
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Poor use of resources

I/O-intensive CPU-intensive
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I/O Aware (Overlap)
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Overlap allows better use of resources!
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• Each process gets a small unit of CPU time
 (time slice).  After this time has elapsed, the process is 
preempted and added to the end of the ready queue

• SJF

• RR (time slice = 1)
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Round Robin (RR)
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Process Burst time

A ~5

B ~5

C ~5



Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known

52Y. Cheng UVA DS5110 Spring '25



Workload assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The runtime of each job is known
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Demos … 
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