
Amazon Dynamo
DS 5110: Big Data Systems 

Spring 2025

Lecture 19b

Yue Cheng

Some material taken/derived from: 
• Princeton COS-418 materials created by Michael Freedman.

• Wisconsin CS 544 by Tyler Caraza-Harter.

@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/


Announcement

• This coming Thursday (04/24)
• Final exam review

• Next Tuesday (04/29): Our final lecture of the 
semester

• Invited speakers from Hugging Face XetHub

• Xet recently acquired by Hugging Face (largest 
acquisition of Hugging Face!)

• The Xet team is working on redesigning Hugging Face 
data storage infrastructure

Y. Cheng UVA DS5110 Spring '25



Learning objectives

• Learn how Dynamo replicates data
• Walk a token ring to identify multiple nodes 

responsible for a given key (row)

• Tune read and write quorum requirements to 
achieve desired tradeoffs in availability, durability, 
and performance

• Describe common approaches to eventual 
consistency and conflict resolution

Y. Cheng UVA DS5110 Spring '25 3



Replication

Y. Cheng UVA DS5110 Spring '25 4

Computers: node 1 node 2 node 3

Token map:

token(node1) = {t1, t2}

token(node2) = {t3, t4}

token(node3) = {t5, t6}

token(node4) = {t7, t8}

Replication factor (RF) of N (where N == 2)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
????



Replication

Y. Cheng UVA DS5110 Spring '25 5

Computers: node 1 node 2 node 3

Token map:

token(node1) = {t1, t2}

token(node2) = {t3, t4}

token(node3) = {t5, t6}

token(node4) = {t7, t8}

RF = N (where N == 2)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 4, 2

Walk until we get enough nodes



Replication

Y. Cheng UVA DS5110 Spring '25 6

Computers: node 1 node 2 node 3

Token map:

token(node1) = {t1, t2}

token(node2) = {t3, t4}

token(node3) = {t5, t6}

token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 4, 2, 3

Walk until we get enough nodes



Replication

Y. Cheng UVA DS5110 Spring '25 7

Computers: node 1 node 2 node 3

Token map:

token(node1) = {t1, t2}

token(node2) = {t3, t4}

token(node3) = {t5, t6}

token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: ????



Replication

Y. Cheng UVA DS5110 Spring '25 8

Computers: node 1 node 2 node 3

Token map:

token(node1) = {t1, t2}

token(node2) = {t3, t4}

token(node3) = {t5, t6}

token(node4) = {t7, t8}

Replication factor of N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 3, 1, 2



Replication

Y. Cheng UVA DS5110 Spring '25 9

Computers: node 1 node 2 node 3

Token map:

token(node1) = {t1, t2}

token(node2) = {t3, t4}

token(node3) = {t5, t6}

token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: ????



Replication

Y. Cheng UVA DS5110 Spring '25 10

Computers: node 1 node 2 node 3

Token map:

token(node1) = {t1, t2}

token(node2) = {t3, t4}

token(node3) = {t5, t6}

token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 1, 2, 4

Important: Keeping multiple copies on vnodes on the same node provides 

little safety (when a node dies, all its vnodes die). Same “failure domain”. 

Dynamo skips nodes to ensure replicas reside on different nodes.



Write acks

• In distributed storage/database systems, an ack 
means our data is committed

• “Committed” means our data is “safe”, even if 
bad things happen. The definition varies system 
to system, based on what bad things are 
considered. For example:

• A node could hang until rebooted; a node’s disk could 
permanently fail

• A rack could lose power; a datacenter could be 
destroyed

Y. Cheng UVA DS5110 Spring '25 11



Write acks: WhatsApp example

Y. Cheng UVA DS5110 Spring '25 12

https://faq.whatsapp.com/665923838265756/?cms_platform=android&helpref=platform_switcher 

These are examples of “acks” (acknowledgments) 

https://faq.whatsapp.com/665923838265756/?cms_platform=android&helpref=platform_switcher


Dynamo writes

Y. Cheng UVA DS5110 Spring '25 13

Node 1 Node 2 Node 3

CoordinatorClient program

5 B

5 A 3 X 5 A 3 X 5 A 3 X

RF = 3. Coordinator will attempt to write data to all 3 replicas. 



Dynamo writes

Y. Cheng UVA DS5110 Spring '25 14

Node 1 Node 2 Node 3

CoordinatorClient program

5 B

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3. Coordinator will attempt to write data to all 3 replicas. 

rebooting… 

ack ack

At what point should we send an ack back to the client? 



Dynamo writes

Y. Cheng UVA DS5110 Spring '25 15

Node 1 Node 2 Node 3

CoordinatorClient program

5 B

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3. Coordinator will attempt to write data to all 3 replicas. 

ack ack

At what point should we send an ack back to the client? 

Configurable: W = 2 lets coordinator ack now, and data is fairly safe. 

ack

rebooting… 



Dynamo reads

Y. Cheng UVA DS5110 Spring '25 16

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

HDFS reads go to one replica. What if Dynamo tries that? 

read

???



Dynamo reads

Y. Cheng UVA DS5110 Spring '25 17

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

HDFS reads go to one replica. What if Dynamo tries that? 

old data

5 A5 A



Dynamo reads

Y. Cheng UVA DS5110 Spring '25 18

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

Read from R replicas (R is configurable). Here R = 2.

Hopefully at least one of the replicas has new data. 



Dynamo reads

Y. Cheng UVA DS5110 Spring '25 19

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

R = 2 means we’ll often read identical data from two replicas (wasteful)

data

data data



Dynamo reads

Y. Cheng UVA DS5110 Spring '25 20

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

R = 2 means we’ll often read identical data from two replicas (wasteful)

Optimization: Read one copy, and only request checksum from others.

data

checksum(data)
A checksum (like md5) is a hash function where 

collisions are extremely rare and hard to find.
data



When R + W > RF 

Y. Cheng UVA DS5110 Spring '25 21

Node 1 Node 2 Node 3

5 B 3 X 5 B 3 X 5 A 3 X

When R + W > RF, the replicas read + written will overlap.

RF = 3

Write quorum = 2 Read quorum = 2



Tradeoff: Tuning R and W

Y. Cheng UVA DS5110 Spring '25 22

RF R W Behavior

3 2 2 Parameters from the Dynamo paper:
Relatively balanced configuration;

Good durability, good R/W latency

3 3 1 Slow reads, weak durability, fast writes
Writes are highly available, therefore fast;

Reads will not return data even if one node is down; reads may fail;

Risk: If the one node that took the write fails permanently, we’ll lose 

committed data. 

3 1 3 Slow writes, strong durability, fast reads
Reads are highly available, therefore fast, but have weak consistency;

Writes are slow (from client’s perspective) as they involve writing to three 

replicas.

3 3 3 More likely that reads see all prior writes?

3 1 1 Read quorum doesn’t overlap write quorum
Speed + availability more important than consistency



Getting conflicting versions

Y. Cheng UVA DS5110 Spring '25 23

Node 1 Node 2 Node 3

CoordinatorClient program

5 A 3 X 5 A 3 X 5 A 3 X

Let RF = 3, R = 2, W = 25 B



Getting conflicting versions

Y. Cheng UVA DS5110 Spring '25 24

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

Let RF = 3, R = 2, W = 25 B

rebooting… 

data

data data



Getting conflicting versions

Y. Cheng UVA DS5110 Spring '25 25

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

Let RF = 3, R = 2, W = 2



Getting conflicting versions

Y. Cheng UVA DS5110 Spring '25 26

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 Y 5 B 3 X 5 A 3 Y

Let RF = 3, R = 2, W = 25 Y

rebooting… 

data

data data



Getting conflicting versions

Y. Cheng UVA DS5110 Spring '25 27

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 5 B 5 A

Let RF = 3, R = 2, W = 2

3 Y 3 X 3 Y



Getting conflicting versions

Y. Cheng UVA DS5110 Spring '25 28

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 5 B 5 A

Which version of Row 5 should be 

sent back? Both contain some new 
data not contained by others.

data data

Systems that allow conflicting 

versions to co-exist, fixing it up later 
are “eventually consistent”. 

3 Y 3 X 3 Y

rebooting… 



Getting conflicting versions

Y. Cheng UVA DS5110 Spring '25 29

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 5 B 5 A

Which version of Row 5 should be 

sent back? Both contain some new 
data not contained by others.

data data

Systems that allow conflicting 

versions to co-exist, fixing it up later 
are “eventually consistent”. 

Approach: 
• Send all versions back to client, which will need specialized conflict resolution code

• Automatically combine them into a new row, and write that (if possible to all replicas) 

3 Y 3 X 3 Y

rebooting… 



Timestamps (logical clock)

Y. Cheng UVA DS5110 Spring '25 30

Node 1 Node 2 Node 3

Coordinator

5 B 5 B 5 A

Each cell of every table has a 

timestamp:

data data

• Approximate (since clocks of nodes 

in a cluster are never perfectly in 

sync)

• Policy is LWW (last write wins), 

meaning prefer new data

5 B 3 Y

3 Y 3 X 3 Y

rebooting… 

Client


	Slide 1: Amazon Dynamo
	Slide 2: Announcement
	Slide 3: Learning objectives
	Slide 4: Replication
	Slide 5: Replication
	Slide 6: Replication
	Slide 7: Replication
	Slide 8: Replication
	Slide 9: Replication
	Slide 10: Replication
	Slide 11: Write acks
	Slide 12: Write acks: WhatsApp example
	Slide 13: Dynamo writes
	Slide 14: Dynamo writes
	Slide 15: Dynamo writes
	Slide 16: Dynamo reads
	Slide 17: Dynamo reads
	Slide 18: Dynamo reads
	Slide 19: Dynamo reads
	Slide 20: Dynamo reads
	Slide 21: When R + W > RF 
	Slide 22: Tradeoff: Tuning R and W
	Slide 23: Getting conflicting versions
	Slide 24: Getting conflicting versions
	Slide 25: Getting conflicting versions
	Slide 26: Getting conflicting versions
	Slide 27: Getting conflicting versions
	Slide 28: Getting conflicting versions
	Slide 29: Getting conflicting versions
	Slide 30: Timestamps (logical clock)

