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Learning objectives

» Understand basic working mechanism of a hard
disk drive
« And why S3 is built primarily on HDDs but not SSDs

» Know different load balancing strategies

 Replication-based
* Striping-based (erasure-coding)

* Know basic RAID algorithms

 Closely related to erasure coding algorithms such as
Reed-Solomon



Different types of storage systems



Local apps + local file systems
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Local apps + local file systems
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Distributed file systems
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AWS S3 (Simple Storage Service)
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Some S3 statistics

262 Billion

The Cloud Scales: Amazon S3 Growth
Peak Requests:

200,000+
per second

102 Billion
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* https://www.pingdom.com/blog/amazon-s3-will-soon-store-a-trillion-objects/

* Cloudscape: A Study of Storage Services in Modern Cloud Architectures [USENIX FAST 2025]
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Some S3 statistics

Capacity and throughput

Events

Replication

Cold Storage Retrieval
Data Integrity
Checks

Cost Optimization

Flexibility

2023 \

Amazon S3 holds more than 280 trillion objects and averages over
100 million requests per second

Every day, Amazon 53 sends over 125 billion event notifications to serverless
applications

Customers use Amazon S3 Replication to move more than 100 PB of data per week

Every day, customers restore more than 1PB from the 53 Glacier Flexible Retrieval
and S3 Glacier Deep Archive storage classes

Amazon S3 performs over 4 billion checksum computations per second

On average, customers using Amazon 53 Storage Lens advanced metrics and
recommendations have obtained cost savings 6x greater than the Storage Lens cost
in the first six months of using it.

Hundreds of thousands of data lakes are built on Amazon S3

https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html

Y. Cheng
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The physics of storage: HDDs
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Basic interface of disks

* A magnetic disk has a sector-addressable
address space
 You can think of a disk as an array of sectors

« Each sector (logical block) is the smallest unit of
transfer

» Sectors are typically 512 or 4096 bytes

* Main operations
« Read from sectors (blocks)
 Write to sectors (blocks)



Disk structure

* The 1-dimensional array of logical blocks is
mapped into the sectors of the disk sequentially

o Sector 0O is the first sector of the first track on the
outermost cylinder

* Mapping proceeds in order through that track, then
the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermost to
Innermost

 Logical to physical address should be easy

» Except for bad sectors
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Internals of hard disk drive (HDD)



Internals of hard disk drive (HDD)

Platter
Covered with a magnetic film



Internals of hard disk drive (HDD)

A single track example




Internals of hard disk drive (HDD)

Spindle in the center of the
surface




Internals of hard disk drive (HDD)

The track iIs divided into
numbered sectors




Internals of hard disk drive (HDD)

Rgtates this way

A single track + an arm +
a head




Let’s read sector 0

Rotates this way

<
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Let’s read sector 0

Rgtates this way

1. Seek for right track
@ 2. Rotate (sector 9 - 0)
3. Transfer data (sector 0)

Y. Cheng UVA DS5110 Spring '25 20



The first magnetic memory device

https://www.computerhistory.org/storageengine/rabinow-patents-magnetic-disk-data-storage/

Y. Cheng UVA DS5110 Spring '25
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3D view of a modern disk

Computer hard drive read/write head

spindle
disk
saved file

actuator

arm

ower port
P P circuit board

data cable port

drive Conflguratlon port © 2013 Encyclopaedia Britannica, Inc.

https://www.britannica.com/technology/hard-disk
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Don’t try this at home!

https:.//www.youtube.com/watch?v=9e MWG3fwiE

U&feature=youtu.be&t=30s

Y. Cheng UVA DS5110 Spring '25
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Summary of differences: SSD vs. HDD

55D

Stands for 550 stands for Solid State Drive.

How it works S5Ds store data on electronic circuits.

An SSD controller finds the correct address and reads

Read process
its charges.

block. It then writes new to the old block by changing

rocess
d its charges.

Performance 55Ds are faster. They're silent and run cooler.

Cost SSDs are costlier.

SSDs are electrical, which makes them less prone to

Durability

damage.

An 55D copies data to a new block, then erases the old

HDD

HDD stands for Hard Disk Drive.

HDDs store data on mechanically moving, magnetic platters.

Ann HDD 1/O controller sends a signal that moves the

actuator arm. The read/write head then reads charges.

An HDD moves the read/write head to the nearest available
location. It then writes data by changing the charge of bits in
that area.

HDDs are slower as their platters have to move around. They
release more heat and are noisy.

HDDs are less costly and larger storage volumes are
commercially popular.

HDDs have moving mechanical parts that make them
comparatively less durable.

https://aws.amazon.com/compare/the-difference-between-ssd-hard-drive/
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What makes HDDs an ideal storage
for S37?

* Pros
 More durable

« Performance is stable regardless of the capacity
» Cost effective
* High storage density

e Cons

* Limited shot resistance
» Slower



Performance and data placement

Y. Cheng
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Hot data creates a hotspot

Lambda clients

Storage nodes
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Hot data creates a hotspot

Lambda clients

Storage nodes
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Replication helps balance the heat

N

Lambda clients

Bucket 1 Bucket 1

Storage nodes
w/ replication
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Striping helps balance the heat

Lambda clients

Storage nodes B1S1 B1S2 B1S3
w/ striping
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Why hotspots are bad for disks



Modeling disk performance

/O latency of disks

LI/O:L + L + L

seek rotate transfer

Disk access latency at millisecond level



Seek, Rotate, Transfer

» Seek may take several milliseconds (ms)
» Settling along can take 0.5 - 2ms

e Entire seek often takes 4 - 10ms

Y. Cheng UVA DS5110 Spring '25
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Seek, Rotate, Transfer

 Rotation per minute (RPM)
« /200 RPM is common nowadays
« 15000 RPM is high end
« Old computers may have 5400 RPM disks

e 1 / 7200 RPM = 1 minute / 7200 rotations =

1 second / 120 rotations = 8.3 ms / rotation

Y. Cheng UVA DS5110 Spring '25 34



Seek, Rotate, Transfer

 Rotation per minute (RPM)
« /200 RPM is common nowadays
« 15000 RPM is high end
« Old computers may have 5400 RPM disks

e 1 / 7200 RPM = 1 minute / 7200 rotations =

1 second / 120 rotations = 8.3 ms / rotation

 Statistically, it may take 4.2 ms on average to
rotate to target (0.5 * 8.3 ms)

Y. Cheng UVA DS5110 Spring '25 35



Seek, Rotate, Transfer

 Relatively fast
* Depends on RPM and sector density

« 100+ MB/s is typical for SATA | (1.5Gb/s max)
« Up to 600MB/s for SATA Il (6.0Gb/s)

els / 100MB = 10ms / MB = 4.9us / sector
* Assuming 512-byte sector

Y. Cheng UVA DS5110 Spring '25
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Workloads

e Seeks and rotations are slow while transfer is
relatively fast

 \What kind of workload is best suited for disks?



Workloads

e Seeks and rotations are slow while transfer is
relatively fast

 \What kind of workload is best suited for disks?

« Sequential I/O: access sectors in order (transfer
dominated)

« Random workloads access sectors in a random
order (seek+rotation dominated)

* Typically slow on disks

Y. Cheng UVA DS5110 Spring '25 38



S3 workloads can be quite spiky

An 1/O spike
- {’ RN Bucket size: 3.7 PB
~- Peak throughput: 2.3M reg/s
1.5M
S/ 1HE = 143 HDDs _
26TB/HDD (Storage constrained)

M
143 HDDs x 120 IOPS = 17,160 IOPS

500K

\ /

A large-scale data-intensive application (e.g., parallel data processing from thousands of
Lambda functions)

Y. Cheng UVA DS5110 Spring '25 39



S3 workloads can be quite spiky

An 1/O spike
- {’ A Bucket size: 3.7 PB
~- Peak throughput: 2.3M reg/s
1.5M
S/ 1HE = 143 HDDs _
26TB/HDD (Storage constrained)

M
143 HDDs x 120 IOPS = 17,160 IOPS

500K

\ /

A large-scale data-intensive application (e.g., parallel data processing from thousands of
Lambda functions)

Q1: How many HDDs are needed in order to sustain this spike?
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S3 workloads can be quite spiky

2M

1.5M

M

500K

An 1/O spike
{’ A Bucket size: 3.7 PB
~- Peak throughput: 2.3M reg/s
S/ 1HE = 143 HDDs _
26TB/HDD (Storage constrained)

143 HDDs x 120 IOPS = 17,160 IOPS

\ /

A large-scale data-intensive application (e.g., parallel data processing from thousands of
Lambda functions)

Q1: How many HDDs are needed in order to sustain this spike?
Q2: How would you distribute the data across this many HDDs?
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Balancing the load using scale

See the video example In
https://www.allthingsdistributed.com/2023/07/bulil

ding-and-operating-a-pretty-big-storage-
system.html|

Y. Cheng UVA DS5110 Spring '25
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Striping helps balance the heat

Lambda clients

Storage nodes B1S1 B1S2 B1S3
w/ striping

Y. Cheng UVA DS5110 Spring '25 43



Striped data needs to be replicated

Lambda clients

Storage nodes
w/ striping

Replicated B1S1 B1S2 B1S3

w/ striping
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Striped data needs to be replicated

Lambda clients

replication?

B1S1 B1S2 B1S3

w/ striping
Y. Cheng e o 2 /N DISTSh mavae o) (810 o e



RAIQ and erasure coding

Redundant array of inexpensive disks



4 disks

Y. Cheng

Disk0 Disk1l Disk2 Disk3
0 1 2 9
4 5 6 7
8 9 10 1
12 13 14 15
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4 disks

stripe: |

Y. Cheng

Disk0 Disk1l Disk2 Disk3
0 1 2 9
4 5 6 7
8 9 10 1
12 13 14 15

UVA DS5110 Spring '25
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How to map?

 Given logical address A:

e Disk = ...
« Offset = ...
Disk0 Disk1l Disk2 Disk3
0 1 2 3
4 D 6 7
8 9 10 3l
12 13 14 15

Y. Cheng

UVA DS5110 Spring '25
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How to map?

 Given logical address A:
* Disk=2 % disk count
« Offset=A / disk count

Disk0 Disk1l Disk2 Disk3
0 1 2 %
4 5 6 7
8 9 10 3l
12 13 14 15

Y. Cheng UVA DS5110 Spring '25
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Mapping example: Find block 13

 Given logical address 13:
e Disk=13 % 4 =1
- Offset=13 / 4 = 3

Disk0O Disk1 Disk2 Disk3

Offset () 0 1 2 o
1 4 5 6 7
2 8 9 10 ) i

3 12 @ 14 15

Y. Cheng UVA DS5110 Spring '25
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Mapping example: Find block 13

 Given logical address 13:
e Disk=13 % 4 =1
- Offset=13 / 4 = 3

Problem with naive striping is that there is no redundancy support.

Disk0O Disk1 Disk2 Disk3

Offset () 0 1 2 %
1 4 5 6 7
2 8 9 10 ) i

3 12 @ 14 15

Y. Cheng UVA DS5110 Spring '25 52



5 disks

Parity disk
Disk0 Disk1l Disk2 Disk3 @
0 1 2 3 [ PO |
4 5 6 7 Pl
8 9 10 11
12 13 14 15

Y. Cheng
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Example

stripe:

Y. Cheng

Disk 0

Disk1 Disk?2

Disk 3

Disk 4

UVA DS5110 Spring '25
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Example

stripe:

Y. Cheng

Disk 0

Disk1 Disk?2

Disk 3

Disk 4

4

3 0

2
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Example

stripe:

Y. Cheng

DiskO Disk1 Disk2 Disk3 Disk4
4 3 0 2 9
(parity)
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Example

stripe:

Y. Cheng

DiskO Disk1 Disk2 Disk3 Disk4
X 3 0 2 9
(parity)
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Example

stripe:

Y. Cheng

DiskO Disk1 Disk2 Disk3 Disk4
4 3 0 2 9
(parity)

UVA DS5110 Spring '25

58



Parity function: XOR example

cC0 C1 C2 (3 F

0 ©0 1 1 XOR(0,0,1,1)=0
0 1 0 0 XOR(0,1,00) =1

Y. Cheng UVA DS5110 Spring '25
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Parity function: XOR example

ar €1 ©o 3 P
0 ©0 1 1 XOR(0,0,1,1)=0
0 1 0 0 XOR(0,1,00) =1

XOR function:

« P =0: The number of 1 in a stripe must be an even number
P =1: The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25



Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe: | 00 10 il 10 11 |
10 01 00 01 10
XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25



Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe” || X 10 il 10 11 |
10 01 00 01 10

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25



Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe” || X 10 il 10 11 |
10 01 00 01 10

BlockO = XOR(10,11,10,11) = 00

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25



Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe: | 00 10 il 10 11 |
10 01 00 01 10

BlockO = XOR(10,11,10,11) = 00

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25



Parity function: XOR example

Q: How many disks can fail?

BlockO Blockl Block2 Block3 Parity

stripe: | 00 10 il 10 11 |
10 01 00 01 10

BlockO = XOR(10,11,10,11) = 00

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25



RAID-6

Data blocks Parity blocks

A A
| 11 ]

do‘dl dz‘ds d4‘d5 p‘q

RAID-6 can fail at most 2 disks at a time.

Y. Cheng UVA DS5110 Spring '25



Encoding

Y. Cheng

0o oo
0 oo dq
0o oo d,
o[o]o oo d,|
ofofo]o o| * o] ~
olofo]o Id, |
1112 1 de
32|16[842]1

Generator matrix

[8 X 6] *[6Xx1]=[8x 1]

UVA DS5110 Spring '25

The product
> vector is called
a codeword
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Decoding w/ a parity check matrix

Parity check matrix d,

111(1]1
32116 8 4| 2

do®d1®d2®d3®d4@d5®p
32do@16d1@ 8d2@ 4d3@ 2d4@ ds & q
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Handling failures w/ decoding

d, ® ® d, ® dg @ d, ® ds ® p
32d, ®) 16d, ® 8d, ® 4d; ® 2d, ® ds @

Suppose diskl (d,) and disk4 (d,) fail

q



Handling failures w/ decoding

do®d1@d2@d3®d4@d5®p
32d0®16d1@ 8d, ® 4d; ® 2d, ® ds & q =

Suppose diskl (d,) and disk4 (d,) falil

Step 1: Put the failed data on the right of the equations.

do®d2®d3®d5@p dl®d4
32d, ® 8d, ® 4d, ® ds ® g 16d, ® 2d,

Y. Cheng UVA DS5110 Spring '25



Handling failures w/ decoding

do®d1@d2@d3®d4@d5@p
32d0®16d1@ 8d, ® 4d; ® 2d, ® ds & q =

Suppose diskl (d,) and disk4 (d,) falil

Step 2: Calculate the left sides, since those all exist.

do®d2®d3®d5@pzso:d1@d4

32d,® 8d, ® 4d; ® dg ® q = S; = 16d, ® 2d,

Y. Cheng UVA DS5110 Spring '25



Handling failures w/ decoding

do®d1@d2@d3®d4@d5@p
32d0®16d1@ 8d, ® 4d; ® 2d, ® ds & q =

Suppose diskl (d,) and disk4 (d,) falil

Step 3: Solve using Gaussian Elimination or Matrix Inversion.

(2So® Sy)
SO - dl @ d4 dl =
. 16® 2)
Sl — 16dl @ 2d4 d4 — SO @ d]_

Y. Cheng UVA DS5110 Spring '25
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Replication vs. erasure coding

Storage nodes Object 1 Object 1 Object 1
w/ 3-way

replication

3-Way replication requires 3X of the storage space for
storing one object.
3-way replication can tolerate 2 failures at a time.

Storage nodes | C1 C2 C3 C4 C5 C6 Pl P2
w/ RS (6,2)

Reed-Solomon (6,2) requires 1.33X of the Storage-efficient
storage space for storing one object. redundancy
RS (6,2) can tolerate 2 failures at a time.

Y. Cheng UVA DS5110 Spring '25 74
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