AWS Simple Storage
Service (S3)

DS 5110: Big Data Systems
Spring 2025
Lecture 18

Yue Cheng

o [NI ITY
flil RS

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

» Understand basic working mechanism of a hard
disk drive
« And why S3 is built primarily on HDDs but not SSDs

» Know different load balancing strategies

 Replication-based
* Striping-based (erasure-coding)

* Know basic RAID algorithms

 Closely related to erasure coding algorithms such as
Reed-Solomon

Different types of storage systems

Local apps + local file systems

You
l Data (db files, queries)

Applications R

$MH?QL®

File System (Linux)
(excel files, sheet cells) l Data (file blocks)

3

m -

Y. Cheng UVA DS5110 Spring '25

Local apps + local file systems

Applications

R O
\\ / Files as binary

File System (Linux) objects

l File blocks

Block storage device
(e.g., HDD)

m -

Y. Cheng UVA DS5110 Spring '25

Distributed file systems

Client Client Client

gy
a L]
ny L]
LY vy
L]]
Taa, Ya,
"ra,, e,
D]
Ny vy
ny L]
L]

HDFSblocks | N\~ \'™-
reads / writes

! Metadata requests

Data
Node

Local file system

blocks 2 5

m -

1L
ONo

m - - m - -

Y. Cheng UVA DS5110 Spring '25 6

AWS S3 (Simple Storage Service)

Client Client Client

HTTP REST reqgs
Frontend Server Fleet

......

Metadata .
Server

Reads / writes

Storage g Storage g Storage g Storage
Node Node Node Node

. Many HDDs

Storage Fleet

M=a dili=s Me=rE =3 M=a dili=s =9 A=

QA Qa

e (=S =S dIESEs e (=S =S =S

Y. Cheng UVA DS5110 Spring '25 7

Some S3 statistics

262 Billion

The Cloud Scales: Amazon S3 Growth
Peak Requests:

200,000+
per second

102 Billion

40 Billion
2 9 Billion 14 Billion
I
[-TET. . S BT o4 200a o 2009 [T
Total Mumber of Objects Stored in Amazon 53

Circa 2010

Percentage of arch (%)

I File B NoSQL I Object
s SQL = Specialized
FSX
EFSE|4%
o 31%
DynamoDB :
pocumenDBl | |41%
MemoryDB]] 1
RedShift L]
Neptume | 11%
Timestream |
st [— 68%
MediaStore 1 1 1 1
0 10 20 40 60 80

Percentage of arch (%)

* https://www.pingdom.com/blog/amazon-s3-will-soon-store-a-trillion-objects/

* Cloudscape: A Study of Storage Services in Modern Cloud Architectures [USENIX FAST 2025]
UVA DS5110 Spring '25 8

Y. Cheng

https://www.pingdom.com/blog/amazon-s3-will-soon-store-a-trillion-objects/

Some S3 statistics

Capacity and throughput

Events

Replication

Cold Storage Retrieval
Data Integrity
Checks

Cost Optimization

Flexibility

2023 \

Amazon S3 holds more than 280 trillion objects and averages over
100 million requests per second

Every day, Amazon 53 sends over 125 billion event notifications to serverless
applications

Customers use Amazon S3 Replication to move more than 100 PB of data per week

Every day, customers restore more than 1PB from the 53 Glacier Flexible Retrieval
and S3 Glacier Deep Archive storage classes

Amazon S3 performs over 4 billion checksum computations per second

On average, customers using Amazon 53 Storage Lens advanced metrics and
recommendations have obtained cost savings 6x greater than the Storage Lens cost
in the first six months of using it.

Hundreds of thousands of data lakes are built on Amazon S3

https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html

Y. Cheng

UVA DS5110 Spring '25 9

https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html

The physics of storage: HDDs

00 09 99 99 wyuons |
00 90 90 @@ - |

ssssssssssssssssssssssss

Basic interface of disks

* A magnetic disk has a sector-addressable
address space
 You can think of a disk as an array of sectors

« Each sector (logical block) is the smallest unit of
transfer

» Sectors are typically 512 or 4096 bytes

* Main operations
« Read from sectors (blocks)
 Write to sectors (blocks)

Disk structure

* The 1-dimensional array of logical blocks is
mapped into the sectors of the disk sequentially

o Sector 0O is the first sector of the first track on the
outermost cylinder

* Mapping proceeds in order through that track, then
the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermost to
Innermost

 Logical to physical address should be easy

» Except for bad sectors

Y. Cheng UVA DS5110 Spring '25 12

Internals of hard disk drive (HDD)

Internals of hard disk drive (HDD)

Platter
Covered with a magnetic film

Internals of hard disk drive (HDD)

A single track example

Internals of hard disk drive (HDD)

Spindle in the center of the
surface

Internals of hard disk drive (HDD)

The track iIs divided into
numbered sectors

Internals of hard disk drive (HDD)

Rgtates this way

A single track + an arm +
a head

Let’s read sector 0

Rotates this way

<

Y. Cheng UVA DS5110 Spring '25

19

Let’s read sector 0

Rgtates this way

1. Seek for right track
@ 2. Rotate (sector 9 - 0)
3. Transfer data (sector 0)

Y. Cheng UVA DS5110 Spring '25 20

The first magnetic memory device

https://www.computerhistory.org/storageengine/rabinow-patents-magnetic-disk-data-storage/

Y. Cheng UVA DS5110 Spring '25

21

https://www.computerhistory.org/storageengine/rabinow-patents-magnetic-disk-data-storage/

3D view of a modern disk

Computer hard drive read/write head

spindle
disk
saved file

actuator

arm

ower port
P P circuit board

data cable port

drive Conflguratlon port © 2013 Encyclopaedia Britannica, Inc.

https://www.britannica.com/technology/hard-disk

Y. Cheng UVA DS5110 Spring '25 22

https://www.britannica.com/technology/hard-disk

Don’t try this at home!

https:.//www.youtube.com/watch?v=9e MWG3fwiE

U&feature=youtu.be&t=30s

Y. Cheng UVA DS5110 Spring '25

23

https://www.youtube.com/watch?v=9eMWG3fwiEU&feature=youtu.be&t=30s
https://www.youtube.com/watch?v=9eMWG3fwiEU&feature=youtu.be&t=30s

Summary of differences: SSD vs. HDD

55D

Stands for 550 stands for Solid State Drive.

How it works S5Ds store data on electronic circuits.

An SSD controller finds the correct address and reads

Read process
its charges.

block. It then writes new to the old block by changing

rocess
d its charges.

Performance 55Ds are faster. They're silent and run cooler.

Cost SSDs are costlier.

SSDs are electrical, which makes them less prone to

Durability

damage.

An 55D copies data to a new block, then erases the old

HDD

HDD stands for Hard Disk Drive.

HDDs store data on mechanically moving, magnetic platters.

Ann HDD 1/O controller sends a signal that moves the

actuator arm. The read/write head then reads charges.

An HDD moves the read/write head to the nearest available
location. It then writes data by changing the charge of bits in
that area.

HDDs are slower as their platters have to move around. They
release more heat and are noisy.

HDDs are less costly and larger storage volumes are
commercially popular.

HDDs have moving mechanical parts that make them
comparatively less durable.

https://aws.amazon.com/compare/the-difference-between-ssd-hard-drive/

Y. Cheng UVA DS5110 Spring '25 24

https://aws.amazon.com/compare/the-difference-between-ssd-hard-drive/

What makes HDDs an ideal storage
for S37?

* Pros
 More durable

« Performance is stable regardless of the capacity
» Cost effective
* High storage density

e Cons

* Limited shot resistance
» Slower

Performance and data placement

Y. Cheng

| Storage
manager

. Many HDDs

]| et I | | e | [et B | | et | m- - m - m - - m -
||||—| J ||||—| -] ||||—| J ||||—| J ||||—| J ||||—|] ||||—| J ||||—| J
UVA DS5110 Spring '25 26

Hot data creates a hotspot

Lambda clients

Storage nodes

Y. Cheng

Bucket 1

~———
")
oo

3 =" =S M= 9

UVA DS5110 Spring '25

Hot data creates a hotspot

Lambda clients

Storage nodes

Y. Cheng

Bucket 1

y

UVA DS5110 Spring '25 28

Replication helps balance the heat

N

Lambda clients

Bucket 1 Bucket 1

Storage nodes
w/ replication

W | W
PEEEEREE

=" =S M= 9 |

Y. Cheng UVA DS5110 Spring '25 29

Striping helps balance the heat

Lambda clients

Storage nodes B1S1 B1S2 B1S3
w/ striping

Y. Cheng UVA DS5110 Spring '25 30

Why hotspots are bad for disks

Modeling disk performance

/O latency of disks

LI/O:L + L + L

seek rotate transfer

Disk access latency at millisecond level

Seek, Rotate, Transfer

» Seek may take several milliseconds (ms)
» Settling along can take 0.5 - 2ms

e Entire seek often takes 4 - 10ms

Y. Cheng UVA DS5110 Spring '25

33

Seek, Rotate, Transfer

 Rotation per minute (RPM)
« /200 RPM is common nowadays
« 15000 RPM is high end
« Old computers may have 5400 RPM disks

e 1 / 7200 RPM = 1 minute / 7200 rotations =

1 second / 120 rotations = 8.3 ms / rotation

Y. Cheng UVA DS5110 Spring '25 34

Seek, Rotate, Transfer

 Rotation per minute (RPM)
« /200 RPM is common nowadays
« 15000 RPM is high end
« Old computers may have 5400 RPM disks

e 1 / 7200 RPM = 1 minute / 7200 rotations =

1 second / 120 rotations = 8.3 ms / rotation

 Statistically, it may take 4.2 ms on average to
rotate to target (0.5 * 8.3 ms)

Y. Cheng UVA DS5110 Spring '25 35

Seek, Rotate, Transfer

 Relatively fast
* Depends on RPM and sector density

« 100+ MB/s is typical for SATA | (1.5Gb/s max)
« Up to 600MB/s for SATA Il (6.0Gb/s)

els / 100MB = 10ms / MB = 4.9us / sector
* Assuming 512-byte sector

Y. Cheng UVA DS5110 Spring '25

36

Workloads

e Seeks and rotations are slow while transfer is
relatively fast

 \What kind of workload is best suited for disks?

Workloads

e Seeks and rotations are slow while transfer is
relatively fast

 \What kind of workload is best suited for disks?

« Sequential I/O: access sectors in order (transfer
dominated)

« Random workloads access sectors in a random
order (seek+rotation dominated)

* Typically slow on disks

Y. Cheng UVA DS5110 Spring '25 38

S3 workloads can be quite spiky

An 1/O spike
- {’ RN Bucket size: 3.7 PB
~- Peak throughput: 2.3M reg/s
1.5M
S/ 1HE = 143 HDDs _
26TB/HDD (Storage constrained)

M
143 HDDs x 120 IOPS = 17,160 IOPS

500K

\ /

A large-scale data-intensive application (e.g., parallel data processing from thousands of
Lambda functions)

Y. Cheng UVA DS5110 Spring '25 39

S3 workloads can be quite spiky

An 1/O spike
- {’ A Bucket size: 3.7 PB
~- Peak throughput: 2.3M reg/s
1.5M
S/ 1HE = 143 HDDs _
26TB/HDD (Storage constrained)

M
143 HDDs x 120 IOPS = 17,160 IOPS

500K

\ /

A large-scale data-intensive application (e.g., parallel data processing from thousands of
Lambda functions)

Q1: How many HDDs are needed in order to sustain this spike?

Y. Cheng UVA DS5110 Spring '25 40

S3 workloads can be quite spiky

2M

1.5M

M

500K

An 1/O spike
{’ A Bucket size: 3.7 PB
~- Peak throughput: 2.3M reg/s
S/ 1HE = 143 HDDs _
26TB/HDD (Storage constrained)

143 HDDs x 120 IOPS = 17,160 IOPS

\ /

A large-scale data-intensive application (e.g., parallel data processing from thousands of
Lambda functions)

Q1: How many HDDs are needed in order to sustain this spike?
Q2: How would you distribute the data across this many HDDs?

Y. Cheng UVA DS5110 Spring '25 41

Balancing the load using scale

See the video example In
https://www.allthingsdistributed.com/2023/07/bulil

ding-and-operating-a-pretty-big-storage-
system.html|

Y. Cheng UVA DS5110 Spring '25

42

https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html

Striping helps balance the heat

Lambda clients

Storage nodes B1S1 B1S2 B1S3
w/ striping

Y. Cheng UVA DS5110 Spring '25 43

Striped data needs to be replicated

Lambda clients

Storage nodes
w/ striping

Replicated B1S1 B1S2 B1S3

w/ striping
Y. Cheng NSNSV A D S HESHL i b=

Striped data needs to be replicated

Lambda clients

replication?

B1S1 B1S2 B1S3

w/ striping
Y. Cheng e o 2 /N DISTSh mavae o) (810 o e

RAIQ and erasure coding

Redundant array of inexpensive disks

4 disks

Y. Cheng

Disk0 Disk1l Disk2 Disk3
0 1 2 9
4 5 6 7
8 9 10 1
12 13 14 15

UVA DS5110 Spring '25

47

4 disks

stripe: |

Y. Cheng

Disk0 Disk1l Disk2 Disk3
0 1 2 9
4 5 6 7
8 9 10 1
12 13 14 15

UVA DS5110 Spring '25

48

How to map?

 Given logical address A:

e Disk = ...
« Offset = ...
Disk0 Disk1l Disk2 Disk3
0 1 2 3
4 D 6 7
8 9 10 3l
12 13 14 15

Y. Cheng

UVA DS5110 Spring '25

49

How to map?

 Given logical address A:
* Disk=2 % disk count
« Offset=A / disk count

Disk0 Disk1l Disk2 Disk3
0 1 2 %
4 5 6 7
8 9 10 3l
12 13 14 15

Y. Cheng UVA DS5110 Spring '25

50

Mapping example: Find block 13

 Given logical address 13:
e Disk=13 % 4 =1
- Offset=13 / 4 = 3

Disk0O Disk1 Disk2 Disk3

Offset () 0 1 2 o
1 4 5 6 7
2 8 9 10) i

3 12 @ 14 15

Y. Cheng UVA DS5110 Spring '25

51

Mapping example: Find block 13

 Given logical address 13:
e Disk=13 % 4 =1
- Offset=13 / 4 = 3

Problem with naive striping is that there is no redundancy support.

Disk0O Disk1 Disk2 Disk3

Offset () 0 1 2 %
1 4 5 6 7
2 8 9 10) i

3 12 @ 14 15

Y. Cheng UVA DS5110 Spring '25 52

5 disks

Parity disk
Disk0 Disk1l Disk2 Disk3 @
0 1 2 3 [PO |
4 5 6 7 Pl
8 9 10 11
12 13 14 15

Y. Cheng

UVA DS5110 Spring '25

P2
&

53

Example

stripe:

Y. Cheng

Disk 0

Disk1 Disk?2

Disk 3

Disk 4

UVA DS5110 Spring '25

(parity)

54

Example

stripe:

Y. Cheng

Disk 0

Disk1 Disk?2

Disk 3

Disk 4

4

3 0

2

UVA DS5110 Spring '25

(parity)

55

Example

stripe:

Y. Cheng

DiskO Disk1 Disk2 Disk3 Disk4
4 3 0 2 9
(parity)

UVA DS5110 Spring '25

56

Example

stripe:

Y. Cheng

DiskO Disk1 Disk2 Disk3 Disk4
X 3 0 2 9
(parity)

UVA DS5110 Spring '25

57

Example

stripe:

Y. Cheng

DiskO Disk1 Disk2 Disk3 Disk4
4 3 0 2 9
(parity)

UVA DS5110 Spring '25

58

Parity function: XOR example

cC0 C1 C2 (3 F

0 ©0 1 1 XOR(0,0,1,1)=0
0 1 0 0 XOR(0,1,00) =1

Y. Cheng UVA DS5110 Spring '25

59

Parity function: XOR example

ar €1 ©o 3 P
0 ©0 1 1 XOR(0,0,1,1)=0
0 1 0 0 XOR(0,1,00) =1

XOR function:

« P =0: The number of 1 in a stripe must be an even number
P =1: The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25

Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe: | 00 10 il 10 11 |
10 01 00 01 10
XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25

Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe” || X 10 il 10 11 |
10 01 00 01 10

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25

Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe” || X 10 il 10 11 |
10 01 00 01 10

BlockO = XOR(10,11,10,11) = 00

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25

Parity function: XOR example

BlockO Blockl Block2 Block3 Parity

stripe: | 00 10 il 10 11 |
10 01 00 01 10

BlockO = XOR(10,11,10,11) = 00

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25

Parity function: XOR example

Q: How many disks can fail?

BlockO Blockl Block2 Block3 Parity

stripe: | 00 10 il 10 11 |
10 01 00 01 10

BlockO = XOR(10,11,10,11) = 00

XOR function:

P = 0: The number of 1 in a stripe must be an even number
P = 1. The number of 1 in a stripe must be an odd number

Y. Cheng UVA DS5110 Spring '25

RAID-6

Data blocks Parity blocks

A A
| 11]

do‘dl dz‘ds d4‘d5 p‘q

RAID-6 can fail at most 2 disks at a time.

Y. Cheng UVA DS5110 Spring '25

Encoding

Y. Cheng

0o oo
0 oo dq
0o oo d,
o[o]o oo d,|
ofofo]o o| * o] ~
olofo]o Id, |
1112 1 de
32|16[842]1

Generator matrix

[8 X 6] *[6Xx1]=[8x 1]

UVA DS5110 Spring '25

The product
> vector is called
a codeword

67

68

Lo Lo
Il ol <« ol ol < wll © ©
|o|lolo|o|o| ol 19
o ———-—---=-=< ! ® ® =
o
* <t O
5 & =
||||| I 3
oljlojJolo]jo —AAl]l o
ENCEECEE
| I 32) S
ololo|o ol =] - 2
| | <
_ l
olo|o olo|l—=|<x|y, & &
4 | ~ o
ol o) ololol| | il d%
o0 | |
l O |1
.mO 0000_11_@@
_ l S
|m o|lo|ololal| |3 .nm_,nl_u
[]
e — _
O ® ® =
[e 5 2
o T ©
E L= 2 o U
P

Decoding w/ a parity check matrix

Parity check matrix d,

111(1]1
32116 8 4| 2

do®d1®d2®d3®d4@d5®p
32do@16d1@ 8d2@ 4d3@ 2d4@ ds & q

Y. Cheng UVA DS5110 Spring '25

Handling failures w/ decoding

d, ® ® d, ® dg @ d, ® ds ® p
32d, ®) 16d, ® 8d, ® 4d; ® 2d, ® ds @

Suppose diskl (d,) and disk4 (d,) fail

q

Handling failures w/ decoding

do®d1@d2@d3®d4@d5®p
32d0®16d1@ 8d, ® 4d; ® 2d, ® ds & q =

Suppose diskl (d,) and disk4 (d,) falil

Step 1: Put the failed data on the right of the equations.

do®d2®d3®d5@p dl®d4
32d, ® 8d, ® 4d, ® ds ® g 16d, ® 2d,

Y. Cheng UVA DS5110 Spring '25

Handling failures w/ decoding

do®d1@d2@d3®d4@d5@p
32d0®16d1@ 8d, ® 4d; ® 2d, ® ds & q =

Suppose diskl (d,) and disk4 (d,) falil

Step 2: Calculate the left sides, since those all exist.

do®d2®d3®d5@pzso:d1@d4

32d,® 8d, ® 4d; ® dg ® q = S; = 16d, ® 2d,

Y. Cheng UVA DS5110 Spring '25

Handling failures w/ decoding

do®d1@d2@d3®d4@d5@p
32d0®16d1@ 8d, ® 4d; ® 2d, ® ds & q =

Suppose diskl (d,) and disk4 (d,) falil

Step 3: Solve using Gaussian Elimination or Matrix Inversion.

(2So® Sy)
SO - dl @ d4 dl =
. 16® 2)
Sl — 16dl @ 2d4 d4 — SO @ d]_

Y. Cheng UVA DS5110 Spring '25

73

Replication vs. erasure coding

Storage nodes Object 1 Object 1 Object 1
w/ 3-way

replication

3-Way replication requires 3X of the storage space for
storing one object.
3-way replication can tolerate 2 failures at a time.

Storage nodes | C1 C2 C3 C4 C5 C6 Pl P2
w/ RS (6,2)

Reed-Solomon (6,2) requires 1.33X of the Storage-efficient
storage space for storing one object. redundancy
RS (6,2) can tolerate 2 failures at a time.

Y. Cheng UVA DS5110 Spring '25 74

	Slide 1: AWS Simple Storage Service (S3)
	Slide 2: Learning objectives
	Slide 3: Different types of storage systems
	Slide 4: Local apps + local file systems
	Slide 5: Local apps + local file systems
	Slide 6: Distributed file systems
	Slide 7: AWS S3 (Simple Storage Service)
	Slide 8: Some S3 statistics
	Slide 9: Some S3 statistics
	Slide 10: The physics of storage: HDDs
	Slide 11: Basic interface of disks
	Slide 12: Disk structure
	Slide 13: Internals of hard disk drive (HDD)
	Slide 14: Internals of hard disk drive (HDD)
	Slide 15: Internals of hard disk drive (HDD)
	Slide 16: Internals of hard disk drive (HDD)
	Slide 17: Internals of hard disk drive (HDD)
	Slide 18: Internals of hard disk drive (HDD)
	Slide 19: Let’s read sector 0
	Slide 20: Let’s read sector 0
	Slide 21: The first magnetic memory device
	Slide 22: 3D view of a modern disk
	Slide 23: Don’t try this at home!
	Slide 24: HDDs vs. SSDs
	Slide 25: What makes HDDs an ideal storage for S3?
	Slide 26: Performance and data placement
	Slide 27: Hot data creates a hotspot
	Slide 28: Hot data creates a hotspot
	Slide 29: Replication helps balance the heat
	Slide 30: Striping helps balance the heat
	Slide 31: Why hotspots are bad for disks
	Slide 32: Modeling disk performance
	Slide 33: Seek, Rotate, Transfer
	Slide 34: Seek, Rotate, Transfer
	Slide 35: Seek, Rotate, Transfer
	Slide 36: Seek, Rotate, Transfer
	Slide 37: Workloads
	Slide 38: Workloads
	Slide 39: S3 workloads can be quite spiky
	Slide 40: S3 workloads can be quite spiky
	Slide 41: S3 workloads can be quite spiky
	Slide 42: Balancing the load using scale
	Slide 43: Striping helps balance the heat
	Slide 44: Striped data needs to be replicated
	Slide 45: Striped data needs to be replicated
	Slide 46: RAID and erasure coding
	Slide 47: 4 disks
	Slide 48: 4 disks
	Slide 49: How to map?
	Slide 50: How to map?
	Slide 51: Mapping example: Find block 13
	Slide 52: Mapping example: Find block 13
	Slide 53: 5 disks
	Slide 54: Example
	Slide 55: Example
	Slide 56: Example
	Slide 57: Example
	Slide 58: Example
	Slide 59: Parity function: XOR example
	Slide 60: Parity function: XOR example
	Slide 61: Parity function: XOR example
	Slide 62: Parity function: XOR example
	Slide 63: Parity function: XOR example
	Slide 64: Parity function: XOR example
	Slide 65: Parity function: XOR example
	Slide 66: RAID-6
	Slide 67: Encoding
	Slide 68: Encoding
	Slide 69: Decoding w/ a parity check matrix
	Slide 70: Handling failures w/ decoding
	Slide 71: Handling failures w/ decoding
	Slide 72: Handling failures w/ decoding
	Slide 73: Handling failures w/ decoding
	Slide 74: Replication vs. erasure coding

