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Learning objectives

• Understand basic working mechanism of a hard 
disk drive
• And why S3 is built primarily on HDDs but not SSDs

• Know different load balancing strategies
• Replication-based

• Striping-based (erasure-coding)

• Know basic RAID algorithms
• Closely related to erasure coding algorithms such as 

Reed-Solomon
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Different types of storage systems
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Local apps + local file systems
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Local apps + local file systems
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Distributed file systems
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AWS S3 (Simple Storage Service)
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Some S3 statistics
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* https://www.pingdom.com/blog/amazon-s3-will-soon-store-a-trillion-objects/ 

Circa 2010

* Cloudscape: A Study of Storage Services in Modern Cloud Architectures [USENIX FAST 2025]

https://www.pingdom.com/blog/amazon-s3-will-soon-store-a-trillion-objects/


Some S3 statistics
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2023

https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html 

https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html


The physics of storage: HDDs
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Basic interface of disks

• A magnetic disk has a sector-addressable 
address space
• You can think of a disk as an array of sectors
• Each sector (logical block) is the smallest unit of 

transfer

• Sectors are typically 512 or 4096 bytes

• Main operations
• Read from sectors (blocks)
• Write to sectors (blocks)
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Disk structure

• The 1-dimensional array of logical blocks is 
mapped into the sectors of the disk sequentially
• Sector 0 is the first sector of the first track on the 

outermost cylinder

• Mapping proceeds in order through that track, then 
the rest of the tracks in that cylinder, and then 
through the rest of the cylinders from outermost to 
innermost

• Logical to physical address should be easy
• Except for bad sectors

UVA DS5110 Spring '25Y. Cheng 12



Internals of hard disk drive (HDD)
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Internals of hard disk drive (HDD)

Platter

Covered with a magnetic film
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Internals of hard disk drive (HDD)

A single track example
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Internals of hard disk drive (HDD)

Spindle in the center of the 

surface
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Internals of hard disk drive (HDD)

The track is divided into 

numbered sectors
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Internals of hard disk drive (HDD)

A single track + an arm + 

a head
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Let’s read sector 0
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Let’s read sector 0

1. Seek for right track

2. Rotate (sector 9 → 0)

3. Transfer data (sector 0)
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The first magnetic memory device
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https://www.computerhistory.org/storageengine/rabinow-patents-magnetic-disk-data-storage/ 

https://www.computerhistory.org/storageengine/rabinow-patents-magnetic-disk-data-storage/


3D view of a modern disk
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https://www.britannica.com/technology/hard-disk 

https://www.britannica.com/technology/hard-disk


Don’t try this at home!

https://www.youtube.com/watch?v=9eMWG3fwiE
U&feature=youtu.be&t=30s
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https://www.youtube.com/watch?v=9eMWG3fwiEU&feature=youtu.be&t=30s
https://www.youtube.com/watch?v=9eMWG3fwiEU&feature=youtu.be&t=30s


HDDs vs. SSDs
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https://aws.amazon.com/compare/the-difference-between-ssd-hard-drive/ 

https://aws.amazon.com/compare/the-difference-between-ssd-hard-drive/


What makes HDDs an ideal storage 
for S3?

• Pros
• More durable

• Performance is stable regardless of the capacity

• Cost effective

• High storage density

• Cons
• Limited shot resistance

• Slower 
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Performance and data placement
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Hot data creates a hotspot
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Hot data creates a hotspot
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Replication helps balance the heat
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Striping helps balance the heat

Y. Cheng
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Why hotspots are bad for disks
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Modeling disk performance

I/O latency of disks
 LI/O = Lseek + Lrotate + Ltransfer

Disk access latency at millisecond level
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Seek, Rotate, Transfer

• Seek may take several milliseconds (ms)

• Settling along can take 0.5 - 2ms

• Entire seek often takes 4 - 10ms
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Seek, Rotate, Transfer

• Rotation per minute (RPM)
• 7200 RPM is common nowadays

• 15000 RPM is high end

• Old computers may have 5400 RPM disks

• 1 / 7200 RPM = 1 minute / 7200 rotations =

   1 second / 120 rotations = 8.3 ms / rotation
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Seek, Rotate, Transfer

• Rotation per minute (RPM)
• 7200 RPM is common nowadays

• 15000 RPM is high end

• Old computers may have 5400 RPM disks

• 1 / 7200 RPM = 1 minute / 7200 rotations =

   1 second / 120 rotations = 8.3 ms / rotation

• Statistically, it may take 4.2 ms on average to 
rotate to target (0.5 * 8.3 ms)
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Seek, Rotate, Transfer

• Relatively fast
• Depends on RPM and sector density

• 100+ MB/s is typical for SATA I (1.5Gb/s max)
• Up to 600MB/s for SATA III (6.0Gb/s)

• 1s / 100MB = 10ms / MB = 4.9us / sector 
• Assuming 512-byte sector
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Workloads

• Seeks and rotations are slow while transfer is 
relatively fast

• What kind of workload is best suited for disks?
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Workloads

• Seeks and rotations are slow while transfer is 
relatively fast

• What kind of workload is best suited for disks?
• Sequential I/O: access sectors in order (transfer 

dominated)

• Random workloads access sectors in a random 
order (seek+rotation dominated)
• Typically slow on disks
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S3 workloads can be quite spiky
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A large-scale data-intensive application (e.g., parallel data processing from thousands of 

Lambda functions)

An I/O spike



S3 workloads can be quite spiky
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A large-scale data-intensive application (e.g., parallel data processing from thousands of 

Lambda functions)

An I/O spike

Q1: How many HDDs are needed in order to sustain this spike? 



S3 workloads can be quite spiky
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A large-scale data-intensive application (e.g., parallel data processing from thousands of 

Lambda functions)

An I/O spike

Q1: How many HDDs are needed in order to sustain this spike?

Q2: How would you distribute the data across this many HDDs? 



Balancing the load using scale

See the video example in 
https://www.allthingsdistributed.com/2023/07/buil
ding-and-operating-a-pretty-big-storage-
system.html 
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https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html
https://www.allthingsdistributed.com/2023/07/building-and-operating-a-pretty-big-storage-system.html


Striping helps balance the heat

Y. Cheng
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Striped data needs to be replicated

Y. Cheng
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Striped data needs to be replicated

Y. Cheng

Storage nodes
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storage nodes

w/ striping

But how can we reduce the storage cost of 

replication?
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RAID and erasure coding
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Redundant array of inexpensive disks



4 disks
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4 disks
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stripe:
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How to map?
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• Given logical address A:
• Disk = …

• Offset = … 
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How to map?
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• Given logical address A:
• Disk = A % disk_count

• Offset = A / disk_count

Y. Cheng UVA DS5110 Spring '25



Mapping example: Find block 13

51

• Given logical address 13:
• Disk = 13 % 4 = 1

• Offset = 13 / 4 = 3

0

1

2

3

Offset
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Mapping example: Find block 13

52

• Given logical address 13:
• Disk = 13 % 4 = 1

• Offset = 13 / 4 = 3

0

1

2

3

Offset
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Problem with naïve striping is that there is no redundancy support.



5 disks

53Y. Cheng UVA DS5110 Spring '25

Parity disk



Example
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stripe:

(parity)
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Example
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stripe:

(parity)

4 3 0 2

Y. Cheng UVA DS5110 Spring '25



Example

56

stripe:

(parity)

4 3 0 2 9
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Example

57

stripe:

(parity)

X 3 0 2 9
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Example
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stripe:

(parity)

4 3 0 2 9
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Parity function: XOR example
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Parity function: XOR example
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XOR function: 
• P = 0: The number of 1 in a stripe must be an even number

• P = 1: The number of 1 in a stripe must be an odd number
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Parity function: XOR example
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XOR function: 
• P = 0: The number of 1 in a stripe must be an even number

• P = 1: The number of 1 in a stripe must be an odd number

stripe:
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Parity function: XOR example
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XOR function: 
• P = 0: The number of 1 in a stripe must be an even number

• P = 1: The number of 1 in a stripe must be an odd number

stripe: X
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Parity function: XOR example

63

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number

• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Block0 = XOR(10,11,10,11) = 00

X
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Parity function: XOR example

64

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number

• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Block0 = XOR(10,11,10,11) = 00
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Parity function: XOR example

65

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number

• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Block0 = XOR(10,11,10,11) = 00

Y. Cheng UVA DS5110 Spring '25

Q: How many disks can fail?



RAID-6 
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d0

Data blocks

d1 d2 d3 d4 d5 p q

Parity blocks

RAID-6 can fail at most 2 disks at a time.



Encoding
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[8 x 6] * [6 x 1] = [8 x 1]



Encoding 
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Decoding w/ a parity check matrix 
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p

q
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=
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Handling failures w/ decoding

Y. Cheng UVA DS5110 Spring '25 70

d0 d1 d2 d3 d4 d5 p+ ++ + +

32d0 16d1 8d2 4d3 2d4 d5 q+ ++ + +

+

+

=

=

0

0

Suppose disk1 (d1) and disk4 (d4) fail



Handling failures w/ decoding
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d0 d1 d2 d3 d4 d5 p+ ++ + +

32d0 16d1 8d2 4d3 2d4 d5 q+ ++ + +

+

+

=

=

0

0

Suppose disk1 (d1) and disk4 (d4) fail

d0 d1d2 d3 d4d5 p+ + +

32d0 16d18d2 4d3 2d4d5 q+ + +

+

+

=

=

+

+

Step 1: Put the failed data on the right of the equations.



Handling failures w/ decoding
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d0 d1 d2 d3 d4 d5 p+ ++ + +

32d0 16d1 8d2 4d3 2d4 d5 q+ ++ + +

+

+

=

=

0

0

Suppose disk1 (d1) and disk4 (d4) fail

d0 d1d2 d3 d4d5 p+ + +

32d0 16d18d2 4d3 2d4d5 q+ + +

+

+

=

=

+

+

Step 2: Calculate the left sides, since those all exist.

=

=

S0

S1



Handling failures w/ decoding
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d0 d1 d2 d3 d4 d5 p+ ++ + +

32d0 16d1 8d2 4d3 2d4 d5 q+ ++ + +

+

+

=

=

0

0

Suppose disk1 (d1) and disk4 (d4) fail

d1 d4

16d1 2d4

=

=

+

+

Step 3: Solve using Gaussian Elimination or Matrix Inversion.

S0

S1

d1 =

d4

(2S0       S1)+

(16       2)+

S0       d1+=



Replication vs. erasure coding

Y. Cheng

Storage nodes

w/ 3-way 

replication

Object 1 Object 1 Object 1

Storage nodes

w/ RS (6,2)

C1 C2 C3 C4 C5 C6 P1 P2

3-Way replication requires 3X of the storage space for 

storing one object. 

3-way replication can tolerate 2 failures at a time.

Reed-Solomon (6,2) requires 1.33X of the 

storage space for storing one object.

RS (6,2) can tolerate 2 failures at a time.
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Storage-efficient 

redundancy
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