
Serverless Computing
DS5110: Big Data Systems

Spring 2025

Lecture 16

Yue Cheng

Some material taken/derived from:
• Berkeley CS 262a (Spring ‘18) by Ali Ghodsi and Ion Stoica

• Tyler Harter’s HotCloud ’18 OpenLambda talk

@ 2025 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

• Learn the motivation of serverless

• Know the different generations of cloud
computing

• Virtual machines

• Containers

• Serverless functions

• Understand current limitations of FaaS

Y. Cheng UVA DS5110 Spring '25 2

Motivation

Y. Cheng UVA DS5110 Spring '25 3

When to use the cloud?

• Data
• Large amounts of data – can’t store locally

• Shared data across users

• Long-term storage

• Compute
• Need lots of CPUs for data processing

• Varying computing demands (resources)

• No admin (for managing your local hardware)

Y. Cheng UVA DS5110 Spring '25 4

Y. Cheng UVA DS5110 Spring '25 5https://instances.vantage.sh/

https://instances.vantage.sh/

#thecloudistoodamnhard

1. What type of instances?

Y. Cheng UVA DS5110 Spring '25 6

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

Y. Cheng UVA DS5110 Spring '25 7

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

Y. Cheng UVA DS5110 Spring '25 8

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

Y. Cheng UVA DS5110 Spring '25 9

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

Y. Cheng UVA DS5110 Spring '25 10

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

Y. Cheng UVA DS5110 Spring '25 11

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

7. Not the end of the horror story:
1. When to scale out?

2. When to scale in?

3. When to switch to different instance
types?

Y. Cheng UVA DS5110 Spring '25 12

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

7. Not the end of the horror story:
1. When to scale out?

2. When to scale in?

3. When to switch to different instance
types?

8. Go back to Step 1…

Y. Cheng UVA DS5110 Spring '25 13

#thecloudistoodamnhard

1. What type of instances?

2. How many to spin up?

3. What base image?

4. On-demand or spot?

5. What storage service to use?

6. And then wait to start…

7. Not the end of the horror story:
1. When to scale out?

2. When to scale in?

3. When to switch to different instance
types?

8. Go back to Step 1…

Y. Cheng UVA DS5110 Spring '25 14

Why is there no “cloud button”?

Decision paralysis??
Go for Serverless!

Y. Cheng UVA DS5110 Spring '25 15

Microsoft Azure Functions

Google Cloud Functions

What is serverless computing?

Y. Cheng UVA DS5110 Spring '25 16

What is serverless computing?

Serverless computing (Function-as-a-Service, or
FaaS) is a programming abstraction that enables
users to upload programs, run them at (virtually)
any scale, and pay only for the resources used

17

API gateway

Container Container Container Container

…

• Function-as-a-Service (FaaS): Cloud
functions as a basic deployment unit

Y. Cheng

f(n) f(n) f(n) f(n)

Alibaba

Function

Compute

UVA DS5110 Spring '25

Function-as-a-Service (FaaS)

18

User

Cloud

Y. Cheng UVA DS5110 Spring '25

Function-as-a-Service (FaaS)

19

User

Cloud

User deploys apps to the cloud

Y. Cheng

Cloud function

UVA DS5110 Spring '25

Function-as-a-Service (FaaS)

20

User

Cloud
API gateway

Y. Cheng

Cloud function

UVA DS5110 Spring '25

Function-as-a-Service (FaaS)

21

User

Cloud
API gateway

Container

Y. Cheng

Cloud function

UVA DS5110 Spring '25

Function-as-a-Service (FaaS)

22

User

Cloud
API gateway

Container Container Container Container

…

Y. Cheng

Cloud function

UVA DS5110 Spring '25

Function-as-a-Service (FaaS)

23

User

Cloud
API gateway

Container Container Container Container

…

Autoscaling…

Y. Cheng

Cloud function

UVA DS5110 Spring '25

FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 24

FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 25

FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 26

FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 27

FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 28

FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 29

FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an
event source

3. Determine function(s) to which to dispatch the
event

4. Find an existing instance of function or create a
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when the execution terminates

Y. Cheng UVA DS5110 Spring '25 30

A car analogy

Y. Cheng UVA DS5110 Spring '25 31

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

AWS Lambda: 1st gen → current gen

• Lambda capacity config keeps evolving:
300 seconds 900 seconds (15 minutes)

single-core two-core → up to 6 cores

1.5 GB → 10 GB memory

512 MB → up to 10GB of /tmp file system

Python, Java, Node.js, Go, …

Pricing:
• Fine-grained billing: 1-millisecond billed duration

• $0.20 per 1M requests (invocations charge $)

• $0.0000166667 for every GB-second (compute time
charges $$)

• 6,000 1 GB Lambda functions for one second: 10¢

Y. Cheng UVA DS5110 Spring '25 32

1st gen
Current

offering

Concept of serverless is not new

• Google App Engine
• Fully managed platform as a service (PaaS)

for developing and hosting web applications

• Google BigQuery
• Fully managed data warehouse

• “Arbitrarily” large data and queries

• Pay per byte being processed

• No concept of server or cluster

• AWS S3
• Fully managed object storage service

• Pay per byte being stored and written

• No server maintenance or resource scaling

Y. Cheng UVA DS5110 Spring '25 33

Serverless trend in industry

Y. Cheng 34

2008

2010

2006

2012

UVA DS5110 Spring '25

Serverless trend in industry

Y. Cheng 35

2014 2016

AWS Lambda released
Nov 13, 2014

Google Cloud Functions in beta,

Azure Functions launched

AWS Lambda
increases its duration

limit from 5 min to 15

min

2018

AWS Lambda increases its
memory limit from 3GB to 10GB

2022

AWS Lambda
supports custom

container

images

2020

Fastly
Compute@Edge

launched

AWS Lambda
reduces cold start

cost for Java by 10x

Cloudflare workers
launched

AWS Lambda
reduces billing

granularity from

100ms to 1ms

Major products

Scope improvement

Perf/Efficiency
improvement

2008

2010

2006

2012

…

UVA DS5110 Spring '25

Serverless trend in academia

Y. Cheng 36

2014 2016

Google Cloud Functions in beta,

Azure Functions launched

AWS Lambda
increases its duration

limit from 5 min to 15

min

2018

AWS Lambda increases its
memory limit from 3GB to 10GB

20222020

Fastly
Compute@Edge

launched

AWS Lambda
reduces cold start

cost for Java by 10x

Cloudflare workers
launched

AWS Lambda
reduces billing

granularity from

100ms to 1ms

Major products

…

AWS Lambda released
Nov 13, 2014

2008

2010

2006

2012

Scope improvement

Perf/Efficiency
improvement

AWS Lambda
supports custom

container

images

0

5000

10000

15000

2014 2015 2016 2017 2018 2019 2020 2021 2022

‘serverless computing’ publications
[Google Scholar]

0

5000

10000

15000

2014 2015 2016 2017 2018 2019 2020 2021 2022

‘serverless computing’ publications
[Google Scholar]

Entering Serverless + (Gen)AI

Y. Cheng 37

2014 2016

Google Cloud Functions in beta,

Azure Functions launched

AWS Lambda
increases its duration

limit from 5 min to 15

min

2018

AWS Lambda increases its
memory limit from 3GB to 10GB

2022

AWS Lambda
supports custom

container

images

2020

Fastly
Compute@Edge

launched

AWS Lambda
reduces cold start

cost for Java by 10x

Cloudflare workers
launched

AWS Lambda
reduces billing

granularity from

100ms to 1ms

Major products

2024 and onwards …

…

AWS Lambda released
Nov 13, 2014

2008

2010

2006

2012

Scope improvement

Perf/Efficiency
improvement

More exciting research

and products in the era

of Serverless AI

Entering Serverless + (Gen)AI

Y. Cheng 38

2014 2016

Google Cloud Functions in beta,

Azure Functions launched

AWS Lambda
increases its duration

limit from 5 min to 15

min

2018

AWS Lambda increases its
memory limit from 3GB to 10GB

2022

AWS Lambda
supports custom

container

images

2020

Fastly
Compute@Edge

launched

AWS Lambda
reduces cold start

cost for Java by 10x

Cloudflare workers
launched

AWS Lambda
reduces billing

granularity from

100ms to 1ms

2008

2010

2006

…

AWS Lambda released
Nov 13, 2014

2012

0

5000

10000

15000

2014 2015 2016 2017 2018 2019 2020 2021 2022

‘serverless computing’ publications
[Google Scholar]

More exciting research

and products in the era

of Serverless AI

Major products

Flexibility improvement

Efficiency
improvement

2024 and onwards …

Desirable properties of FaaS

• Operationally
• “No-ops” – (almost) no

configuration

• Autoscaling down to 0

• Closer to pay-per-use
(rather than pay-per-
allocation)

• Fine-grained billing

Y. Cheng UVA DS5110 Spring '25 39

FaaS today

• FaaS is used mostly for simple or coarse-grained tasks
• Stateless, embarrassingly parallel tasks, simple workflows

• ETL, software testing, API middleware, image processing, etc.

• Glue to other serverless backends

• Lots of problems are limiting FaaS’ scope
• Poor performance (vs. time to run actual code) at scale
• Mismatch of infrastructure support (e.g., today’s OS not

designed for FaaS)
• Rule-breaking research needed to reimagine/broaden the scope
• Very resource-inefficient and costly for serverless providers
• Lack of support for accelerators
• …

• Orders of magnitude slower and inefficient for
many “killer” apps

• ML inference, microservices, …

Y. Cheng UVA DS5110 Spring '25 40

Limitations of FaaS

• Banned inbound network

• No guaranteed data availability

• Lambdas are resource-constrained

• Lambdas have limited execution time

• High cold startup cost and invocation cost

Y. Cheng UVA DS5110 Spring '25 41

Lambda demo

Y. Cheng UVA DS5110 Spring '25 42

Cloud evolution history –
A virtualization story

Y. Cheng UVA DS5110 Spring '25 43

Classic server app stack

Y. Cheng UVA DS5110 Spring '25 44

Application

Server

Operating system

Hardware

Requests

Virtual memory

CPU scheduling

…

1st generation: virtual machine (VM)

Y. Cheng UVA DS5110 Spring '25 45

Application

Server

Operating system

Hardware

Virtual hardware

Requests

1st generation: virtual machine (VM)

Y. Cheng UVA DS5110 Spring '25 46

Application

Server

OS

Hardware

Virtual hardware

Application

Server

OS

Requests

2nd generation: containers

Y. Cheng UVA DS5110 Spring '25 47

Application

Server

Hardware

Virtual OS

Application

Server

Operating system

Requests

3rd generation: serverless functions

Y. Cheng UVA DS5110 Spring '25 48

Application

Hardware

Virtual servers

Application

Operating system

Server

Requests

3rd generation: serverless functions

Y. Cheng UVA DS5110 Spring '25 49

Fn

A

Hardware

Virtual servers

Operating system

Server

FnZ Fn0 Fn9… …
Requests

Tradeoff discussion

Y. Cheng UVA DS5110 Spring '25 50

Serverless functions

(AWS Lambdas)
Containers VMs

Isolation?

Flexibility?

Overhead?

	Slide 1: Serverless Computing
	Slide 2: Learning objectives
	Slide 3: Motivation
	Slide 4: When to use the cloud?
	Slide 5
	Slide 6: #thecloudistoodamnhard
	Slide 7: #thecloudistoodamnhard
	Slide 8: #thecloudistoodamnhard
	Slide 9: #thecloudistoodamnhard
	Slide 10: #thecloudistoodamnhard
	Slide 11: #thecloudistoodamnhard
	Slide 12: #thecloudistoodamnhard
	Slide 13: #thecloudistoodamnhard
	Slide 14: #thecloudistoodamnhard
	Slide 15: Decision paralysis?? Go for Serverless!
	Slide 16: What is serverless computing?
	Slide 17: What is serverless computing?
	Slide 18: Function-as-a-Service (FaaS)
	Slide 19: Function-as-a-Service (FaaS)
	Slide 20: Function-as-a-Service (FaaS)
	Slide 21: Function-as-a-Service (FaaS)
	Slide 22: Function-as-a-Service (FaaS)
	Slide 23: Function-as-a-Service (FaaS)
	Slide 24: FaaS’ core capability
	Slide 25: FaaS’ core capability
	Slide 26: FaaS’ core capability
	Slide 27: FaaS’ core capability
	Slide 28: FaaS’ core capability
	Slide 29: FaaS’ core capability
	Slide 30: FaaS’ core capability
	Slide 31: A car analogy
	Slide 32: AWS Lambda: 1st gen  current gen
	Slide 33: Concept of serverless is not new
	Slide 34: Serverless trend in industry
	Slide 35: Serverless trend in industry
	Slide 36: Serverless trend in academia
	Slide 37: Entering Serverless + (Gen)AI
	Slide 38: Entering Serverless + (Gen)AI
	Slide 39: Desirable properties of FaaS
	Slide 40: FaaS today
	Slide 41: Limitations of FaaS
	Slide 42: Lambda demo
	Slide 43: Cloud evolution history – A virtualization story
	Slide 44: Classic server app stack
	Slide 45: 1st generation: virtual machine (VM)
	Slide 46: 1st generation: virtual machine (VM)
	Slide 47: 2nd generation: containers
	Slide 48: 3rd generation: serverless functions
	Slide 49: 3rd generation: serverless functions
	Slide 50: Tradeoff discussion

