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Learning objectives

• Learn the motivation of serverless

• Know the different generations of cloud 
computing

• Virtual machines

• Containers

• Serverless functions

• Understand current limitations of FaaS
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Motivation
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When to use the cloud?

• Data
• Large amounts of data – can’t store locally

• Shared data across users

• Long-term storage

• Compute
• Need lots of CPUs for data processing

• Varying computing demands (resources)

• No admin (for managing your local hardware)
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#thecloudistoodamnhard

1. What type of instances?
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Why is there no “cloud button”?



Decision paralysis?? 
Go for Serverless!
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Microsoft Azure Functions

Google Cloud Functions



What is serverless computing?
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What is serverless computing? 

Serverless computing (Function-as-a-Service, or 
FaaS) is a programming abstraction that enables 
users to upload programs, run them at (virtually) 
any scale, and pay only for the resources used

17

API gateway

Container Container Container Container

… 

• Function-as-a-Service (FaaS): Cloud 
functions as a basic deployment unit
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Function-as-a-Service (FaaS)
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Function-as-a-Service (FaaS)
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User

Cloud

User deploys apps to the cloud
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Function-as-a-Service (FaaS)
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Function-as-a-Service (FaaS)
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User

Cloud
API gateway

Container Container Container Container
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Function-as-a-Service (FaaS)
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User

Cloud
API gateway

Container Container Container Container

… 

Autoscaling…
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FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 24



FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 25



FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 26



FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 27



FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 28



FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
new one

5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110 Spring '25 29



FaaS’ core capability

1. (Provider) Manage a set of user-defined functions

2. Take an event sent over HTTP or received from an 
event source

3. Determine function(s) to which to dispatch the 
event

4. Find an existing instance of function or create a 
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5. Send the event to the function instance

6. Wait for a response

7. Gather execution logs

8. Make the response available to the user

9. Stop the function when the execution terminates
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A car analogy
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https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona 

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona


AWS Lambda: 1st gen → current gen

• Lambda capacity config keeps evolving:
300 seconds 900 seconds (15 minutes)

single-core two-core →  up to 6 cores

1.5 GB →  10 GB memory 

512 MB →  up to 10GB of /tmp file system

Python, Java, Node.js, Go, … 

Pricing: 
• Fine-grained billing: 1-millisecond billed duration

• $0.20 per 1M requests (invocations charge $)

• $0.0000166667 for every GB-second (compute time 
charges $$)

• 6,000 1 GB Lambda functions for one second: 10¢
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1st gen
Current 

offering



Concept of serverless is not new

• Google App Engine 
• Fully managed platform as a service (PaaS) 

for developing and hosting web applications 

• Google BigQuery
• Fully managed data warehouse

• “Arbitrarily” large data and queries

• Pay per byte being processed

• No concept of server or cluster

• AWS S3
• Fully managed object storage service

• Pay per byte being stored and written

• No server maintenance or resource scaling
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Serverless trend in industry
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Serverless trend in industry
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2014 2016

AWS Lambda released
Nov 13, 2014

Google Cloud Functions in beta,

Azure Functions launched

AWS Lambda 
increases its duration 

limit from 5 min to 15 

min

2018

AWS Lambda increases its 
memory limit from 3GB to 10GB

2022

AWS Lambda 
supports custom 

container 

images

2020

Fastly 
Compute@Edge 

launched

AWS Lambda 
reduces cold start 

cost for Java by 10x

Cloudflare workers 
launched

AWS Lambda 
reduces billing 

granularity from 

100ms to 1ms

Major products

Scope improvement

Perf/Efficiency 
improvement

2008
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… 
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Serverless trend in academia
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Entering Serverless + (Gen)AI
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Entering Serverless + (Gen)AI
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Desirable properties of FaaS

• Operationally
• “No-ops” – (almost) no 

configuration

• Autoscaling down to 0

• Closer to pay-per-use 
(rather than pay-per-
allocation)

• Fine-grained billing
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FaaS today

• FaaS is used mostly for simple or coarse-grained tasks
• Stateless, embarrassingly parallel tasks, simple workflows

• ETL, software testing, API middleware, image processing, etc.

• Glue to other serverless backends

• Lots of problems are limiting FaaS’ scope
• Poor performance (vs. time to run actual code) at scale
• Mismatch of infrastructure support (e.g., today’s OS not 

designed for FaaS)
• Rule-breaking research needed to reimagine/broaden the scope 
• Very resource-inefficient and costly for serverless providers
• Lack of support for accelerators 
• … 

• Orders of magnitude slower and inefficient for 
many “killer” apps

• ML inference, microservices, … 

Y. Cheng UVA DS5110 Spring '25 40



Limitations of FaaS

• Banned inbound network

• No guaranteed data availability

• Lambdas are resource-constrained

• Lambdas have limited execution time

• High cold startup cost and invocation cost
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Lambda demo
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Cloud evolution history – 
A virtualization story
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Classic server app stack
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Application

Server

Operating system

Hardware

Requests

Virtual memory

CPU scheduling

… 



1st generation: virtual machine (VM)
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1st generation: virtual machine (VM)
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Application
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2nd generation: containers
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3rd generation: serverless functions
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3rd generation: serverless functions
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Fn

A

Hardware

Virtual servers

Operating system

Server

FnZ Fn0 Fn9… … 
Requests



Tradeoff discussion
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Serverless functions

(AWS Lambdas)
Containers VMs

Isolation?

Flexibility?

Overhead?
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