
LLM Storage Compression
&

LLM Systems – from Training to Serving

DS 5110: Big Data Systems

Spring 2025

Lecture 15

Zhaoyuan Su

ML Model Storage is !

0

200

400

600

800

1000

1200

1400

1600

K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

T
o
ta

l
S

iz
e
 (

T
B

)

M
o
d

e
l
C

o
u
n
t

Count (K) Original Size (TB)

3

34TB

1.5PB

Su, Zhaoyuan, et al. "Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained

ML Models but Were Afraid to Ask." Proceedings of the VLDB Endowment 17.8 (2024): 2036-2049.

ML Model Storage is !

0

200

400

600

800

1000

1200

1400

1600

K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

T
o
ta

l
S

iz
e
 (

T
B

)

M
o
d

e
l
C

o
u
n
t

Count (K) Original Size (TB)

4

HuggingFace’s pre-trained models (PTMs) are growing

exponentially!

34TB

1.5PB

ML Model Storage is !

0

200

400

600

800

1000

1200

1400

1600

K

50K

100K

150K

200K

250K

300K

350K

400K

450K

500K

T
o
ta

l
S

iz
e
 (

T
B

)

M
o
d

e
l
C

o
u
n
t

Count(K) Original Size(TB)

5

HuggingFace’s pre-trained models (PTMs) are growing

exponentially!

• Q1: What are the characteristics of PTM storage datasets?

• Q2: Are existing data reduction tools effective for reducing the

sizes of PTMs?

Contribution 1:
Analysis of A Large-Scale PTM Storage

6

We collected a PTM dataset from HuggingFace, which includes

900 PTMs across multiple categories, in a total size of 575.88GB.

Key Observations

• PTMs are growing exponentially and are generally
large, with 90% > 100MB and 25% > 1GB

• PTMs are deep, with 75% having over 200 layers

• Float32 layers dominate, accounting for 96.87% of
storage

7

Demands effective

data reduction

methods

Key Observations

Are there duplicates at

chunk level?

Are there duplicates

at parameter level?

8

Demands effective

data reduction

methods

• PTMs are growing exponentially and are generally
large, with 90% > 100MB and 25% > 1GB

• PTMs are deep, with 75% having over 200 layers

• Float32 layers dominate, accounting for 96.87% of
storage

Contribution 2:
Analysis of PTM Storage Compressibility

• Coarse-grained data chunks:
• Storage deduplication

• Delta compression

• Fine-grained parameters:
• Distance encoding

9

Would Storage Dedup Help?

10

Would Storage Dedup Help?

Both fixed-sized chunking (FSC) and content-defined

chunking (CDC) yield similarly negative results

11

Would Delta Compression Help?

12

Would Delta Compression Help?

Similarity-based delta compression is ineffective

across various chunk granularities

13

Would Dictionary Coding Help?

14

Would Dictionary Coding Help?

15

Most PTMs have duplicate

parameters

Would Dictionary Coding Help?

16

Distance Encoding

Most PTMs have duplicate

parameters

Would Dictionary Coding Help?

Most PTMs have duplicate

parameters

However, distance

encoding only helps for

~10% of PTMs
17

Distance Encoding

Takeaway:
Analysis of PTM Storage Compressibility

• Duplication and resemblance pattern are minimal at data chunk
level

• Parameter dedup only helps for only a small fraction of PTMs
with extremely high parameter repetition

• Parameter randomness makes PTM storage compression
challenging

18

Contribution 3:
Exponent-Less Floating-Point Compression (ELF)

• Exploits PTMs’ data distribution and floating-point arithmetic
properties

• ELF compression: Align the parameter magnitude to [1, 2) in
order to eliminate common exponent

19

ELF: Key Observations

• Observation 1: Around 99% of all parameters fall within (-1, 1)

20

ELF: Key Observations

• Observation 1: Around 99% of all parameters fall within (-1, 1)

• Observation 2: floats falling within [1, 2) share same exponent

Sign Exponent MantissaIEEE 754 float32

1 bit 8 bits 23 bits

Sign Exponent MantissaIEEE 754 float16

1 bit 10 bits5 bits
21

ELF: Key Observations

• Observation 1: Around 99% of all parameters fall within (-1, 1)

• Observation 2: floats falling within [1, 2) share same exponent

0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1

P1_dec: (-1)s×2e-127×(1.m1m2...m23)2 = (-1)0×20×(1.001…0101)2 = 1.1415926218

P1_bin:

0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1

P2_dec: (-1)s×2e-127×(1.m1m2...m23)2 = (-1)0×20×(1.000…0101)2 = 1.0987650156

P2_bin:

22

ELF Compression

23

For parameters that fall within (-1, 1)

pi ∈ (-1, 1)fp32

pi’ ∈ [1, 2)fp32

pi’ = |pi|+1Step 1

ELF Compression

24

For parameters that fall within (-1, 1)

pi ∈ (-1, 1)fp32

pi’ ∈ [1, 2)fp32

sign, mantissa24 bits

pi’ = |pi|+1

Eliminating exponent

+
or

−

Step 1

Step 2

ELF Compression

25

For parameters that fall within (-1, 1)

uint8 array

pi ∈ (-1, 1)fp32

pi’ ∈ [1, 2)fp32

sign, mantissa24 bits

3 uint8

pi’ = |pi|+1

Eliminating exponent

Concatenating and converting

Appending

+
or

−

uint0, uint1, uint2

[ui0, ui1, ui2, ..., uim]

Step 1

Step 2

Step 3

Perform decompression to restore pi

ELF Decompression

26

uint8 array

24 bits

3 uint8

Extracting sign and mantissa

Reading

sign, mantissa

uint0, uint1, uint2

[ui0, ui1, ui2, ..., uim]

Step 1

Perform decompression to restore pi

ELF Decompression

27

uint8 array

24 bits

3 uint8

Extracting sign and mantissa

Reading

sign, mantissa

uint0, uint1, uint2

[ui0, ui1, ui2, ..., uim]

Step 2

fp32 pi’ ∈ [1, 2)

Appending exponent 01111111

Step 1

Perform decompression to restore pi

ELF Decompression

28

uint8 array

fp32

fp32

24 bits

3 uint8

pi = pi’-1

Appending exponent 01111111

Extracting sign and mantissa

Reading

pi ∈ (-1, 1)

pi’ ∈ [1, 2)

sign, mantissa

uint0, uint1, uint2

[ui0, ui1, ui2, ..., uim]

+
or

−

Step 3

Step 2

Step 1

Perform decompression to restore pi

ELF Decompression

29

uint8 array

fp32

fp32

24 bits

3 uint8

pi = pi’-1

Appending exponent 01111111

Extracting sign and mantissa

Reading

pi ∈ (-1, 1)

pi’ ∈ [1, 2)

sign, mantissa

uint0, uint1, uint2

[ui0, ui1, ui2, ..., uim]

+
or

−

Step 3

Step 2

Step 1

ELF is lossy – It introduces bounded errors due to exponent

alignment and mantissa shift performed during floating-point add.

Perform decompression to restore pi

ELF Decompression

30

uint8 array

fp32

fp32

24 bits

3 uint8

pi = pi’-1

Appending exponent 01111111

Extracting sign and mantissa

Reading

pi ∈ (-1, 1)

pi’ ∈ [1, 2)

sign, mantissa

uint0, uint1, uint2

[ui0, ui1, ui2, ..., uim]

+
or

−

Step 3

Step 2

Step 1

ELF is lossy – It introduces bounded errors due to exponent

alignment and mantissa shift performed during floating-point add.

The errors are bounded to 2-24 for float32.

Contribution 4:
ELVES: A PTM Compression Framework built on ELF

• ELVES combines the best of both worlds between ELF and
existing data reduction methods that we’ve explored

• including layer-based hash dedup (HD)

• and parameter-level distance encoding (DE)

31

ELVES Workflow

32

Layer

Hash

Dedup

(HD)

1-D Parameter

ArraysML

Pre-Trained

Model Files

ML
ML

Duplicated

Layers

Structure Meta

Non-FP Layers

1

Stage 1:
Eliminating duplicate layers

ELVES Workflow

33

Layer

Hash

Dedup

(HD)

1-D Parameter

ArraysML

Pre-Trained

Model Files

ML
ML

Exponent-Less

FP Encoding

(ELF)

ELF-encoded

Arrays

Distance

Encoding

(DE)

Dict-encoded

Arrays

Duplicated

Layers

Structure Meta

Non-FP Layers

Y / N

1 2a

2b

Stage 1:
Eliminating duplicate layers

Stage 2:
Parameter-level compression

ELVES Workflow

Layer

Hash

Dedup

(HD)

1-D Parameter

Arrays

G
e

n
e
ra

l-
p

u
rp

o
s

e

C
o

m
p

re
s
s

io
n

(zstd)

ML

Pre-Trained

Model Files

ML
ML

Exponent-Less

FP Encoding

(ELF)

ELF-encoded

Arrays

Distance

Encoding

(DE)

Dict-encoded

Arrays

Duplicated

Layers

Structure Meta

Non-FP Layers

Y / N

Compressed

Dup Layer

Files

L L

L L

Compressed

Model Files

F F

FF

1 2a

2b

3

Stage 1:
Eliminating duplicate layers

Stage 2:
Parameter-level compression

Stage 3:
General-purpose

compression
34

Compression and Decompression Speed

35

Compression and Decompression Speed

36

ELF is the fastest compressor, outperforming all other 14

baselines, while achieving highest compression ratio

Compression Ratio

37

Compression Ratio

38

Model pruning and
quantization

methods

Error-bounded
lossy compressors

Data lake
compressor

General-purpose
compressors

Time series
compressors

Compression Ratio

39

ELVES outperforms all 11 baselines in five categories

Conclusion

• Existing and SOTA data reduction methods are generally ineffective
for pre-trained models

• ELF exploits PTMs’ data distribution and floating-point arithmetic
properties

• Simple yet effective: higher compression ratio than SOTA baselines
• Highly parallelizable: superior compression and decompression speed

• ELVES integrates ELF and other data reduction methods for offline
PTM storage compression

40

LLM Systems – from Training to Serving

Some material taken/derived from:
• LLM Visualization (https://bbycroft.net/llm)

• Attention Is All You Need (https://arxiv.org/pdf/1706.03762)

• LLM tutorial videos from Andrej Karpathy (https://karpathy.ai/)

• What Is an LLM – The Model Itself

• Training – Brilliant Ideas, Tremendous Costs

• Serving – Optimized for Every User

• Now You Know the Internals – How to Use LLMs Wisely

41

https://bbycroft.net/llm
https://arxiv.org/pdf/1706.03762
https://karpathy.ai/

What Is an LLM – The Model Itself

• Transformer Architecture (https://bbycroft.net/llm)

• Self-Attention Mechanism (https://arxiv.org/pdf/1706.03762)

42

https://bbycroft.net/llm
https://arxiv.org/pdf/1706.03762

Training – Brilliant Ideas, Tremendous Costs

• Preparing Massive Datasets (text, code, filtered web)
• Web crawlers

• Text dataset (https://huggingface.co/datasets/HuggingFaceFW/fineweb)

43

https://huggingface.co/datasets/HuggingFaceFW/fineweb

Training – Brilliant Ideas, Tremendous Costs

• Preparing Massive Datasets (text, code, filtered web)
• Web crawlers

• Text dataset (https://huggingface.co/datasets/HuggingFaceFW/fineweb)

• Pretraining (masked LM, batched, very expensive)
• Tokenization (https://tiktokenizer.vercel.app/)

• An apple a day --> [2223, 30366, 261, 2163]

• Embedding (https://projector.tensorflow.org/,)

• apple -> 30366 -> [1.8616e-03, -3.3722e-03, ..., 2.5787e-03, -3.9368e-03] (4096)

• Training by predicting next token (An apple a day keeps who away?)

• An apple a day -> keeps -> the -> {doctor(low loss), dog(high loss) -> away

44

https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://tiktokenizer.vercel.app/
https://projector.tensorflow.org/

Training – Brilliant Ideas, Tremendous Costs

• Preparing Massive Datasets (text, code, filtered web)

• Pretraining (masked LM, batched, very expensive)

• Post-Training (where the magic happens)

• Supervised fine-tuning (SFT): Turning the model into a helpful assistant

45

Training – Brilliant Ideas, Tremendous Costs

• Preparing Massive Datasets (text, code, filtered web)

• Pretraining (masked LM, batched, very expensive)

• Post-Training (where the magic happens)

• Supervised fine-tuning (SFT): Turning the model into a helpful assistant

• Reinforcement Learning (RL): Teaching the model to behave and let it create

46

Serving – Optimized for Every User

• Request Batching for Throughput
• Group multiple user prompts to maximize GPU efficiency and reduce idle time.

• KV Caching for Fast Decoding
• Store intermediate attention states to avoid redundant computation during generation.

• Prefill-Decoding Disaggregation
• Split heavy first-token processing from fast token generation for better parallelism.

• Model Compression (Quantization, Distillation)
• Shrink model size and speed up inference while maintaining accuracy.

47

• Now You Know the Internals – How to Use LLMs Wisely
• Prompting Tips (Few-shot, Chain-of-Thought)

• What is the results of 234568 * 24432 / 9876? (Fast, but may not be correct. Give them more
intermediate steps.)

• Let’s solve this step by step, write the solution process of the question of 234568 * 24432 / 9876. OR
Please write python script to solve the question ….

How to Use LLMs Wisely

48

• Now You Know the Internals – How to Use LLMs Wisely
• Prompting Tips (Few-shot, Chain-of-Thought)

• What is the results of 234568 * 24432 / 9876? (Fast, but may not be correct. Give them more
intermediate steps.)

• Let’s solve this step by step, write the solution process of the question of 234568 * 24432 / 9876. OR
Please write python script to solve the question ….

• Hallucinations & Limitations

• Give me sources that support the claim that coffee prevents cancer. (“According to a 2015 study
published in the Journal of Coffee Research...”. But the journal and study don’t exist. -- It may have
learned this style from conversations during fine-tuning)

• Cite sources with URLs or DOIs; And double check the results.

• Chatbots vs APIs

• Leveraging chatbots and APIs in different scenarios

How to Use LLMs Wisely

49

LLM Storage Compression
&

LLM Systems – from Training to Serving

DS 5110: Big Data Systems

Spring 2025

Lecture 15

Zhaoyuan Su

Backup Slides

51

Model Sizes

52

PTM sizes are generally large, with 90% of models

exceeding 100 MB, and 25.22% surpassing 1 GB.

Model Layer Counts

53

PTMs tend to be deep, with approximately 75% of models

having over 200 layers, and audio models stand out, with 70%

containing more than 400 layers.

Model Layer Sizes

54

PTM layer sizes show a step-like distribution, with 57.84%

of sizes clustered around 3 KB, 4 KB, 2.25 MB, and 4 MB.

Would Layer-level Dedup Help?

55

Would Layer-level Dedup Help?

The result of hash-based dedup is discouraging – with

only 5.72% of storage footprint attributed to duplicate

layers
56

ELF Compression

57

1. Flatten FP layers into 1D tensors

Multi-dimension layers 1-dimension tensors

ELF Compression

58

2. Split tensors into multi chunks to enable parallel processing.

1-dimension tensors Parameter chunks

ELF Compression

59

Parameter chunk

[p0, p1, p2, p3, p4, ..., pn]

[p1, p4, ..., pj]

[1, 4, ..., j]

Floating points

Position array

3.1 Save parameter as it is for |pj| ≥ 1

ELF Compression

60

3.2. Perform ELF for pi ∈ (-1,1)

Parameter chunk

[p0, p1, p2, p3, p4, ..., pn]

[p1, p4, ..., pj]

[1, 4, ..., j]

Floating points

Position array

[ui0, ui1, ..., m]

uint8 array

ELF Example

61

0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1pi = 0.1415926069

pi’= 1.1415926218

sign, mantissa

18, 31, 181

[18, 31, 181, ..., uim]

+

0.1415926069+1

0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1

0 removed 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1

0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1

Eliminating exponent bits 01111111

Converting

Appending

Sign Exponent Mantissa

uint8 uint8 uint8

Evaluating ELVES Stages

62

ELF contributes the largest (65%) to the compression ratio

improvement across all stages

Compression Ratio Breakdown

63

Quantifying Accuracy Impact

64

ELVES achieves a 0% accuracy degradation in 6 out of 9

model prediction tasks for 300 sampled PTMs

Quantifying Accuracy Impact

65

ELVES achieves both low accuracy degradation and high compression

ratio for all 9 tasks spanning 18 benchmark datasets

	Slide 1: LLM Storage Compression & LLM Systems – from Training to Serving
	Slide 3: ML Model Storage is !
	Slide 4: ML Model Storage is !
	Slide 5: ML Model Storage is !
	Slide 6: Contribution 1: Analysis of A Large-Scale PTM Storage
	Slide 7: Key Observations
	Slide 8: Key Observations
	Slide 9: Contribution 2: Analysis of PTM Storage Compressibility
	Slide 10: Would Storage Dedup Help?
	Slide 11: Would Storage Dedup Help?
	Slide 12: Would Delta Compression Help?
	Slide 13: Would Delta Compression Help?
	Slide 14: Would Dictionary Coding Help?
	Slide 15: Would Dictionary Coding Help?
	Slide 16: Would Dictionary Coding Help?
	Slide 17: Would Dictionary Coding Help?
	Slide 18: Takeaway: Analysis of PTM Storage Compressibility
	Slide 19: Contribution 3: Exponent-Less Floating-Point Compression (ELF)
	Slide 20: ELF: Key Observations
	Slide 21: ELF: Key Observations
	Slide 22: ELF: Key Observations
	Slide 23: ELF Compression
	Slide 24: ELF Compression
	Slide 25: ELF Compression
	Slide 26: ELF Decompression
	Slide 27: ELF Decompression
	Slide 28: ELF Decompression
	Slide 29: ELF Decompression
	Slide 30: ELF Decompression
	Slide 31: Contribution 4: ELVES: A PTM Compression Framework built on ELF
	Slide 32: ELVES Workflow
	Slide 33: ELVES Workflow
	Slide 34: ELVES Workflow
	Slide 35: Compression and Decompression Speed
	Slide 36: Compression and Decompression Speed
	Slide 37: Compression Ratio
	Slide 38: Compression Ratio
	Slide 39: Compression Ratio
	Slide 40: Conclusion
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: LLM Storage Compression & LLM Systems – from Training to Serving
	Slide 51: Backup Slides
	Slide 52: Model Sizes
	Slide 53: Model Layer Counts
	Slide 54: Model Layer Sizes
	Slide 55: Would Layer-level Dedup Help?
	Slide 56: Would Layer-level Dedup Help?
	Slide 57: ELF Compression
	Slide 58: ELF Compression
	Slide 59: ELF Compression
	Slide 60: ELF Compression
	Slide 61: ELF Example
	Slide 62: Evaluating ELVES Stages
	Slide 63: Compression Ratio Breakdown
	Slide 64: Quantifying Accuracy Impact
	Slide 65: Quantifying Accuracy Impact

