

Outline

* Background on Traditional Index Structures in DBMS

* Why do we even need index structures at all?
* B-Tree & CDF Model

* Learned Index Structures (LIS)
* Naive Approach (A single NNR)
* Reclusive Model Index (RMI)

* Conclusion

'Fundamenta™™)
Building Blocks of
Database Systems/= g

Index Structures

B-Tree HashMap Blooming Filter

v

A

* Purpose of having these structures in DBMS?
* Hit: Tradeoff between speed and storage
* Scarifies storage reduce the # of blocks to read

R.Yang

Accessing Data Without Index Structures

UVA DS School Info Table

SID s_name S_major GPA
........................... _ .
. . 3 100 Entries
" 1 student_1 CS 4.0 . .
—— O N N e 2 Entries per Block
. OOOCOCOOOd
2 student_2 DS L L 4.0 . mECOCOCOC 50 BIOCkS
... =
Lo e | on ||| I
o0 | sudentoo| cs s | * To access SID==1 entry we need read at most
S I R . E 50 blocks from disk. Too slow!
lll M . Can We reduce the number Of blocks to read?

R.Yang 5

Indexing SID using B-Tree

Key

112|134 |5|6]|7]1]8]| 9110 = (100
disk|disk|disk|disk|disk|disk|disk|disk|disk]|disk disk
loc | loc | loc | loc|loc|loc|loc|loc|loc|loc| """ |loc

Prepare a B-Tree index structure for SID from 1 to 100

1

2

3

4

5

6

7

8

9

10 |« - -

R.Yang

|

Time: O(log n)
Space: O(n)

|

100

B-Tree Operations

» Operations: INSERT(), LOOKUP(), DELETE(), UPDATE()

* LOOKUP() walk through example
e Visualization : https://people.ksp.sk/~kuko/gnarley-trees/Btree.html#

R.Yang

https://people.ksp.sk/~kuko/gnarley-trees/Btree.html

Indexing all integers from 1 to 100

112314156789]10]---[100

* No assumption about data
distribution

* Knowing data distribution
may increase performance
significantly from both speed

and storage. Indexing all even integers from 2 to 100

array[lookup - 1]

21416|8|10(12|14]|16]18|20|-=={100

array[(lookup - 2) / 2]

R.Yang 8

A B-Tree is A Model

B-Tree Alternative view

1. Locate the pos of input key 1. Locate the pos of input key

2. Binary search within a page size 2. Binary search within error boundaries
K
Iy Key

Model

Assuming data are stored in dense array in sorted order

R.Yang 9

Modeling B-Tree Functionality using CDF

* B-Tree indexes the data in a sorted order
* Pos = B-Tree(key)
* CDF gives the probability of X that will have a value less than or equal

to x
* Pos = CDF(Key) * N

e Data distribution visualization: https://statdist.com/

If we can learn the CDF model of a given dataset, we can replace the B-Tree
index structure with learned model

R.Yang

10

https://statdist.com/

Which ML Model?

e Pos = CDF(Key) * N
* Approximate the position given a key inside a sorted array
* Learn the relationship between Key and Pos -> Regression
* Position range: O to N-1
* Key range: smallest to largest value

* Which regression model should we pick and why?
* Linear Regression, Neural Network Regression, and etc.

e Discussion (2 mins)

Naive LIS

e Use a single neural network regression model

* Good at approximate the general shape of a CDF

* Large error at the last mile of predicting the actual position
* Solution: RMI

R.Yang

12

Two-stage-RM|

Model 1.1 ¥

- d ~
- / =~ ~
Model 2.1 . — Model 2.2 vy Model 2.N_~ 4
~ ~ Lt ~
%T - gI & oo 5]
Ll . £l —7 " - ..
Keys Keys g Keys
< [7
N 7
N | s

T - - -

In-Membry Dense Array of Sorted Kéys

R.Yang

13

Lookup() on A Two-stage-RMI

* Two stage RMI

* A higher stage model directs a lookup
operation to a lower stage model to fine-tune

. ; : Key
the precision of the predicted memory location i
* learned_index_lookup(key) Model 1.1
* ret_1 = first_stage_ lookup(key)
* ret_2 =second_statge lookup(ret_1) Static RMI m
* predicted_pos = array[ret_2] Model 2.1 Model22 [o @ | Model2.N
e o o

In-Memory Dense Array of Sorted Keys

Local Search

actual_pos

—/'I—_L\—

min_model_error max_model_error

R.Yang

15

Binary Search

actual_pos

16

Conclusion

e DBMS index structures
e B-Tree & CDF model

* LIS

e Abstracting functionality of B-Tree using regression models

Naive approach: using single regression model

RMI: a hierarchical architecture

Performing a local search if the predicted pos is off actual pos

Using binary search or other search algorithms to find the actual key

