
The Case for Learned Index
Structures

Rui Yang
4/10/2023

R.Yang 1

Outline

• Background on Traditional Index Structures in DBMS
• Why do we even need index structures at all?
• B-Tree & CDF Model

• Learned Index Structures (LIS)
• Naïve Approach (A single NNR)
• Reclusive Model Index (RMI)

• Conclusion

2R.Yang

R.Yang 3

Fundamental
Building Blocks of
Database Systems Sorting

Join

B-Tree

Blooming
Filter

HashM
ap

Index Structures

• Purpose of having these structures in DBMS?

R.Yang 4

• Hit: Tradeoff between speed and storage
• Scarifies storage reduce the # of blocks to read

R.Yang 5

100 Entries
2 Entries per Block

50 Blocks

• To access SID==1 entry we need read at most
50 blocks from disk. Too slow!

SID s_name s_major

1 student_1 CS

2 student_2 DS

98 student_98 DA

99 student_99 CS

100 student_100 DS

UVA DS School Info Table

... ... GPA

... ... 4.0

... ... 4.0

...

... ... GPA

... ... 4.0

... ... 4.0

• Can we reduce the number of blocks to read?

Accessing Data Without Index Structures

1 2 3 4 5 6 7 8 9 10 ... 100

Prepare a B-Tree index structure for SID from 1 to 100

1 2 3 4 5 6 7 8 9 10 100

disk
loc

disk
loc

disk
loc

disk
loc

disk
loc

disk
loc

disk
loc

disk
loc

disk
loc

disk
loc

disk
loc

B-
Tr

ee

...

...

...

Key

Time: O(log n)
Space: O(n)

R.Yang 6

Indexing SID using B-Tree

B-Tree Operations

• Operations: INSERT(), LOOKUP(), DELETE(), UPDATE()
• LOOKUP() walk through example
• Visualization : https://people.ksp.sk/~kuko/gnarley-trees/Btree.html#

R.Yang 7

https://people.ksp.sk/~kuko/gnarley-trees/Btree.html

• No assumption about data
distribution
• Knowing data distribution
may increase performance
significantly from both speed
and storage.

1 2 3 4 5 6 7 8 9 10 ... 100

Indexing all integers from 1 to 100

array[lookup - 1]

2 4 6 8 10 12 14 16 18 20 ... 100

Indexing all even integers from 2 to 100

array[(lookup - 2) / 2]

R.Yang 8

R.Yang 9

B-Tree
1. Locate the pos of input key
2. Binary search within a page size

Alternative view
1. Locate the pos of input key
2. Binary search within error boundaries

B-
Tr
ee

...
...

Key

...
...

Key

Model

Assuming data are stored in dense array in sorted order

A B-Tree is A Model

Modeling B-Tree Func=onality using CDF

• B-Tree indexes the data in a sorted order
• Pos = B-Tree(key)

• CDF gives the probability of X that will have a value less than or equal
to x
• Pos = CDF(Key) * N

• Data distribution visualization: https://statdist.com/

R.Yang 10

If we can learn the CDF model of a given dataset, we can replace the B-Tree
index structure with learned model

https://statdist.com/

Which ML Model?

R.Yang 11

• Pos = CDF(Key) * N
• Approximate the posi.on given a key inside a sorted array
• Learn the rela.onship between Key and Pos -> Regression
• Posi.on range: 0 to N-1
• Key range: smallest to largest value

• Which regression model should we pick and why?
• Linear Regression, Neural Network Regression, and etc.

• Discussion (2 mins)

Naïve LIS

R.Yang 12

• Use a single neural network regression model
• Good at approximate the general shape of a CDF
• Large error at the last mile of predicting the actual position
• Solution: RMI

R.Yang 13

Two-stage-RMI

Lookup() on A Two-stage-RMI

• Two stage RMI
• A higher stage model directs a lookup

operation to a lower stage model to fine-tune
the precision of the predicted memory location

• learned_index_lookup(key)
• ret_1 = first_stage_lookup(key)
• ret_2 = second_statge_lookup(ret_1)
• predicted_pos = array[ret_2]

R.Yang 14

Model 1.1

Model 2.1 Model 2.2 Model 2.N

Static RMI

In-Memory Dense Array of Sorted Keys

Key

Local Search

R.Yang 15

0 N

pred_pos actual_pos

min_model_error max_model_error

Binary Search

R.Yang 16

0 N

pred_pos actual_pos

Left Right

Conclusion

• DBMS index structures
• B-Tree & CDF model

• LIS
• Abstracting functionality of B-Tree using regression models
• Naïve approach: using single regression model
• RMI: a hierarchical architecture
• Performing a local search if the predicted pos is off actual pos
• Using binary search or other search algorithms to find the actual key

R.Yang 17

