Towards Taming the Resource and Data
Heterogeneity in Federated Learning

Ali Anwar

Assistant Professor
University of Minnesota

Department of Computer Science and Engineering

Machine Learning

Distributed
Systems

Cloud High Performance
Computing Computing

Machine Learning

Cloud. High Performance
Computing Computing

[AAAI, HPDC, SC, ICSE]

Federated Learning,
Distributed ML

Machine Learning

Distributed
Systems
Cloud
Computing
Containers,

Serverless, Storage

[FAST, ATC, SoCC,
HotStorage, TPDS]

High Performance
Computing

Storage - Object/KV
stores, MapReduce

[SC, HPDC, TPDS]

Modern Applications

> ~E>l“
= Distributed C_h?? =
A Systems
____ Distributed ML Container based —_—
microservices

» Distributed systems are building blocks of modern data

applications
» With new applications underlying distributed system faces

new challenges
» Analyzing the working of these applications from
distributed systems perspective can help better understand

these applications

Modern Applications

_ Distributed Cbﬂg ==
& Systems
___ Distributed ML Container based —
microservices

Understanding the workload characteristics of these
applications opens new opportunities to make
informed design decision that can improve both the
application performance and the efficiency of
underlying distributed system

-

(\&

—

[AAAI, HPDC, 1C°0]

G Machine Learning

Cloud
Computing

Containers,

What is Federated Learning?

Federated learning allows us to collaboratively build
ML models, no matter where data lives by
combining outputs from different parties

Multiple parties

Train a machine learning model

Collaboratively
Without sharing training data

Why Federated Learning?

= Ehe New Hork Times 2

= Ehe New Hork Times 2

General
2 g;’:'l‘m:(w DI owtoRead Privocy Libels How oProlect Your Dt pabesy, How 1o Read Privacy Labels How 1o ProtectYour g
x " Regulation Health Insurance Portability
& Accountability Act After a Data Breach, British Facebook Security Breach
Airways Faces a Record Fine Exposes Accounts of 50
Million Users
CONSUMER LB w2

PRIVACY ACT

IHHIHII

Privacy concerns &
Regulation

f © w ~» m?

“l'” CALIFORNIA

= @he Washington Post 2

ance fines Google nearly
$57 million for first major
violation of new European
privacy regime

After Microsoft moves
its servers back to the
USA, German state's
privacy commissioner
advises schools not to
use Office 365

Data stored across Clouds
or countries

Trade Secrets

Source: IBM Federated Learning Framework https://ibmfl.mybluemix.net/introduction

Architecture

(L

Party 1 (P

I

)

Federated Learning

Aggregator (A)

-

O
[y

Architecture

Federated Learning

1. Aggregator queries parties along with
information required for learning a model.

Aggregator (A)

TN

Party 2 (P,) Party N (P,)

Architecture

Federated Learning

1. Aggregator queries parties along with
information required for learning a model.

2. Given the query (Q), each party computes a Aggregator (A)
reply (R) based on their own local data (D).
Q
Q Q

Party N (PN)

Architecture

Federated Learning

1. Aggregator queries parties along with

information required for learning a model.

2. Given the query (Q), each party computes a

reply (R) based on their own local data (D).
2.1 If party-side training takes place, Q is
against a local model created by

R,=Q(L(D,)

Aggregator (A)

-

Party N (PN)

Architecture

Federated Learning

Aggregator queries parties along with Model (M)
information required for learning a model. FR, R, .., RY)

Aggregator (A)

Given the query (Q), each party computes a

reply (R) based on their own local data (D). Key Point:
Each party then sends its computed Raw data from gach pa.lrty is
reply (R) back to the aggregator, never shared, it remains

where it is stored.

where the results are then fused
together as a single model (M).

Party 2 (P,) Party N (Py)

Neural networks in federated
learning settings

Participants agree in a single

network specification Aggregator) MadalShesand gy et
initial weights some
epochs

Local

data

3. Model updates
(weights)

4. When all
. » parties reply
multiple aggregate

fusion N model
algorithms updates Trath for
5. New weights some
o epochs

Local

data

Repeat until desired accuracy is reached

Challenges

R,=Q(L(D,))

Resource Heterogeneity

Aggregator (A)

R,=Q(L(D,))

Party 1 (P,) Party 2 (P,)

R,=0(L(D,))

Party N (P,)

Challenges

R,=Q(L(D,))

Data Heterogeneity: Quantity

Aggregator (A)

R,=Q(L(D,))
R,=Q(L(D,))
E . B9

Party 2 (P,) Party N (P,)

Dzﬁ IIOkII] DN

Challenges

R,=Q(L(D,))

Data Heterogeneity: Quality

Aggregator (A)

Party N (P,)

D

N

Resource + Data Quantity Heterogeneity

5 O 500 lpoints |
: ‘w2 [X1 1000 points
(Resource + Data Quantity) 25 E ggggpg%g
Heterogeneity Exl 2
impact training time o
:§23
4
=22
21

CPU resource

Data Quality Heterogeneity

0.8
0.6
Data Quality Heterogeneity o
impacts model performance 50.4 1
O
<

0.2 © IID

[* non-IID(10)

~ B non-lID(5)
non-1ID(2)

0 100 200 300 400 500
Rounds

Tiered Federated Learning Aggregator

0 T 0
R Q R \
ast Tier ast Tier € ow Tier \‘.

Setup details

« CIFAR10: Synthetic Federated Learning dataset
« FEMINIST: Practical Federated Learning benchmark

Datas Policy Selection Probability

et

Cifar10/ | Vanilla N/A N/A N/A N/A N/A

FEMNIST
Slow 0.0 0.0 0.0 0.0 1.0
Uniform 0.2 0.2 0.2 0.2 0.2
Random 0.7 0.1 0.1 0.05 0.05

Fast 1.0 0.0 0.0 0.0 0.0

Resource Heterogeneity
Homogeneous Data (Quantity + Quality)

‘v 50 | | | |
! i 4 5 5 z
§4O __ ; -
v30 HIL N ________ _
5 l 10X
@20 = > -
= A &
SR i I
E o L[bl
L. S %

l‘ 10X training speedup

Resource Heterogeneity
Homogeneous Data (Quantity + Quality)

0.8 . — f
>, 0.6 .
U |
(U .

5 0.4 A Vanilla |
8 < slow [

< ® uniform ' |
0.2 = .
¥ random |
oL < fast

3 6 9 12

Time [sec x 103]

l‘ Higher accuracy

Data Quantity Heterogeneity
Homogeneous (Resource + Data Quality)

O T
mo s J T NP e A S o
= 6 ~ O s |
o 5F Xl =
g 4 -1 X L N
= sy gax C
(@) N :
< p I = | T ¢ P | -
C N
.é é_ 5 % I H_
] L@ \S\/O </’>' C 6\5\
@/{9 4 //CSA ooé &
> >

lb 2X training speedup

Data Quantity Heterogeneity
Homogeneous (Resource + Data Quality)

0-8 1 1 1 T
e
<. 0.6 : :
)
© . l !
S 0.4 {f A vanilla .

8 , < slow I I
< | @ uniform ' L
0.2 | .

random | .
O * lfaStl : 1 : 1
0 1 2 3 4 5

Time [sec x 103]

’l Lower accuracy

Data Quality Heterogeneity
Homogeneous (Resource + Data Quantity)

S0.
9]
o
O 8 ’
< AL g e IID e IID
02¢ & 282:#8%5’ ; 0.2 * non-ID(10) * non-lID(10)
non-IID(2) 8 non-IID(5) B non-IID(5)
0 et : 0 . non-1ID(2) ~ non-IID(2)
0 H00 200 Sorant 300 0 100 200 300 400 500 100 200 300 400 500
Rounds Rounds
Vanilla Uniform Fast

non-IIDness leads to ’l Prioritizing makes
lower accuracy It worse

Take away

« Model Performance «— Training Time

 Prioritizing some tiers over others causes biasness

* No single static selection policy achieves faster
training with an efficient model

Important question

* Model Performance «— Training Time

 Prioritizing some tiers over others causes biasness

* No single static selection policy achieves faster
training with an efficient model

Can we achieve faster training with

higher accuracy?

_ Adaptive tier selection
TiFL

Tiered
Federated
Learning

Assign equal
selection probabilities
Aggregator

_ Adaptive tier selection
TiFL

Tiered
Federated

Learning

Assign Credits to
every Tier

Aggregator

Adaptive tier selection

TIFL

Tiered
Federated
Learning

Adaptive tier selection

TIFL

Tiered
Federated
Learning

_ Adaptive tier selection
TiFL

Tiered
Federated
Learning

'\(,e®
oe
N
Aggregator \,003

P2,C

_ Adaptive tier selection
TiFL

Tiered
Federated
Learning

New Model G, ,,

_ Adaptive tier selection
TiFL

Tiered
Federated
Learning

Aggregator

New Model G, ,,

P2,C

_ Adaptive tier selection
TiFL

Tiered
Federated
Learning

Aggregator Test Locally g

Test Locally

Adaptive tier selection

TIFL

Tiered
Federated
Learning

Aggregator

Adaptive tier selection

TIFL
Tiered
Federated
Learning Adjust Tier
ﬂ Probabilities
Aggreg::ttor

P2,C

Adaptive tier selection

TIFL

Tiered
Federated
Learning

_ Adaptive tier selection
TIFL

Tiered Prioritize low
Federated accuracy tiers
Learning O . 4

Increase Reduce number of

part|C|pat|on times selected
Reduce biasness Reduce total training
time

Assign less credits to

slower tiers

Balance accuracy
and training time

Accuracy

o
(o)

o
o

o
»

o
(N)

o

Data Quality Heterogeneity
Homogeneous (Resource + Data Quantity)

4 vanilla
> uniform
® TifL

0 250
Rounds

non-IID(2)

“ vanilla 4 0.2 4 vanilla =
X uniform ¥ * uniform
® TifL 0 ® TifL
250 500 0 250 500
Rounds Rounds

non-I1ID(5) non-IID(10)

TiFL outperforms vanilla ‘ TiFL Improves overall
and uniform selection) model performance

TIFL vs Static Selection
Heterogeneous (Resource + Data Quality +

Data Quantity)

U | T T — B J I, I |
045 + O vanilla - £ 80 S veniia
m 40 F & uniform - Y75 B3 TiFL y
235 L X TIFL l'—l il = - B
30 (1] x] 200 (R
£ 25 1 3X i >65 =
£20 1 | @ :
215 L, i 50T E? Ei
= . _| kj%i I <gt)55 K FM 21_
[4 I—Imqm 4 50 S X

/ () o)

%y /)’oo O’))é , X /)’6,-

P Do & %o

Achieves 3X to 2X TiFL Achieves higher or on
lb training time speedup l‘ par accuracy in all cases

Federated Learning,

Machine Learning

Cloud
a Computing

[FAST, ATC, “o(C,
HotStorage, TPDS]

Containers are Ubiquitous

Web server

ark’

OS
ORACLE’ NGINX
DATABASE
@ MysQL | | -

&Y Gpenwhisk

7

Deep learning

TensorFlow

@xnet

&P redis

Application Containerization

Application Containers: Total Market Revenue ($M)

$4,311

$3,467

30.8%

2017-22 CAGR $2’755

$2,126
$1,567

$1,124 .

2017 2018 2019 2020 2021 2022

Source: 451 Research'’s Market Monitor: Cloud-Enabling Technologies - Application Containers, November 2018

Container usage patterns remain a mystery

Docker is de-facto standard for datacenter

container management

« How are Docker containers used and managed?
« How can we streamline Docker workflows?

- How do we facilitate Docker performance analysis?

Our contribution: Characterization and
optimization of Docker workflow

Conduct a large-scale analysis of a real-world Docker
workload from geo-distributed IBM container service

Provide insights and develop heuristics to increase
Docker performance

Develop an open-source Docker workflow analysis tool*

* https://dssl.cs.vt.edu/drtp/

Background: Docker container image

- Container images are divided into layers.

« The metadata file is called manifest. Container
image

W.-I
Manifest

Layer [«

Layer <

Layer |«

Background: Docker container image

« Container images are divided into layers.

« The metadata file is called manifest. Container
: image

« Users create repositories to store images. —
i.%

w.-l
Manifest

Layer |«

Layer |«

Layer |«

Background: Docker container image

- Container images are divided into layers.

- The metadata file is called manifest. Container

: image

« Users create repositories to store images. ﬁ
e

\.,-I
Manifest

Layer |«

. | Layer [«

“ﬁ Redis CentOS P‘gl)b Layer |«

Background: Docker container image

Container images are divided into layers.

The metadata file is called manifest.
Users create repositories to store images.

Images in a repository can have

different tags (versions).

Ra =—

V26
.

latest

i
Redis

S

myOS

CentOS

Container

image

v.
Manifest

Layer

4_

<

Layer

Layer

<

Background: Docker container image

Container images are divided into layers.

The metadata file is called manifest. Container
image

Users create repositories to store images.

Images in a repository can have o
different tags (versions). anifes
(J50N
. 1 Layer |«
<user, repository, tag>
l Layer |«

Layer |«

Background: Docker container registry

- Docker container images are stored
online in Docker registry.

= Push image:
1. HEAD layers

2. POST/PUT layer
3. PUT manifest

docker
push

Background: Docker container registry

- Docker container images are stored
online in Docker registry.

= Push image:
1. HEAD layers

2. POST/PUT layer
3. PUT manifest

= Pull image:
1. GET manifest

2. GET layers

docker docker
push pull

Background: Docker container registry

« Docker container images are stored
online in Docker registry.

= Push image:
1. HEAD layers

Significant amount of a container startup
time is spentin pulllng the image

= Pull image:
1. GET manifest

2. GET layers

docker docker
push pull

The IBM Cloud Docker registry traces

Capture a diverse set of customers: individuals,
small & medium businesses, government
institutions

Cover five geographical locations and seven
availability zones

Span 75 days and 38M requests that account for
more than ~181TB of data transferred

IBM Docker registry service

Five geographical locations constitute seven
Availability Zones (AZ):

Production

1.
2.
3.

4.

Dallas (dal)
London (lon)
Frankfurt
(fra)

Sydney (syd)

IBM Internal

5.

Staging
(stg)

Testing*

6.
7.

Prestaging (prs)
Development (dev)

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.

IBM Docker registry service

Five geographical locations constitute seven
Availability Zones (AZ):

Production

1.

Dallas (dal)

2. London (lon)
3. Frankfurt
(fra)
4. Sydney (syd)
IBM Internal
5. Staging
(stg)
Testing*
6. Prestaging (prs)
7. Development (dev)

IBM Cloud Registry
architecture

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.

IBM Docker registry service

- Five geographical locations constitute seven
Availability Zones (AZ):

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt
(fra)
4. Sydney (syd)

IBM Internal

5. Staging
(stg)
Testing*

6. Prestaging (prs)
7. Development (dev)

architecture

Registry

IBM Cloud Registry

v A\

y A

y

(Broadcaster J

l Stats counter

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.

IBM Docker registry service

- Five geographical locations constitute seven
Availability Zones (AZ):

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt
(fra)
4. Sydney (syd)

IBM Internal

IBM Cloud Registry
architecture

5. Staging
(stg) (Broadcaster}
Testing*
6. Prestaging (prs) lStats counter

7. Development (dev) +the registry setup is identical, except prs and
dev are only half the size of the other Azs.

Tracing methodology

Collected data from Registry, Nginx,
and Broadcaster

Studied requests: GET, PUT, HEAD,
PATCH, POST

[Broadcaster

Tracing methodology

Collected data from Registry, Nginx,
and Broadcaster

Studied requests: GET, PUT, HEAD,

PATCH, POST 2%

[Broadcaster

Combined traces by matching the incoming HTTP
request identifier across the components

Removed redundant fields and anonymized
the traces

Analysis

100%
80%
60%
40%
20%

0%

Requests

Q1: What is the distribution of request
types?

E pull Epush

Production: dal, lon, fra,
syd
IBM internal: stg

" | Testing: prs, dev

fra
syd
stg
prs
dev

—_ C
S O

Analysis

Q1: What is the distribution of request
types?

80%—-95% of requests are reads (pulls)

100%
80%
60%
40%
20%

0%

Requests

E pull Epush

Production: dal, lon, fra,
syd
IBM internal: stg

" | Testing: prs, dev

fra
syd
stg
prs
dev

—_ C
S O

Q1: What is the distribution of request

types?
Ana[ysis SP;:]Tduction: dal, lon, fra,
B GET BPOST @ HEAD EPUT [PATCH |IBMinternal: stg
Testing: prs, dev
100% |E= == ==
n S0%
0
o 60%
=
S 40%
2
20%
0%

dal lon fra syd stg prs dev

Q1: What is the distribution of request
types?

60% of the requests are GET and 10%—-22% are HEAD

Production: dal, lon, fra,
syd

B GET BPOST @ HEAD EPUT [PATCH |IBMinternal: stg

Analysis

Testing: prs, dev
100% oy -y ooy -
80%
60%
40%
20%
0%

Requests

dal lon fra syd stg prs dev

Analysis

Q2: What is the layer size distribution?

1.0
0.8

“

£0.6

>

0.4

oo — dal—-- stg
0.2 lon——- prs
0.0 — fra dev

102 10* 10° 108 1010
Size (Bytes)

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

Analysis

Q2: What is the layer size distribution?

65% of the layers are smaller than 1 MB
and around 80% are smaller than 10 MB

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

m— dal—-- stg
0.2] — |on——- prs
! —— fra——- dev

0.0

102 10* 10° 108 1010
Size (Bytes)

Q2: What is the layer size distribution?

65% of the layers are smaller than 1 MB
and around 80% are smaller than 10 MB

0.8 ” tarnals cic
There Is a significant opportunity for
caching the layers

; ’ ‘ lon——- prs
>/ —— fra dev

102 10* 10° 108 1010
Size (Bytes)

Analysis

Production: dal, lon, fra,
syd

Analysis

Accesses

0.0

Q3: Is there spatial locality?

| 7 m— dal —-- stg
7

VA — lon ——- prs

l — fra dev

0% 25% 50% 75%100%
% of layers

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

Analysis

Q3: Is there spatial locality?

1% of most accessed layers account for 42% and
59% of all requests in dal and syd, respectively

Accesses

021 7 m— dal —-- stg

/ —— lon ——- prs
00 — fra ==+ dev

0% 25% 50% 75%100%
% of layers

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

Analysis

Q3: Is there spatial locality?

1% of most accessed layers account for 42% and
59% of all requests in dal and syd, respectively

Accesses

021 7 m— dal —-- stg

/ —— lon ——- prs
00 — fra ==+ dev

0% 25% 50% 75%100%
% of layers

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

Analysis

Q3: Is there spatial locality?

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

>*dal *lon “fra #syd
“+stg “*prs “-dev

1 2 3 4 5 6 7 8 9 10
Popularity rank

Analysis

% of requests

Q3: Is there spatial locality?

The popularity rate drops rapidly as we move
from most popular to tenth most popular

layer

>*dal *lon “fra #syd
“+stg “*prs “-dev

1 2 3

4 5 6 7 8 9 10
Popularity rank

Analysis

Q4: Can future requests be

predicted?

GET manifest requests are not
followed by any subsequent GET layer

GET manifest req.
e 9D 2 9 9
2 N & O

request

8 =r—- i

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

010° 10!

Subsequent GET layer req.

102

103

Analysis

Q4: Can future requests be

oredicted?
Significant increase in subsequent

GET layer requests within a session

o o o »
A o ® ©

©
N

PUT layer +
GET manifest req.

006100 10T 102
Subsequent GET layer req.

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev

Q4: Can future requests be
oredicted?

Significant increase in subsequent

GET layer requests within a session

Analysis 1.0

Production: dal, lon, fra,
syd

1 GET layers requests can be predicted
1 opportunity for layer prefetching

006100 107
Subsequent GET layer req.

Analysis

Effect of backend storage technologies

Experimental setup:

Registry on 32 core machine with 64 GB RAM and 512 GB SSD
Swift object store on 10 similar nodes

Trace re-player on 6 additional nodes

10
ESwift ¢ Memory + Swift Local FS A Redirection .

1 #‘..-
: g gt o 4 Y ;‘;
ey - R

A
"
0.01 s w2 ‘:‘:’tz“n‘ See o

0.001

LS

Latency (Seconds)
o

2 3 4 5 6 7 8 9

10 10 10 10 10 10 10 10 10
Layer size (Bytes)

Effect of backend storage technologies

Experimental setup:
Registry on 32 core machine with 64 GB RAM and 512 GB SSD
AnalySIS - Swift object store on 10 similar nodes

Trace re-player on 6 additional nodes

Fast backend storage/cache for the

registry can significantly improve the
overall performance

(&) *
[+
% 0.01 QM:‘:‘:;&:‘v’ s e o
—

0.001

3 4 5 6 7 8 g

10 10° 100 100 100 100 10 10 10
Layer size (Bytes)

Analysis

Effect of a two-level Main memory+SSD
cache

Experimental setup:

« Small layers (<100 MB) are stored in the main memory

» Replacement policy for both cache level is LRU

e Studied cache sizes:

RAM: 2%, 4%, 6%, 8%, and 10% of the data ingress
SSD: 10x, 15x, 20x the size of RAM cache

» Layers are content addressable
1 cache invalidation is not a problem

level cache: Main memory+SSD

Two-

Dallas
m LRU:mem

LRU:mem+SSD(10x)

i LRU:mem+SSD(20x)

7 LRU:mem+SSD(15x)

< ®0 < NO
o O O o
olyel 1y

/o
O

data ingress

Benefit of layer prefetching

PUT layer mmm=) GET manifest mmms) GET layer

T1 thresh T2 thresh
= T2 thresh = 1 hour T2 thresh = 12 hours T2 S— 1 day

1

Y
\

.

1h 12h 1d
T1 thresh

-

hits/prefetch

DockerHub analysis: DupHunter

We did analysis on 167 TB of DockerHub data and found large
number of redundant files in the dataset

We developed DupHunter to overcome this issue

DupHunter exploits the redundancy in container images and
predictable user access patterns to achieve high space
savings with low layer restore overhead

DupHunter reduces storage space by up to 6.9x and can
reduce the GET layer latency up to 2.8x compared to the
state of the art

https://github.com/nnzhaocs/DupHunter

https://github.com/nnzhaocs/DupHunter

Accelerate Federated Learning by
redesigning the system architecture

Current

Research g —
\\-

)

Malicious Party
Dn

1

Accelerate Federated Learning by
redesigning the system architecture

Current

Research

,. Person in the training
dataset identified

Malicious Party

Accelerate Federated Learning by
redesigning the system architecture

Current
Research

l‘ Privacy
preserved

Privacy

o
Techniques)

4s

P Malicious Party

Accelerate Federated Learning by
redesigning the system architecture

Current

Research Gm Privacy Techniques

Differential Privacy

/,/ \ « Secure Multi Party Computation

Privacy -« Homomorphic encryption

Techniques . :
Functional Encryption

Hybrid Approaches

Accelerate Federated Learning by
redesigning the system architecture

Current

Overcome the overhead of the privacy
Research . preserving techniques

Accelerate Federated Learning by
redesigning the system architecture

Current '
Research Overcome the qverhead Qf the privacy
preserving techniques

Reducing the communication overhead in

Vertical Federated Learning

Accelerate Federated Learning by
redesigning the system architecture

Current '
Research Overcome the qverhead Qf the privacy
preserving techniques

Reducing the communication overhead in
Vertical Federated Learning

Design serverless computing based
Asynchronous Federated Learning

Thank you!

All Anwar

aanwar@umn.edu

