
Towards Taming the Resource and Data
Heterogeneity in Federated Learning

Ali Anwar
Assistant Professor

University of Minnesota
Department of Computer Science and Engineering

Machine Learning

Distributed
Systems

High Performance
Computing

Cloud
Computing

Machine Learning

High Performance
Computing

Cloud
Computing

Federated Learning,
Distributed ML

Storage - Object/KV
stores, MapReduce

Containers,
Serverless, Storage

Distributed
Systems

Machine Learning

Federated Learning,
Distributed ML

Distributed
Systems

High Performance
Computing

Cloud
Computing

Storage - Object/KV
stores, MapReduce

Containers,
Serverless, Storage

Machine Learning

Federated Learning,
Distributed ML

Distributed
Systems

[AAAI, HPDC, SC, ICSE]

High Performance
Computing

Cloud
Computing

Storage - Object/KV
stores, MapReduce

Containers,
Serverless, Storage

[FAST, ATC, SoCC,
HotStorage, TPDS]

[SC, HPDC, TPDS]

Distributed ML Container based
microservices

…

• Distributed systems are building blocks of modern data
applications

• With new applications underlying distributed system faces
new challenges

• Analyzing the working of these applications from
distributed systems perspective can help better understand
these applications

Distributed
Systems

Modern Applications

Understanding the workload characteristics of these
applications opens new opportunities to make

informed design decision that can improve both the
application performance and the efficiency of

underlying distributed system

Modern Applications

Distributed ML Container based
microservices

…Distributed
Systems

Machine Learning

Federated Learning,
Distributed ML

[AAAI, HPDC, ICSE]

High Performance
Computing

Cloud
Computing

Storage - Object/KV
stores, MapReduce

Containers,
Serverless, Storage

[FAST, ATC, SoCC,
HotStorage, TPDS]

[SC, HPDC, TPDS]

2

1

3

Distributed
Systems

What is Federated Learning?

• Multiple parties
• Train a machine learning model
• Collaboratively
• Without sharing training data

Federated learning allows us to collaboratively build
ML models, no matter where data lives by
combining outputs from different parties

Liability
Privacy concerns &

Regulation

Why Federated Learning?

Trade Secrets
Data stored across Clouds

or countries

Source: IBM Federated Learning Framework https://ibmfl.mybluemix.net/introduction

…

Aggregator (A)

D1 D2 DN

Party 1 (P1) Party 2 (P2) Party N (PN)

Federated Learning
Ar

ch
ite

ct
ur

e

Ali Anwar

…

Aggregator (A)

Q

D1

Q

Q

D2 DN

Party 1 (P1) Party 2 (P2) Party N (PN)

1. Aggregator queries parties along with
information required for learning a model.

Federated Learning
Ar

ch
ite

ct
ur

e

Ali Anwar

…

Aggregator (A)

Q

D1

Q

Q

D2 DN

Party 1 (P1) Party 2 (P2) Party N (PN)

1. Aggregator queries parties along with
information required for learning a model.

2. Given the query (Q), each party computes a
reply (R) based on their own local data (D).

R1=Q(D1) R2=Q(D2) RN=Q(DN)

Federated Learning
Ar

ch
ite

ct
ur

e

…

Aggregator (A)

Q

D1

Q

Q

D2 DN

Party 1 (P1) Party 2 (P2) Party N (PN)

2. Given the query (Q), each party computes a
reply (R) based on their own local data (D).

2.1 If party-side training takes place, Q is
against a local model created by the
local training (L)

R1=Q(L(D1))) R2=Q(L(D2))) Rn=Q(L(Dn)))

Federated Learning

1. Aggregator queries parties along with
information required for learning a model.

Ar
ch

ite
ct

ur
e

Ali Anwar

…

Aggregator (A)

R1

Q

D1

R2 Q
RN

Q

D2 DN

Party 1 (P1) Party 2 (P2) Party N (PN)

3. Each party then sends its computed
reply (R) back to the aggregator,
where the results are then fused
together as a single model (M).

Model (M)
F(R1, R2, …, RN)

Key Point:
Raw data from each party is
never shared, it remains
where it is stored.

Federated Learning

1. Aggregator queries parties along with
information required for learning a model.

2. Given the query (Q), each party computes a
reply (R) based on their own local data (D).

Ar
ch

ite
ct

ur
e

Ali Anwar Resource Heterogeneity

…

Aggregator (A)

Q Q

Party 1 (P1) Party 2 (P2)

R1=Q(L(D1)))
R2=Q(L(D2)))

Rn=Q(L(Dn)))

Party N (PN)

Q

Ch
al

le
ng

es

Ali Anwar

"Ok""Hello
World.
Lorem
ipsum..
."

…

Aggregator (A)

Q Q

Party 1 (P1) Party 2 (P2)

R1=Q(L(D1)))
R2=Q(L(D2)))

Rn=Q(L(Dn)))

D1
D2 DN

Party N (PN)

Data Heterogeneity: Quantity

Q

Ch
al

le
ng

es

Ali Anwar

…

Aggregator (A)

Q

D1

Q Q

D2 DN

Party 1 (P1) Party 2 (P2) Party N (PN)

R1=Q(L(D1)))
R2=Q(L(D2)))

Rn=Q(L(Dn)))

Data Heterogeneity: Quality
Ch

al
le

ng
es

Resource + Data Quantity Heterogeneity

(Resource + Data Quantity)
Heterogeneity

impact training time

Data Quality Heterogeneity

Data Quality Heterogeneity
impacts model performance

Aggregator

Tiers

Very Fast Tier Fast Tier Very Slow Tier

….

Q
Q

Q

Data Parties

R R R

Tiered Federated Learning

Datas
et

Policy Selection Probability

Cifar10/
FEMNIST

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Vanilla N/A N/A N/A N/A N/A

Slow 0.0 0.0 0.0 0.0 1.0

Uniform 0.2 0.2 0.2 0.2 0.2

Random 0.7 0.1 0.1 0.05 0.05

Fast 1.0 0.0 0.0 0.0 0.0

Setup details

• CIFAR10: Synthetic Federated Learning dataset
• FEMINIST: Practical Federated Learning benchmark

Resource Heterogeneity
Homogeneous Data (Quantity + Quality)

10X

10X training speedup Higher accuracy

Resource Heterogeneity
Homogeneous Data (Quantity + Quality)

10X

10X training speedup Higher accuracy

2X training speedup Lower accuracy

Data Quantity Heterogeneity
Homogeneous (Resource + Data Quality)

2X

2X training speedup Lower accuracy

Data Quantity Heterogeneity
Homogeneous (Resource + Data Quality)

2X

Prioritizing makes
it worse

Uniform Fast

non-IIDness leads to
lower accuracy

Data Quality Heterogeneity
Homogeneous (Resource + Data Quantity)

Vanilla

• Model Performance Training Time
• Prioritizing some tiers over others causes biasness
• No single static selection policy achieves faster

training with an efficient model

Take away

Can we achieve faster training with
higher accuracy?

Important question

• Model Performance Training Time
• Prioritizing some tiers over others causes biasness
• No single static selection policy achieves faster

training with an efficient model

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1

P2
P3

P5

P4

Adaptive tier selection

Aggregator

Assign equal
selection probabilities

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C

P2, C
P3, C

P5, C

P4, C

Adaptive tier selection

Aggregator

Assign Credits to
every Tier

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C-=1

P2, C
P3, C

P5, C

P4, C

Random Selection of Tier

and Devices

Adaptive tier selection

Aggregator

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C-=1

P2, C
P3, C

P5, C

P4, C

Adaptive tier selection

Random Selection of Tier

and Devices

Aggregator

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C

P2, C
P3, C

P5, C

P4, C

Adaptive tier selection

Local Device Weights

Aggregator

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C

P2, C
P3, C

P5, C

P4, C

Adaptive tier selection

New Model Gn+1

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 3

Tier 4

Tier 5

P3, C

P5, C

P4, C

Adaptive tier selection

Tier 1

P1, C

P2, C

Tier 2

New Model Gn+1

Aggregator

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C

P2, C
P3, C

P5, C

P4, C

Adaptive tier selection

Test Locally

Test Locally

Aggregator

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 3

Tier 4

Tier 5

P3, C

P5, C

P4, C

Adaptive tier selection

Tier 1

P1, C

P2, C

Tier 2

Aggregator Report T
est A

ccuracy

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C

P2, C
P3, C

P5, C

P4, C

Adaptive tier selection

Adjust Tier
Probabilities

Aggregator

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Tier 1

Tier 2 Tier 3

Tier 4

Tier 5P1, C-=1

P2, C
P3, C

P5, C

P4, C

Random Selection of Tier

based on new probabiliti
es

Adaptive tier selection

Aggregator

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar

Balance accuracy
and training time

Assign less credits to
slower tiers

Prioritize low
accuracy tiers

Reduce number of
times selected

Reduce total training
time

Increase
participation

Reduce biasness

Adaptive tier selection

Introduction
Containers
Fed Learning
• TiFL

TiFL

Tiered
Federated
Learning

Ali Anwar Data Quality Heterogeneity
Homogeneous (Resource + Data Quantity)

TiFL outperforms vanilla
and uniform selection

TiFL Improves overall
model performance

non-IID(2) non-IID(5) non-IID(10)

Introduction
Containers
Fed Learning
• Evaluation

Ali Anwar

3X

TiFL vs Static Selection
Heterogeneous (Resource + Data Quality +

Data Quantity)

Achieves 3X to 2X
training time speedup

TiFL Achieves higher or on
par accuracy in all cases

2X

Introduction
Containers
Fed Learning
• Evaluation

Machine Learning

Federated Learning,
Distributed ML

[AAAI, HPDC, ICSE]

High Performance
Computing

Cloud
Computing

Storage - Object/KV
stores, MapReduce

Containers,
Serverless, Storage

[FAST, ATC, SoCC,
HotStorage, TPDS]

[SC, HPDC, TPDS]

2

1

3

Distributed
Systems

Containers are Ubiquitous

Application Containerization

Container usage patterns remain a mystery

• How are Docker containers used and managed?

• How can we streamline Docker workflows?

• How do we facilitate Docker performance analysis?

Docker is de-facto standard for datacenter
container management

Our contribution: Characterization and
optimization of Docker workflow

• Conduct a large-scale analysis of a real-world Docker
workload from geo-distributed IBM container service

• Provide insights and develop heuristics to increase
Docker performance

• Develop an open-source Docker workflow analysis tool*

* https://dssl.cs.vt.edu/drtp/

Background: Docker container image

• Container images are divided into layers.

• The metadata file is called manifest.

Background: Docker container image

• Container images are divided into layers.
• The metadata file is called manifest.

• Users create repositories to store images.

Background: Docker container image

Redis CentOS

• Container images are divided into layers.
• The metadata file is called manifest.

• Users create repositories to store images.

• Container images are divided into layers.
• The metadata file is called manifest.

• Users create repositories to store images.

• Images in a repository can have
different tags (versions).

Background: Docker container image

Redis CentOS

• Container images are divided into layers.
• The metadata file is called manifest.

• Users create repositories to store images.

• Images in a repository can have
different tags (versions).

Background: Docker container image

Redis CentOS

<user, repository, tag>

• Docker container images are stored
online in Docker registry.

Background: Docker container registry

docker
push

docker
pull

▪ Push image:
1. HEAD layers
2. POST/PUT layer
3. PUT manifest

docker
push

docker
pull

▪ Push image:
1. HEAD layers
2. POST/PUT layer
3. PUT manifest

▪ Pull image:
1. GET manifest
2. GET layers

Background: Docker container registry

• Docker container images are stored
online in Docker registry.

docker
push

docker
pull

▪ Push image:
1. HEAD layers
2. POST/PUT layer
3. PUT manifest

▪ Pull image:
1. GET manifest
2. GET layers

Background: Docker container registry

Significant amount of a container startup
time is spent in pulling the image

• Docker container images are stored
online in Docker registry.

The IBM Cloud Docker registry traces

• Capture a diverse set of customers: individuals,
small & medium businesses, government
institutions

• Cover five geographical locations and seven
availability zones

• Span 75 days and 38M requests that account for
more than ~181TB of data transferred

IBM Docker registry service

• Five geographical locations constitute seven
Availability Zones (AZ):

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.

IBM Internal
5. Staging

(stg)
Testing*

6. Prestaging (prs)
7. Development (dev)

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt

(fra)
4. Sydney (syd)

IBM Docker registry service

• Five geographical locations constitute seven
Availability Zones (AZ):

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.

IBM Internal
5. Staging

(stg)
Testing*

6. Prestaging (prs)
7. Development (dev)

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt

(fra)
4. Sydney (syd)

IBM Cloud Registry
architecture

IBM Docker registry service

• Five geographical locations constitute seven
Availability Zones (AZ):

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.

IBM Internal
5. Staging

(stg)
Testing*

6. Prestaging (prs)
7. Development (dev)

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt

(fra)
4. Sydney (syd)

IBM Cloud Registry
architecture

IBM Docker registry service

• Five geographical locations constitute seven
Availability Zones (AZ):

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.

IBM Internal
5. Staging

(stg)
Testing*

6. Prestaging (prs)
7. Development (dev)

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt

(fra)
4. Sydney (syd)

IBM Cloud Registry
architecture

Tracing methodology

• Collected data from Registry, Nginx,
and Broadcaster

• Studied requests: GET, PUT, HEAD,
PATCH, POST

Tracing methodology

• Combined traces by matching the incoming HTTP
request identifier across the components

• Removed redundant fields and anonymized
the traces

• Collected data from Registry, Nginx,
and Broadcaster

• Studied requests: GET, PUT, HEAD,
PATCH, POST

Ali Anwar Q1: What is the distribution of request
types?

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

• Analysis: Q1Analysis

Ali Anwar Q1: What is the distribution of request
types?

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

 80%–95% of requests are reads (pulls)Introduction
Containers
• Analysis: Q1Analysis

Ali Anwar Q1: What is the distribution of request
types?

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q1Analysis

Ali Anwar Q1: What is the distribution of request
types?
 60% of the requests are GET and 10%–22% are HEAD

requests
Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q1Analysis

Ali Anwar Q2: What is the layer size distribution?

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q2Analysis

Ali Anwar Q2: What is the layer size distribution?

 65% of the layers are smaller than 1 MB
and around 80% are smaller than 10 MB

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q2Analysis

Ali Anwar Q2: What is the layer size distribution?

 65% of the layers are smaller than 1 MB
and around 80% are smaller than 10 MB

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, devThere is a significant opportunity for

caching the layers

Introduction
Containers
• Analysis: Q2Analysis

Ali Anwar Q3: Is there spatial locality?

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q3Analysis

Ali Anwar

1% of most accessed layers account for 42% and
59% of all requests in dal and syd, respectively

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q3

Q3: Is there spatial locality?

Analysis

Ali Anwar

1% of most accessed layers account for 42% and
59% of all requests in dal and syd, respectively

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q3

Q3: Is there spatial locality?

Analysis

Ali Anwar

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q3

Q3: Is there spatial locality?

Analysis

Ali Anwar

The popularity rate drops rapidly as we move
from most popular to tenth most popular

layer

Introduction
Containers
• Analysis: Q3

Q3: Is there spatial locality?

Analysis

Ali Anwar Q4: Can future requests be
predicted?

 GET manifest requests are not
followed by any subsequent GET layer

request Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q4Analysis

Ali Anwar

 Significant increase in subsequent
GET layer requests within a session

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, dev

Introduction
Containers
• Analysis: Q4

Q4: Can future requests be
predicted?

Analysis

Ali Anwar

 Significant increase in subsequent
GET layer requests within a session

Production: dal, lon, fra,
syd
IBM internal: stg
Testing: prs, devStrong correlation between requests

🡪 GET layers requests can be predicted
🡪 opportunity for layer prefetching

Introduction
Containers
• Analysis: Q4

Q4: Can future requests be
predicted?

Analysis

Ali Anwar

Introduction
Containers
• Caching

Effect of backend storage technologies

Experimental setup:

• Registry on 32 core machine with 64 GB RAM and 512 GB SSD

• Swift object store on 10 similar nodes

• Trace re-player on 6 additional nodes

Analysis

Ali Anwar

Experimental setup:

• Registry on 32 core machine with 64 GB RAM and 512 GB SSD

• Swift object store on 10 similar nodes

• Trace re-player on 6 additional nodes

Fast backend storage/cache for the
registry can significantly improve the

overall performance

Introduction
Containers
• Caching

Effect of backend storage technologies

Analysis

Ali Anwar

Introduction
Containers
• Evaluation

Effect of a two-level Main memory+SSD
cache

Experimental setup:
• Small layers (<100 MB) are stored in the main memory
• Replacement policy for both cache level is LRU
• Studied cache sizes:

RAM: 2%, 4%, 6%, 8%, and 10% of the data ingress
SSD: 10x, 15x, 20x the size of RAM cache

• Layers are content addressable
🡪 cache invalidation is not a problem

Analysis

DockerHub analysis: DupHunter

• We did analysis on 167 TB of DockerHub data and found large
number of redundant files in the dataset

• We developed DupHunter to overcome this issue

• DupHunter exploits the redundancy in container images and
predictable user access patterns to achieve high space
savings with low layer restore overhead

• DupHunter reduces storage space by up to 6.9x and can
reduce the GET layer latency up to 2.8x compared to the
state of the art

https://github.com/nnzhaocs/DupHunter

https://github.com/nnzhaocs/DupHunter

Ali Anwar

Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

…

Accelerate Federated Learning by
redesigning the system architecture

D1
D2 Dn

Malicious Party

Current
Research

Ali Anwar

Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

…

Accelerate Federated Learning by
redesigning the system architecture

D1
D2 Dn

Malicious Party

Person in the training
dataset identified

Current
Research

Ali Anwar

Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

…
Privacy

Techniques

Accelerate Federated Learning by
redesigning the system architecture

D1
D2 Dn

Malicious Party

Privacy
preserved

Current
Research

Ali Anwar

Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

…
Privacy

Techniques

Privacy Techniques

• Differential Privacy

• Secure Multi Party Computation

• Homomorphic encryption

• Functional Encryption

• Hybrid Approaches

Accelerate Federated Learning by
redesigning the system architecture

D1
D2 Dn

Current
Research

Ali Anwar

Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

Accelerate Federated Learning by
redesigning the system architecture

Overcome the overhead of the privacy
preserving techniques

Current
Research

Ali Anwar

Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

Accelerate Federated Learning by
redesigning the system architecture

Overcome the overhead of the privacy
preserving techniques

Reducing the communication overhead in
Vertical Federated Learning

Current
Research

Ali Anwar

Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

Overcome the overhead of the privacy
preserving techniques

Accelerate Federated Learning by
redesigning the system architecture

Reducing the communication overhead in
Vertical Federated Learning

Design serverless computing based
Asynchronous Federated Learning

Current
Research

Thank you!

Ali Anwar
aanwar@umn.edu

