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Modern Applications
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» Distributed systems are building blocks of modern data

applications
» With new applications underlying distributed system faces

new challenges
» Analyzing the working of these applications from
distributed systems perspective can help better understand

these applications



Modern Applications
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microservices

Understanding the workload characteristics of these
applications opens new opportunities to make
informed design decision that can improve both the
application performance and the efficiency of
underlying distributed system
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What is Federated Learning?

Federated learning allows us to collaboratively build
ML models, no matter where data lives by
combining outputs from different parties

Multiple parties

Train a machine learning model

Collaboratively
Without sharing training data



Why Federated Learning?
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Architecture

Federated Learning

1. Aggregator queries parties along with

information required for learning a model.

2. Given the query (Q), each party computes a

reply (R) based on their own local data (D).
2.1 If party-side training takes place, Q is
against a local model created by

R,=Q(L(D,)

Aggregator (A)

-

Party N (PN)



Architecture

Federated Learning

Aggregator queries parties along with Model (M)
information required for learning a model. FR, R, .., RY)

Aggregator (A)

Given the query (Q), each party computes a

reply (R) based on their own local data (D). Key Point:
Each party then sends its computed Raw data from gach pa.lrty is
reply (R) back to the aggregator, never shared, it remains

where it is stored.

where the results are then fused
together as a single model (M).

Party 2 (P,) Party N (Py)



Neural networks in federated
learning settings

Participants agree in a single

network specification Aggregator ) MadalShesand gy et
initial weights some
epochs

Local

data

3. Model updates
(weights)

4. When all
. » parties reply
multiple aggregate

fusion N model
algorithms updates Trath for
5. New weights some
o epochs

Local

data

Repeat until desired accuracy is reached




Challenges

R,=Q(L(D,))

Resource Heterogeneity
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Challenges

R,=Q(L(D,))

Data Heterogeneity: Quantity
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Challenges

R,=Q(L(D,))

Data Heterogeneity: Quality

Aggregator (A)

Party N (P,)

D
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Resource + Data Quantity Heterogeneity
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Data Quality Heterogeneity
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Tiered Federated Learning Aggregator
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Setup details

« CIFAR10: Synthetic Federated Learning dataset
« FEMINIST: Practical Federated Learning benchmark

Datas Policy Selection Probability

et

Cifar10/ | Vanilla N/A N/A N/A N/A N/A

FEMNIST
Slow 0.0 0.0 0.0 0.0 1.0
Uniform 0.2 0.2 0.2 0.2 0.2
Random 0.7 0.1 0.1 0.05 0.05

Fast 1.0 0.0 0.0 0.0 0.0




Resource Heterogeneity
Homogeneous Data (Quantity + Quality)
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Resource Heterogeneity
Homogeneous Data (Quantity + Quality)
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Data Quantity Heterogeneity
Homogeneous (Resource + Data Quality)
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Data Quantity Heterogeneity
Homogeneous (Resource + Data Quality)

0-8 1 1 1 T
e
<. 0.6 : :
)
© . l !
S 0.4 {f A vanilla .

8 , < slow I I
< | @ uniform ' L
0.2 | .

random | .
O * lfaStl : 1 : 1
0 1 2 3 4 5

Time [sec x 103]

’l Lower accuracy



Data Quality Heterogeneity
Homogeneous (Resource + Data Quantity)
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Take away

« Model Performance «— Training Time

 Prioritizing some tiers over others causes biasness

* No single static selection policy achieves faster
training with an efficient model



Important question

* Model Performance «— Training Time

 Prioritizing some tiers over others causes biasness

* No single static selection policy achieves faster
training with an efficient model

Can we achieve faster training with

higher accuracy?
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_ Adaptive tier selection
TiFL

Tiered
Federated

Learning

Assign Credits to
every Tier
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_ Adaptive tier selection
TiFL

Tiered
Federated
Learning
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_ Adaptive tier selection
TIFL

Tiered Prioritize low
Federated accuracy tiers
Learning O . 4

Increase Reduce number of

part|C|pat|on times selected
Reduce biasness Reduce total training
time

Assign less credits to

slower tiers

Balance accuracy
and training time
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Data Quality Heterogeneity
Homogeneous (Resource + Data Quantity)
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TIFL vs Static Selection
Heterogeneous (Resource + Data Quality +

Data Quantity)
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Containers are Ubiquitous

Web server
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Application Containerization

Application Containers: Total Market Revenue ($M)

$4,311

$3,467

30.8%

2017-22 CAGR $2’755

$2,126
$1,567

$1,124 .

2017 2018 2019 2020 2021 2022

Source: 451 Research'’s Market Monitor: Cloud-Enabling Technologies - Application Containers, November 2018



Container usage patterns remain a mystery

Docker is de-facto standard for datacenter

container management

« How are Docker containers used and managed?
« How can we streamline Docker workflows?

- How do we facilitate Docker performance analysis?



Our contribution: Characterization and
optimization of Docker workflow

Conduct a large-scale analysis of a real-world Docker
workload from geo-distributed IBM container service

Provide insights and develop heuristics to increase
Docker performance

Develop an open-source Docker workflow analysis tool*

* https://dssl.cs.vt.edu/drtp/



Background: Docker container image

- Container images are divided into layers.

« The metadata file is called manifest. Container
image
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Background: Docker container image

- Container images are divided into layers.

- The metadata file is called manifest. Container

: image

« Users create repositories to store images. ﬁ
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Background: Docker container image

Container images are divided into layers.

The metadata file is called manifest.
Users create repositories to store images.

Images in a repository can have

different tags (versions).
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Background: Docker container image

Container images are divided into layers.

The metadata file is called manifest. Container
image

Users create repositories to store images.

Images in a repository can have o
different tags (versions). anifes
(J50N
. 1 Layer |«
<user, repository, tag>
l Layer |«

Layer |«




Background: Docker container registry

- Docker container images are stored
online in Docker registry.

= Push image:
1. HEAD layers

2. POST/PUT layer
3. PUT manifest

docker
push



Background: Docker container registry

- Docker container images are stored
online in Docker registry.

= Push image:
1. HEAD layers

2. POST/PUT layer
3. PUT manifest

= Pull image:
1. GET manifest

2. GET layers

docker docker
push pull



Background: Docker container registry

« Docker container images are stored
online in Docker registry.

= Push image:
1. HEAD layers

Significant amount of a container startup
time is spentin pulllng the image

= Pull image:
1. GET manifest

2. GET layers

docker docker
push pull



The IBM Cloud Docker registry traces

Capture a diverse set of customers: individuals,
small & medium businesses, government
institutions

Cover five geographical locations and seven
availability zones

Span 75 days and 38M requests that account for
more than ~181TB of data transferred



IBM Docker registry service

Five geographical locations constitute seven
Availability Zones (AZ):

Production

1.
2.
3.

4.

Dallas (dal)
London (lon)
Frankfurt
(fra)

Sydney (syd)

IBM Internal

5.

Staging
(stg)

Testing*

6.
7.

Prestaging (prs)
Development (dev)

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.



IBM Docker registry service

Five geographical locations constitute seven
Availability Zones (AZ):

Production

1.

Dallas (dal)

2. London (lon)
3. Frankfurt
(fra)
4. Sydney (syd)
IBM Internal
5. Staging
(stg)
Testing*
6. Prestaging (prs)
7. Development (dev)

IBM Cloud Registry
architecture

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.



IBM Docker registry service

- Five geographical locations constitute seven
Availability Zones (AZ):

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt
(fra)
4. Sydney (syd)

IBM Internal

5. Staging
(stg)
Testing*

6. Prestaging (prs)
7. Development (dev)

architecture

Registry

IBM Cloud Registry

v A\

y A

y

( Broadcaster J

l Stats counter

*The registry setup is identical, except prs and
dev are only half the size of the other Azs.



IBM Docker registry service

- Five geographical locations constitute seven
Availability Zones (AZ):

Production
1. Dallas (dal)
2. London (lon)
3. Frankfurt
(fra)
4. Sydney (syd)

IBM Internal

IBM Cloud Registry
architecture

5. Staging
(stg) ( Broadcaster}
Testing*
6. Prestaging (prs) lStats counter

7. Development (dev) +the registry setup is identical, except prs and
dev are only half the size of the other Azs.



Tracing methodology

Collected data from Registry, Nginx,
and Broadcaster

Studied requests: GET, PUT, HEAD,
PATCH, POST

[ Broadcaster




Tracing methodology

Collected data from Registry, Nginx,
and Broadcaster

Studied requests: GET, PUT, HEAD,

PATCH, POST 2%

[ Broadcaster

Combined traces by matching the incoming HTTP
request identifier across the components

Removed redundant fields and anonymized
the traces



Analysis
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Analysis

Q1: What is the distribution of request
types?

80%—-95% of requests are reads (pulls)

100%
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60%
40%
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0%

Requests

E pull Epush

Production: dal, lon, fra,
syd
IBM internal: stg

" | Testing: prs, dev
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Q1: What is the distribution of request

types?
Ana[ysis SP;:]Tduction: dal, lon, fra,
B GET BPOST @ HEAD EPUT [PATCH |IBMinternal: stg
Testing: prs, dev
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Q1: What is the distribution of request
types?

60% of the requests are GET and 10%—-22% are HEAD

Production: dal, lon, fra,
syd

B GET BPOST @ HEAD EPUT [ PATCH |IBMinternal: stg

Analysis

Testing: prs, dev
100% oy -y ooy -
80%
60%
40%
20%
0%

Requests

dal lon fra syd stg prs dev



Analysis

Q2: What is the layer size distribution?
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Analysis

Q2: What is the layer size distribution?

65% of the layers are smaller than 1 MB
and around 80% are smaller than 10 MB

Production: dal, lon, fra,
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IBM internal: stg
Testing: prs, dev
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Q2: What is the layer size distribution?

65% of the layers are smaller than 1 MB
and around 80% are smaller than 10 MB

0.8 ” tarnals cic
There Is a significant opportunity for
caching the layers

; ’ ‘ lon——- prs
>/ —— fra dev

102 10* 10° 108 1010
Size (Bytes)

Analysis

Production: dal, lon, fra,
syd




Analysis

Accesses

0.0

Q3: Is there spatial locality?
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% of layers
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Analysis

Q3: Is there spatial locality?

1% of most accessed layers account for 42% and
59% of all requests in dal and syd, respectively

Accesses
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Analysis

Q3: Is there spatial locality?

1% of most accessed layers account for 42% and
59% of all requests in dal and syd, respectively

Accesses
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0% 25% 50% 75%100%
% of layers

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev




Analysis

Q3: Is there spatial locality?

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev
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Analysis

% of requests

Q3: Is there spatial locality?

The popularity rate drops rapidly as we move
from most popular to tenth most popular

layer

>*dal *lon “fra #syd
“+stg “*prs “-dev

1 2 3

4 5 6 7 8 9 10
Popularity rank



Analysis

Q4: Can future requests be

predicted?

GET manifest requests are not
followed by any subsequent GET layer

GET manifest req.
e 9D 2 9 9
2 N & O

request

8 =r—- i

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev
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Subsequent GET layer req.
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Analysis

Q4: Can future requests be

oredicted?
Significant increase in subsequent

GET layer requests within a session

o o o »
A o ® ©

©
N

PUT layer +
GET manifest req.

006100 10T 102
Subsequent GET layer req.

Production: dal, lon, fra,
syd

IBM internal: stg
Testing: prs, dev




Q4: Can future requests be
oredicted?

Significant increase in subsequent

GET layer requests within a session

Analysis 1.0

Production: dal, lon, fra,
syd

1 GET layers requests can be predicted
1 opportunity for layer prefetching

006100 107
Subsequent GET layer req.



Analysis

Effect of backend storage technologies

Experimental setup:

Registry on 32 core machine with 64 GB RAM and 512 GB SSD
Swift object store on 10 similar nodes

Trace re-player on 6 additional nodes
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Effect of backend storage technologies

Experimental setup:
Registry on 32 core machine with 64 GB RAM and 512 GB SSD
AnalySIS - Swift object store on 10 similar nodes

Trace re-player on 6 additional nodes

Fast backend storage/cache for the

registry can significantly improve the
overall performance
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Analysis

Effect of a two-level Main memory+SSD
cache

Experimental setup:

« Small layers (<100 MB) are stored in the main memory

» Replacement policy for both cache level is LRU

e Studied cache sizes:

RAM: 2%, 4%, 6%, 8%, and 10% of the data ingress
SSD: 10x, 15x, 20x the size of RAM cache

» Layers are content addressable
1 cache invalidation is not a problem



level cache: Main memory+SSD

Two-

Dallas
m LRU:mem

LRU:mem+SSD(10x)
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Benefit of layer prefetching

PUT layer mmm=) GET manifest mmms) GET layer

T1 thresh T2 thresh
= T2 thresh = 1 hour T2 thresh = 12 hours T2 S— 1 day

1

Y
\

.

1h 12h 1d
T1 thresh

-

hits/prefetch



DockerHub analysis: DupHunter

We did analysis on 167 TB of DockerHub data and found large
number of redundant files in the dataset

We developed DupHunter to overcome this issue

DupHunter exploits the redundancy in container images and
predictable user access patterns to achieve high space
savings with low layer restore overhead

DupHunter reduces storage space by up to 6.9x and can
reduce the GET layer latency up to 2.8x compared to the
state of the art

https://github.com/nnzhaocs/DupHunter
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Accelerate Federated Learning by
redesigning the system architecture
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Accelerate Federated Learning by
redesigning the system architecture
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Accelerate Federated Learning by
redesigning the system architecture

Current

Research Gm Privacy Techniques

Differential Privacy

/,/ \ « Secure Multi Party Computation

Privacy -« Homomorphic encryption

Techniques . :
Functional Encryption

Hybrid Approaches




Accelerate Federated Learning by
redesigning the system architecture
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Accelerate Federated Learning by
redesigning the system architecture

Current '
Research Overcome the qverhead Qf the privacy
preserving techniques

Reducing the communication overhead in
Vertical Federated Learning

Design serverless computing based
Asynchronous Federated Learning







Thank you!

All Anwar

aanwar@umn.edu



