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Distributed ML Container based
microservices

…

• Distributed systems are building blocks of modern data 
applications

• With new applications underlying distributed system faces 
new challenges

• Analyzing the working of these applications from 
distributed systems perspective can help better understand 
these applications
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Understanding the workload characteristics of these 
applications opens new opportunities to make 

informed design decision that can improve both the 
application performance and the efficiency of 

underlying distributed system

Modern Applications
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What is Federated Learning?

• Multiple parties
• Train a machine learning model
• Collaboratively
• Without sharing training data

Federated learning allows us to collaboratively build 
ML models, no matter where data lives by 
combining outputs from different parties



Liability
Privacy concerns & 

Regulation

Why Federated Learning?

Trade Secrets
Data stored across Clouds 

or countries 

Source: IBM Federated Learning Framework https://ibmfl.mybluemix.net/introduction
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1. Aggregator queries parties along with 
information required for learning a model. 

2. Given the query (Q), each party computes a 
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2. Given the query (Q), each party computes a 
reply (R) based on their own local data (D).

2.1 If  party-side training takes place, Q is 
against a local model created by the 
local training (L) 

R1=Q(L(D1))) R2=Q(L(D2))) Rn=Q(L(Dn)))
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3. Each party then sends its computed 
reply (R) back to the aggregator, 
where the results are then fused 
together as a single model (M).

Model (M)
F(R1, R2, …, RN)

Key Point:
Raw data from each party is 
never shared, it remains 
where it is stored.

Federated Learning
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information required for learning a model. 
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Resource + Data Quantity Heterogeneity

(Resource + Data Quantity) 
Heterogeneity

impact training time



Data Quality Heterogeneity

Data Quality Heterogeneity
impacts model performance
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Datas
et

Policy Selection Probability

Cifar10/
FEMNIST

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Vanilla N/A N/A N/A N/A N/A

Slow 0.0 0.0 0.0 0.0 1.0

Uniform 0.2 0.2 0.2 0.2 0.2

Random 0.7 0.1 0.1 0.05 0.05

Fast 1.0 0.0 0.0 0.0 0.0

Setup details 

• CIFAR10: Synthetic Federated Learning dataset
• FEMINIST: Practical Federated Learning benchmark
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2X training speedup Lower accuracy

Data Quantity Heterogeneity
Homogeneous (Resource +  Data Quality)
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2X training speedup Lower accuracy

Data Quantity Heterogeneity
Homogeneous (Resource +  Data Quality)

2X



Prioritizing makes 
it worse

Uniform Fast

non-IIDness leads to 
lower accuracy

Data Quality Heterogeneity
Homogeneous (Resource + Data Quantity)

Vanilla



• Model Performance           Training Time
• Prioritizing some tiers over others causes biasness
• No single static selection policy achieves faster 

training with an efficient model

Take away



Can we achieve faster training with 
higher accuracy?

Important question

• Model Performance           Training Time
• Prioritizing some tiers over others causes biasness
• No single static selection policy achieves faster 

training with an efficient model
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Balance accuracy 
and training time

Assign less credits to 
slower tiers

Prioritize low 
accuracy tiers

Reduce number of 
times selected

Reduce total training 
time

Increase 
participation

Reduce biasness

Adaptive tier selection
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TiFL outperforms vanilla 
and uniform selection

TiFL Improves overall 
model performance

non-IID(2) non-IID(5) non-IID(10)
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3X

TiFL vs Static Selection
Heterogeneous (Resource + Data Quality + 

Data Quantity)

Achieves 3X  to 2X 
training time speedup

TiFL Achieves higher or on 
par accuracy in all cases

2X

Introduction
Containers
Fed Learning
• Evaluation
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Containers are Ubiquitous



Application Containerization



Container usage patterns remain a mystery

• How are Docker containers used and managed?

• How can we streamline Docker workflows?

• How do we facilitate Docker performance analysis?

Docker is de-facto standard for datacenter 
container management



Our contribution: Characterization and 
optimization of Docker workflow

• Conduct a large-scale analysis of a real-world Docker 
workload from geo-distributed IBM container service

• Provide insights and develop heuristics to increase 
Docker performance

• Develop an open-source Docker workflow analysis tool*

* https://dssl.cs.vt.edu/drtp/
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• Container images are divided into layers.
• The metadata file is called manifest.

• Users create repositories to store images.

• Images in a repository can have
different tags (versions).

Background: Docker container image

Redis CentOS

<user, repository, tag>



• Docker container images are stored 
online in Docker registry.

Background: Docker container registry

docker 
push

docker 
pull

▪ Push image:
1. HEAD layers
2. POST/PUT layer
3. PUT manifest
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docker 
push

docker 
pull

▪ Push image:
1. HEAD layers
2. POST/PUT layer
3. PUT manifest

▪ Pull image:
1. GET manifest
2. GET layers

Background: Docker container registry

Significant amount of a container startup 
time is spent in pulling the image

• Docker container images are stored 
online in Docker registry.



The IBM Cloud Docker registry traces

• Capture a diverse set of customers: individuals, 
small & medium businesses, government 
institutions

• Cover five geographical locations and seven 
availability zones

• Span 75 days and 38M requests that account for 
more than ~181TB of data transferred



IBM Docker registry service

• Five geographical locations constitute seven 
Availability Zones (AZ):

*The registry setup is identical, except prs and 
dev are only half the size of the other Azs.

IBM Internal
5. Staging 

(stg)
Testing*

6. Prestaging (prs)
7. Development (dev)

Production
1. Dallas (dal) 
2. London (lon)
3. Frankfurt 

(fra)
4. Sydney (syd)
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Tracing methodology

• Collected data from Registry, Nginx, 
and Broadcaster

• Studied requests: GET, PUT, HEAD, 
PATCH, POST



Tracing methodology

• Combined traces by matching the incoming HTTP 
request identifier across the components 

• Removed redundant fields and anonymized 
the traces

• Collected data from Registry, Nginx, 
and Broadcaster

• Studied requests: GET, PUT, HEAD, 
PATCH, POST
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Ali Anwar Q1: What is the distribution of request 
types?
 60% of the requests are GET and 10%–22% are HEAD  

requests
Production: dal, lon, fra, 
syd
IBM internal: stg
Testing: prs, dev

Introduction
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Ali Anwar Q2: What is the layer size distribution?

 65% of the layers are smaller than 1 MB 
and around 80% are smaller than 10 MB

Production: dal, lon, fra, 
syd
IBM internal: stg
Testing: prs, devThere is a significant opportunity for 

caching the layers
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The popularity rate drops rapidly as we move 
from most popular to tenth most popular 

layer
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 Significant increase in subsequent 
GET  layer requests within a session

Production: dal, lon, fra, 
syd
IBM internal: stg
Testing: prs, devStrong correlation between requests

🡪 GET layers requests can be predicted
🡪 opportunity for layer prefetching

Introduction
Containers
• Analysis: Q4

Q4: Can future requests be 
predicted?

Analysis
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Experimental setup:

• Registry on 32 core machine with 64 GB RAM and 512 GB SSD

• Swift object store on 10 similar nodes

• Trace re-player on 6 additional nodes

Fast backend storage/cache for the 
registry can significantly improve the 

overall performance

Introduction
Containers
• Caching

Effect of backend storage technologies

Analysis
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Introduction
Containers
• Evaluation

Effect of a two-level Main memory+SSD 
cache

Experimental setup:
• Small layers  (<100 MB) are stored in the main memory
• Replacement policy for both cache level is LRU
• Studied cache sizes: 

RAM: 2%, 4%, 6%, 8%, and 10% of the data ingress
SSD: 10x, 15x, 20x the size of RAM cache

• Layers are content addressable 
🡪 cache invalidation is not a problem

Analysis







DockerHub analysis: DupHunter

• We did analysis on 167 TB of DockerHub data and found large 
number of redundant files in the dataset

• We developed DupHunter to overcome this issue

• DupHunter exploits the redundancy in container images and 
predictable user access patterns to achieve high space 
savings with low layer restore overhead

• DupHunter reduces storage space by up to 6.9x and can 
reduce the GET layer latency up to 2.8x compared to the 
state of the art

https://github.com/nnzhaocs/DupHunter

https://github.com/nnzhaocs/DupHunter
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Techniques

Privacy Techniques

• Differential Privacy

• Secure Multi Party Computation

• Homomorphic encryption

• Functional Encryption

• Hybrid Approaches

Accelerate Federated Learning by 
redesigning the system architecture 
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Introduction
Containers
Fed Learning
HPC KV store
Future Work
• Accelerate FL

Overcome the overhead of the privacy 
preserving techniques

Accelerate Federated Learning by 
redesigning the system architecture 

Reducing the communication overhead in 
Vertical Federated Learning

Design serverless computing based 
Asynchronous Federated Learning

Current 
Research





Thank you!

Ali Anwar
aanwar@umn.edu


