
Serverless Parallel Computing
DS 5110: Big Data Systems (Spring 2023)

Lecture 7b

Yue Cheng

Confluence: When stateful apps meet serverless computing

Yue Cheng 2

Serverless

Computing DataAnalytics

ML/AI

Parallel
Computing

Inflection Point
ETL & Storage

Today’s data analytics landscape

Yue Cheng 3

Libraries efficient for O(1MB)

Today’s data analytics landscape

Yue Cheng 4

Libraries efficient for O(1MB) Frameworks for O(100s GB)

DASK

Today’s data analytics landscape

Yue Cheng 5

Libraries efficient for O(1MB) Frameworks for O(100s GB)

DASK

Today’s data analytics landscape

Yue Cheng 6

Libraries efficient for O(1MB) Frameworks for O(100s GB)
• Scale to 100s GB data

• Difficult to program and debug
• Requires distributed systems

knowledge
• No elasticity
• High barrier for environment setup

• Requires low-level administration
skills

• Easy to program (writing
centralized code)

• Low barrier for environment setup
(just installing libs)

• Well understood

• No scalability / elasticity
• Not able to efficiently handle large

data

Today’s data analytics landscape

Yue Cheng 7

Libraries efficient for O(1MB) Frameworks for O(100s GB)

Easy-to-use but
not scalable nor

elastic

Scalable but not
easy-to-use nor

elastic

Making a strong case for
Running elastic, pay-per-use stateful apps on Serverless

Yue Cheng 8

Libraries efficient for O(1MB) Frameworks for O(100s GB)

Easy-to-use Elastic Scalable

Pay-per-use

Recap: Serverless computing

Yue Cheng 9

Recap: Serverless computing

Yue Cheng 10https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

Recap: What is serverless computing?
Many people define it many ways

A programming abstraction that enables users to upload programs, run
them at virtually any scale, and pay only for the resources used

11

API gateway

Container Container Container Container

…

• Function-as-a-Service (FaaS): Cloud functions
as a basic deployment unit

Yue Cheng

f(n) f(n) f(n) f(n)Alibaba
Function
Compute

Function-as-a-Service (FaaS)

12

User
Cloud

Yue Cheng

Function-as-a-Service (FaaS)

13

User
Cloud

User deploys apps to the cloud

Yue Cheng

Cloud function

Function-as-a-Service (FaaS)

14

User
CloudAPI gateway

Yue Cheng

Cloud function

Function-as-a-Service (FaaS)

15

User
CloudAPI gateway

Container

Yue Cheng

Cloud function

Function-as-a-Service (FaaS)

16

User
CloudAPI gateway

Container Container Container Container

…

Yue Cheng

Cloud function

Function-as-a-Service (FaaS)

17

User
CloudAPI gateway

Container Container Container Container

…

Autoscaling…
Yue Cheng

Cloud function

What is FaaS good at today?

Yue Cheng 18

Fn

Fn

Fn

Cloud
Storage

Embarrassingly parallel tasks
Stateless processing

…

Fn

…

Event source Cloud
Storage

Limitations of FaaS today

19

• No guaranteed data availability

• Banned inbound network

• Limited per-function resources

• Limited function execution time

Yue Cheng

Limitations of FaaS today

20

•No guaranteed data availability

• Banned inbound network

• Limited per-function resources

• Limited function execution time

⚠ Cloud functions could be
reclaimed any time

⚠ In-memory state is lost

Yue Cheng

Limitations of FaaS today

21

• No guaranteed data availability

•Banned inbound network

• Limited per-function resources

• Limited function execution time

⚠ Cloud functions cannot
run as a server

Server

Yue Cheng

Limitations of FaaS today

22

• No guaranteed data availability

• Banned inbound network

•Limited per-function resources

• Limited function execution time

⚠ Limited CPU & memory
⚠ I/O is a bottleneck

Yue Cheng

Limitations of FaaS today

23

• No guaranteed data availability

• Banned inbound network

• Limited per-function resources

•Limited function execution time

⚠ Limited to up to 15 min

Yue Cheng

Challenges of supporting stateful apps on FaaS

Research Question: Is FaaS poorly suited for stateful
applications because these applications share state?

Case studies:
1. [Programming model] How to design FaaS-centric parallel

computing to enable easy programming of 10,000 CPU cores
and 15,000 GBs of RAM?

2. [Data storage] How to exploit FaaS elasticity and pay-per-use to
reduce the $$ cost by 100X?

24Yue Cheng

Challenges of supporting stateful apps on FaaS

Research Question: Is FaaS poorly suited for stateful
applications because these applications share state?

Case studies:
1. [Programming model] How to design FaaS-centric parallel

computing to enable easy programming of 10,000 CPU cores
and 15,000 GBs of RAM? ß Today

2. [Data storage] How to exploit FaaS elasticity and pay-per-use to reduce the
$$ cost by 100X?

25Yue Cheng

Python analytics: What we have today

Yue Cheng 26

Python analytics: What we have today

Yue Cheng 27

User writes interactive analytics and runs it on a notebook server
• No autoscaling for large computations
• Too slow? OOM? Need to scale out manually!
• Too expensive? Idled resources charge $$

Fixed resource

Python analytics: What we have today

Yue Cheng 28High barriers to enter for those who lack CS/systems background

User writes interactive analytics and runs it on a notebook server
• No autoscaling for large computations
• Too slow? OOM? Need to scale out manually!
• Too expensive? Idled resources charge $$

Manually deployed
distributed computing cluster

Python analytics: What we would like to have

Yue Cheng 29

User writes interactive analytics and runs it on FaaS
• Elastically & automatically scales to right size
• Pay-per-use with minimal $$ cost
• Expertise of writing parallel programs NOT required
• Manual cluster maintenance NOT required

Quantifying the pain of FaaS
Or, how FaaS adds huge amounts of performance taxes

Yue Cheng 30

Python analytics on FaaS is too slow!

Yue Cheng 31

Fn

Fn

Fn

Scheduler Cloud
Storage

Invoke

Invoke

Invoke

R/W

R/W

R/W

* [PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC’17.
* [numpywren] Serverless linear algebra. In ACM SoCC’20.

State-of-the-art FaaS frameworks

0
20
40
60
80

100
120

1000 2000 5000 10000

Ti
m

e
(s

ec
on

ds
)

Number of tasks

Omniscient (Num)PyWren

Python analytics on FaaS is too slow!

Yue Cheng 32

Fn

Fn

Fn

Scheduler Cloud
Storage

Invoke

R/W

R/W

R/WInvoke

Invoke

Better

* [PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC’17.
* [numpywren] Serverless linear algebra. In ACM SoCC’20.

State-of-the-art FaaS frameworks pay huge amounts of FaaS taxes
• Task scheduling bottleneck: Too slow to scale to thousands of functions

Python analytics on FaaS is too slow!

Yue Cheng 33

Fn

Fn

Fn

Scheduler Cloud
Storage

Invoke

R/W

R/W

R/WInvoke

Invoke 254.176

10

102.752

5
0

50

100

150

200

250

300

Read Input Write Final result

Si
ze

 (G
B)

numpywren GEMM read & write amplification

Better

* [PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC’17.
* [numpywren] Serverless linear algebra. In ACM SoCC’20.

State-of-the-art FaaS frameworks pay huge amounts of FaaS taxes
• Task scheduling bottleneck: Too slow to scale to thousands of functions
• I/O bottleneck: Excessive data movement cost due to FaaS constraint

Python analytics on FaaS is too slow!

Yue Cheng 34

Fn

Fn

Fn

Scheduler Cloud
Storage

Invoke

R/W

R/W

R/WInvoke

Invoke 254.176

10

102.752

5
0

50

100

150

200

250

300

Read Input Write Final result

Si
ze

 (G
B)

Better

Naively porting a stateful application to a FaaS
platform won’t work!

Think like a function: A FaaS-centric approach

Insight: A FaaS framework may not care about
traditional metrics (load balancing, cluster util.)

Enter Wukong

Key idea: Partitions the work of a
centralized scheduler across many functions
to take advantage of FaaS elasticity

• Functions schedule tasks by invoking functions
• Functions execute multiple tasks to reduce data

movement cost
• Functions scale out / in autonomously

Yue Cheng 35

Naturally enables multiple benefits

Exploits autoscaling for scalability

Improved data locality

No tedious cluster configuration

Wukong is a FaaS-centric parallel computing framework

Yue Cheng

DAG Gen

Static Schedule Gen

DAG

Lambda Executor Invoker Pool

Subgraphs

Intermediate
Storage

Lambda
Executors

Yue Cheng 37

DAG Gen

Static Schedule Gen

Lambda Executor Invoker Pool

Yue Cheng 38

DAG Gen

Static Schedule Gen

Lambda Executor Invoker Pool

Yue Cheng 39

DAG Gen

Static Schedule Gen

Lambda Executor Invoker Pool

DAG

Yue Cheng 40

DAG Gen

Static Schedule Gen

DAG

Lambda Executor Invoker Pool

Yue Cheng 41

DAG Gen

Static Schedule Gen

DAG

Lambda Executor Invoker Pool

Yue Cheng

DAG Gen

Static Schedule Gen

DAG

Lambda Executor Invoker Pool

Intermediate
Storage

Lambda
Executors

Yue Cheng

DAG Gen

Static Schedule Gen

DAG

Lambda Executor Invoker Pool

Subgraphs

Intermediate
Storage

Lambda
Executors

DAG Gen

Static Schedule Gen

DAG

Lambda Executor Invoker Pool

Intermediate
Storage

Lambda
Executors

Scheduling in Wukong
• Combination of static and dynamic

scheduling

• Input DAG partitioned into static schedules,
or subgraphs of the original DAG

• Serverless executors are assigned a static
schedule

• Executors use dynamic scheduling to
enforce data dependencies and
cooperatively schedule tasks found in
multiple static schedules

Yue Cheng 45

A

C

B

D

E
Input DAG

A

C

E

B

D

E

Static schedule 1 Static schedule 2

Yue Cheng 46

Static scheduling

Yue Cheng 47

Static scheduling

Yue Cheng 48

A

C

B

D

E

Input DAG

Static scheduling

Yue Cheng 49

A

C

B

D

E

Input DAG

A

C

E

B

D

E

Static
schedule 1

Static
schedule 2

Static scheduling

Yue Cheng 50

A

C

B

D

E

Input DAG

A

C

E

B

D

E

Static
schedule 1

Static
schedule 2

Static scheduling

Yue Cheng 51

A

C

B

D

E

Input DAG

A

C

E

B

D

E

Executor 1 Executor 2Dynamic scheduling

Yue Cheng 52

A

C

B

D

E

Input DAG

A

C

E

B

D

E

Executor 1 Executor 2Dynamic scheduling

Yue Cheng 53

A

C

B

D

E

Input DAG

A

C

E

B

D

E

Executor 1 Executor 2Dynamic scheduling

Yue Cheng 54

A

C

B

D

E

Input DAG

A

C

E

B

D

E

Executor 1 Executor 2Dynamic scheduling

Yue Cheng 55

A

C

B

D

E

Input DAG

A

C

E

B

D

E

Executor 1 Executor 2

Cooperate

Dynamic scheduling

Application DAGs

Yue Cheng 56

SVD1 SVD2 TSQR

GEMM

Tree reduction

Application performance: TSQR

Yue Cheng 57

0.05

0.5

5

50

500

32.7k 65.5k 131k 262k 524k 1.0M 2.0M 4.1M 8.3M 16.7M 33.5M 67.1M

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Problem Size

Dask (1k workers) Dask (125 workers) Numpywren Wukong

Better

Wukong and numpywren ran on AWS Lambda w/ 3GB memory
Dask distributed ran on 125 c5.4xlarge EC2 VMs w/ 2,000 vCPU cores

Application performance: TSQR

Yue Cheng 58

0.05

0.5

5

50

500

32.7k 65.5k 131k 262k 524k 1.0M 2.0M 4.1M 8.3M 16.7M 33.5M 67.1M

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Problem Size

Dask (1k workers) Dask (125 workers) Numpywren Wukong

Better

Wukong outperforms numpywren considerably for all problem sizes

0.01
0.1

1
10

100
1000

10000

1.0M 2.0M 4.1M 8.3M 16.7M

Da
ta

 M
ov

em
en

t (
G

B)

Problem Size

Numpywren Read Numpywren Write Wukong Read Wukong Write

Data movement cost: TSQR

Yue Cheng 59

Better

Data movement cost: TSQR

Yue Cheng 60

0.01
0.1

1
10

100
1000

10000

1.0M 2.0M 4.1M 8.3M 16.7M

Da
ta

 M
ov

em
en

t (
G

B)

Problem Size

Numpywren Read Numpywren Write Wukong Read Wukong Write

Better

Wukong reads and writes considerably less data than numpywren

Backup slides

Yue Cheng 61

Wukong’s magic hairs vs. decentralized scheduling

Yue Cheng 62

Wukong performance

Yue Cheng 63

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived tasks

(i.e., Lambda functions) with high elasticity and fine-grained resource
billing

64

Serverless provider

Deploy

Functions
Tenants

Invoke

Yue Cheng

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived tasks

(i.e., Lambda functions) with high elasticity and fine-grained resource
billing

• Function: basic unit of deployment. Application consists of multiple
serverless functions

65

Serverless provider

Deploy

Functions
Tenants

Invoke

Yue Cheng

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived tasks

(i.e., Lambda functions) with high elasticity and fine-grained resource
billing

• Function: basic unit of deployment. Application consists of multiple
serverless functions

• Popular use cases: Backend APIs, data processing…

66

Serverless provider

Deploy

Functions
Tenants

Invoke

Yue Cheng

Yue Cheng 67

A B C

D

Executor 1 Executor 2 Executor 3

Intermediate
Storage

Handling fan-in

Yue Cheng 68

A B C

D

Executor 1 Executor 2 Executor 3

Task A finishes execution on Executor 1

Intermediate
Storage

Dependency counter for Task D: 0

Handling fan-in

Yue Cheng 69

A B C

D

Executor 1 Executor 2 Executor 3

Intermediate
Storage

Executor 1 increments D’s counter and
stores data

Task A finishes execution on Executor 1

Dependency counter for Task D: 1

Handling fan-in

Yue Cheng 70

A B C

D

Executor 1 Executor 2 Executor 3

Task C finishes execution on Executor 3

Intermediate
Storage

Dependency counter for Task D: 1

Handling fan-in

Yue Cheng 71

A B C

D

Executor 1 Executor 2 Executor 3

Task C finishes execution on Executor 3

Intermediate
Storage

Dependency counter for Task D: 2

Executor 3 increments D’s counter and
stores data

Handling fan-in

Yue Cheng 72

A B C

D

Executor 1 Executor 2 Executor 3

Task B finishes execution on Executor 2

Intermediate
Storage

Dependency counter for Task D: 2

Handling fan-in

Yue Cheng 73

A B C

D

Executor 1 Executor 2 Executor 3

Task B finishes execution on Executor 2

Intermediate
Storage

Dependency counter for Task D: 3

Executor 2 increments D’s counter and
…

Handling fan-in

Yue Cheng 74

A B C

D

Executor 1 Executor 3

Task B finishes execution on Executor 2

Intermediate
Storage

Dependency counter for Task D: 3

Executor 2 increments D’s counter and
… “becomes” Task D

Executor 2

Handling fan-in

Be
co

m
e

Yue Cheng 75

A

B C D

Executor 1

Handling fan-out

Yue Cheng 76

A

B C D

Executor 1

Invoke

Handling fan-out

Yue Cheng 77

A

B C D

Executor 1

Executor 2

Invoke

Handling fan-out

Yue Cheng 78

A

B C D

Executor 1

Invoke

Executor 2

Invoke

Handling fan-out

Yue Cheng 79

A

B C D

Executor 1

Invoke

Executor 2

Invoke

Executor 3

Handling fan-out

Yue Cheng 80

A

B C D
Invoke

Executor 2

Invoke

Executor 3

Executor 1

Handling fan-out

Yue Cheng 81

A

B C D
Invoke

Executor 2

Invoke

Executor 3

Executor 1

Execute locally

Handling fan-out

Yue Cheng 82

A

B C D

Executor 1

Invoke

Executor 2

Invoke

Executor 3

Execute locally

Handling fan-out

Other optimizations in Wukong
Wukong uses several techniques to enhance data locality

Task clustering
Eliminate intermediate data transfer by executing tasks locally

Delayed I/O
Delay performing I/O until downstream tasks are ready
Then perform task clustering on those tasks

Yue Cheng 83

