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Today’s data analytics landscape
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Today’s data analytics landscape
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Libraries efficient for O(1MB) Frameworks for O(100s GB)
• Scale to 100s GB data

• Difficult to program and debug
• Requires distributed systems 

knowledge
• No elasticity
• High barrier for environment setup

• Requires low-level administration 
skills

• Easy to program (writing 
centralized code)

• Low barrier for environment setup 
(just installing libs)

• Well understood

• No scalability / elasticity
• Not able to efficiently handle large 

data



Today’s data analytics landscape
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Libraries efficient for O(1MB) Frameworks for O(100s GB)

Easy-to-use but 
not scalable nor 

elastic

Scalable but not 
easy-to-use nor 

elastic



Making a strong case for 
Running elastic, pay-per-use stateful apps on Serverless
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Libraries efficient for O(1MB) Frameworks for O(100s GB)

Easy-to-use Elastic Scalable

Pay-per-use
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Recap: Serverless computing
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Recap: What is serverless computing? 
Many people define it many ways

A programming abstraction that enables users to upload programs, run 
them at virtually any scale, and pay only for the resources used
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API gateway

Container Container Container Container

… 

• Function-as-a-Service (FaaS): Cloud functions 
as a basic deployment unit
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Function-as-a-Service (FaaS)
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Function-as-a-Service (FaaS)
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User
Cloud

User deploys apps to the cloud
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Function-as-a-Service (FaaS)
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User
CloudAPI gateway

Container Container Container Container
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Function-as-a-Service (FaaS)
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CloudAPI gateway

Container Container Container Container
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Autoscaling…
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Cloud function



What is FaaS good at today? 
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Limitations of FaaS today
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• No guaranteed data availability

• Banned inbound network

• Limited per-function resources

• Limited function execution time
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•No guaranteed data availability

• Banned inbound network

• Limited per-function resources

• Limited function execution time

⚠ Cloud functions could be
reclaimed any time

⚠ In-memory state is lost
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Limitations of FaaS today
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• No guaranteed data availability

•Banned inbound network

• Limited per-function resources

• Limited function execution time

⚠ Cloud functions cannot 
run as a server

Server

Yue Cheng



Limitations of FaaS today
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• No guaranteed data availability

• Banned inbound network

•Limited per-function resources

• Limited function execution time

⚠ Limited CPU & memory
⚠ I/O is a bottleneck

Yue Cheng



Limitations of FaaS today
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• No guaranteed data availability

• Banned inbound network

• Limited per-function resources

•Limited function execution time

⚠ Limited to up to 15 min

Yue Cheng



Challenges of supporting stateful apps on FaaS

Research Question: Is FaaS poorly suited for stateful 
applications because these applications share state?

Case studies: 
1. [Programming model] How to design FaaS-centric parallel 

computing to enable easy programming of 10,000 CPU cores 
and 15,000 GBs of RAM?

2. [Data storage] How to exploit FaaS elasticity and pay-per-use to 
reduce the $$ cost by 100X?

24Yue Cheng



Challenges of supporting stateful apps on FaaS

Research Question: Is FaaS poorly suited for stateful 
applications because these applications share state?

Case studies: 
1. [Programming model] How to design FaaS-centric parallel 

computing to enable easy programming of 10,000 CPU cores 
and 15,000 GBs of RAM?   ß Today

2. [Data storage] How to exploit FaaS elasticity and pay-per-use to reduce the 
$$ cost by 100X?
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Python analytics: What we have today
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Python analytics: What we have today
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User writes interactive analytics and runs it on a notebook server
• No autoscaling for large computations
• Too slow? OOM? Need to scale out manually!
• Too expensive? Idled resources charge $$

Fixed resource



Python analytics: What we have today

Yue Cheng 28High barriers to enter for those who lack CS/systems background

User writes interactive analytics and runs it on a notebook server
• No autoscaling for large computations
• Too slow? OOM? Need to scale out manually!
• Too expensive? Idled resources charge $$

Manually deployed 
distributed computing cluster



Python analytics: What we would like to have
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User writes interactive analytics and runs it on FaaS
• Elastically & automatically scales to right size
• Pay-per-use with minimal $$ cost
• Expertise of writing parallel programs NOT required
• Manual cluster maintenance NOT required 



Quantifying the pain of FaaS
Or, how FaaS adds huge amounts of performance taxes
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Python analytics on FaaS is too slow!
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Fn
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Fn

Scheduler Cloud 
Storage

Invoke

Invoke

Invoke

R/W

R/W

R/W

* [PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC’17.
* [numpywren] Serverless linear algebra. In ACM SoCC’20. 

State-of-the-art FaaS frameworks
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Python analytics on FaaS is too slow!
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* [PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC’17.
* [numpywren] Serverless linear algebra. In ACM SoCC’20. 

State-of-the-art FaaS frameworks pay huge amounts of FaaS taxes
• Task scheduling bottleneck: Too slow to scale to thousands of functions



Python analytics on FaaS is too slow!
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* [PyWren] Occupy the Cloud: Distributed Computing for the 99%. In ACM SoCC’17.
* [numpywren] Serverless linear algebra. In ACM SoCC’20. 

State-of-the-art FaaS frameworks pay huge amounts of FaaS taxes
• Task scheduling bottleneck: Too slow to scale to thousands of functions
• I/O bottleneck: Excessive data movement cost due to FaaS constraint



Python analytics on FaaS is too slow!
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Naively porting a stateful application to a FaaS
platform won’t work!

Think like a function: A FaaS-centric approach

Insight: A FaaS framework may not care about 
traditional metrics (load balancing, cluster util.)



Enter Wukong

Key idea: Partitions the work of a 
centralized scheduler across many functions 
to take advantage of FaaS elasticity

• Functions schedule tasks by invoking functions
• Functions execute multiple tasks to reduce data 

movement cost
• Functions scale out / in autonomously

Yue Cheng 35

Naturally enables multiple benefits

Exploits autoscaling for scalability

Improved data locality

No tedious cluster configuration

Wukong is a FaaS-centric parallel computing framework
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Scheduling in Wukong
• Combination of static and dynamic

scheduling

• Input DAG partitioned into static schedules, 
or subgraphs of the original DAG

• Serverless executors are assigned a static 
schedule

• Executors use dynamic scheduling to 
enforce data dependencies and 
cooperatively schedule tasks found in 
multiple static schedules
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Application DAGs
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SVD1 SVD2 TSQR

GEMM

Tree reduction



Application performance: TSQR
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Wukong and numpywren ran on AWS Lambda w/ 3GB memory
Dask distributed ran on 125 c5.4xlarge EC2 VMs w/ 2,000 vCPU cores



Application performance: TSQR
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Wukong outperforms numpywren considerably for all problem sizes
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Data movement cost: TSQR
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Wukong reads and writes considerably less data than numpywren



Backup slides
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Wukong’s magic hairs vs. decentralized scheduling
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Wukong performance
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A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived tasks 

(i.e., Lambda functions) with high elasticity and fine-grained resource 
billing

64
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A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived tasks 

(i.e., Lambda functions) with high elasticity and fine-grained resource 
billing

• Function: basic unit of deployment. Application consists of multiple
serverless functions
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A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived tasks 

(i.e., Lambda functions) with high elasticity and fine-grained resource 
billing

• Function: basic unit of deployment. Application consists of multiple
serverless functions

• Popular use cases: Backend APIs, data processing…
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Intermediate 
Storage

Dependency counter for Task D: 0 

Handling fan-in
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Executor 1 increments D’s counter and 
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Task A finishes execution on Executor 1

Dependency counter for Task D: 1

Handling fan-in
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Other optimizations in Wukong
Wukong uses several techniques to enhance data locality

Task clustering
Eliminate intermediate data transfer by executing tasks locally

Delayed I/O
Delay performing I/O until downstream tasks are ready 
Then perform task clustering on those tasks
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