
Parallel Processing in
Python

DS 5110: Big Data Systems (Spring 2023)
Lecture 5

Yue Cheng

Some material taken/derived from:
• Wisconsin CS301 by Tyler Harter and UC San Diego DSC102 by Arun Kumar.
@ 2023 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Parallelism: Doing multiple things at once

• Mental models

• Two problems

• Parallelism
• Thread
• Process
• Task

Y. Cheng UVA DS5110 Spring 2023 2

Y. Cheng UVA DS5110 Spring 2023 3

Code Data

Instruction pointer
(also called “program counter”)

Y. Cheng UVA DS5110 Spring 2023 4

Code Data

Instruction pointer belongs to a thread within the process

Process

Y. Cheng UVA DS5110 Spring 2023 5

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Y. Cheng UVA DS5110 Spring 2023 6

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1, 2
Ready: 3, 4

Y. Cheng UVA DS5110 Spring 2023 7

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1, 2
Ready: 3, 4

Y. Cheng UVA DS5110 Spring 2023 8

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1, 3
Ready: 2, 4

Y. Cheng UVA DS5110 Spring 2023 9

Code Data

Process 1

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1, 3
Ready: 2, 4

The more cores we have, the more
tasks we can run simultaneously

Wasted compute resources

Two problems
• Not enough distinct (parallelizable) tasks to utilize all cores
• Some operations require waiting (task is “blocked”)

Y. Cheng UVA DS5110 Spring 2023 10

Problem 1
Not enough distinct (parallelizable) tasks to utilize all cores

11

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1
Ready:

Wasted

Problem 2
Some operations require waiting (task is “blocked”)

12

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running:
Ready:
Blocked: 1

Wasted
Wasted

Operations may require to wait on
external resources
• f.read()
• requests.get(URL)
• time.sleep(SECONDS)

Solution

• Thread-level parallelism
• Process-level parallelism
• Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 13

Solution

• Thread-level parallelism
• Process-level parallelism
• Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 14

Thread-level parallelism

15

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Threads give us multiple instruction pointers
in a process, allowing us to execute multiple

parts of the code at the same time!
1
2

3

Thread-level parallelism

16

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1, 3
Ready: 2

1
2

3

In general, threads help:
• Use multiple cores
• Do useful work when threads are blocking

Thread-level parallelism in Python

17

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1
Ready: 3
Blocked: 2

1
2

3

In general Python, threads help:
• Use multiple cores (b/c of the GIL)
• Do useful work when threads are blocking

Wasted https://wiki.python.org/moin/GlobalInterpreterLock

https://wiki.python.org/moin/GlobalInterpreterLock

Thread-level parallelism in Python

18

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Running: 1
Ready: 3
Blocked: 2

1
2

3

In general Python, threads help:
• Use multiple cores (b/c of the GIL)
• Do useful work when threads are blocking

Wasted

Recommendation: Don’t use threads unless
you learn a lot on asynchronous processing
and/or coroutines

https://wiki.python.org/moin/GlobalInterpreterLock

https://docs.python.org/3/library/asyncio-task.html

https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/asyncio-task.html

Solution

• Thread-level parallelism
• Process-level parallelism
• Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 19

Process-level parallelism

Y. Cheng UVA DS5110 Spring 2023 20

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Process-level parallelism

Y. Cheng UVA DS5110 Spring 2023 21

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Clones

Process-level parallelism

Y. Cheng UVA DS5110 Spring 2023 22

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Running: 2, 3
Ready: 1, 4

Compute

Process-level parallelism

Y. Cheng UVA DS5110 Spring 2023 23

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Running: 2, 4
Ready: 1, 3

Compute

Process-level parallelism

Y. Cheng UVA DS5110 Spring 2023 24

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Running: 3, 4
Ready: 1, 2

Compute

Process-level parallelism

Y. Cheng UVA DS5110 Spring 2023 25

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Code Data

Process 2

Code Data

Process 3

Code Data

Process 4

Send data back

Running: 1
Ready: 2, 3, 4

Process-level parallelism

Y. Cheng UVA DS5110 Spring 2023 26

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

Process-level parallelism in Python

Y. Cheng UVA DS5110 Spring 2023 27

Code Data

Process 1

Core
(CPU)

Core
(CPU)

Multi-core processor (CPU)

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == ‘__main__’:
with Pool(4) as p:

print(p.map(f, [1,2,3]))

https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html

Solution

• Thread-level parallelism
• Process-level parallelism
• Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 28

Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 29

T6

T4 T5

T1 T2 T3

Data

Task DAG
(Directed Acyclic Graph)

Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 30

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 31

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

S2: Schedule T1 to W1, T2 to W2, T3
to W3

Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 32

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

S2: Schedule T1 to W1, T2 to W2, T3
to W3

S3: Run T4 after T1 on W1, run T5
after T2 on W2; after T3, W3 is idle

Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 33

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

S1: Copy whole dataset to all workers

S2: Schedule T1 to W1, T2 to W2, T3
to W3

S3: Run T4 after T1 on W1, run T5
after T2 on W2; after T3, W3 is idle

S4: After T4 and T4 ends, run T6 on
W1; after T5, W2 is idle

Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 34

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

Degree of parallelism is the largest
amount of parallelism possible in the
DAG:
• How many tasks can be run in

parallel at most

Task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 35

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

Degree of parallelism is the largest
amount of parallelism possible in the
DAG:
• How many tasks can be run in

parallel at most

Overtime degree of parallelism drops!

Resource wastage on idle workers

Quantify benefit of parallelism: Speedup

Y. Cheng UVA DS5110 Spring 2023 36

Speedup =
Completion time given 1 worker

Completion time given N worker

Quantify benefit of parallelism: Speedup

Q: Given N workers, can we get a speedup of N?

Y. Cheng UVA DS5110 Spring 2023 37

Speedup =
Completion time given 1 worker

Completion time given N worker

Quantify speedup

Y. Cheng UVA DS5110 Spring 2023 38

Speedup (fixed data size)

1

4

8

12

1 4 8 12

Linear
speedup

Sublinear
speedup

Number of workers

Strong scaling

Quantify speedup

Y. Cheng UVA DS5110 Spring 2023 39

1

4

8

12

1 4 8 12

Linear
speedup

Sublinear
speedup

Speedup (increased data size)

0.5

1

1 4 8 12

Linear
speedup

Sublinear
speedup

Number of workers # workers and data size

2

Strong scaling Weak scaling

Speedup (fixed data size)

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 40

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10

Task completion time varies

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 41

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 • Job completion time is always
bounded by the longest path
in the DAG

Task completion time varies

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 42

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 • Job completion time is always
bounded by the longest path
in the DAG

• Potential optimization: The
scheduler can elastically
release a worker if it knows
the worker will be idle till the
end
• Can save $ cost in cloud

Task completion time varies

Idle resources in task-level parallelism

Y. Cheng UVA DS5110 Spring 2023 43

Worker 1 Worker 2 Worker 3

T6

T4 T5

T1 T2 T3

DataData Data

10 5 15

5 20

10 Q: What’s the job completion
time with 1 worker?

Q: What’s the job completion
time with 3 worker?

Q: What’s the speedup?

Task parallelism in Dask

Y. Cheng UVA DS5110 Spring 2023 44

* https://docs.dask.org/en/stable/
* https://docs.dask.org/en/stable/scheduling.html

https://docs.dask.org/en/stable/
https://docs.dask.org/en/stable/scheduling.html

Dask’s task graph and workflow

Y. Cheng UVA DS5110 Spring 2023 45

import dask
import dask.array as da
x = da.random.normal(size=1_000_000, chunks=100_000)

Dask’s task graph and workflow

Y. Cheng UVA DS5110 Spring 2023 46

import dask
import dask.array as da
x = da.random.normal(size=1_000_000, chunks=100_000)

data = x.compute()
Lazy evaluation: Dask computation can be
triggered manually, e.g., .compute()
• only when the result is needed

Dask’s task graph and workflow

Y. Cheng UVA DS5110 Spring 2023 47

import dask
import dask.array as da
x = da.random.normal(size=1_000_000, chunks=100_000)

data = x.compute()
Lazy evaluation: Dask computation can be
triggered manually, e.g., .compute()
• only when the result is needed

dask.visualize(x)

Dask task graph

Draw the task graph using .visualize()

Next steps

• Assignment 2 is out
• Due on Wednesday, 03/15, 11am ET

• Project bidding is due this Friday, 02/24

• Next Monday, 02/27
• Midterm review

Y. Cheng UVA DS5110 Spring 2023 48

Dask demo

Y. Cheng UVA DS5110 Spring 2023 49

