Parallel Processing in
Python

DS 5110: Big Data Systems (Spring 2023)
L ecture 5

Yue Cheng

[UNIVERSITY
T\/IRGINIA

https://creativecommons.org/licenses/by-sa/4.0/

Parallelism: Doing multiple things at once

* Mental models
* TwO problems

e Parallelism
 Thread

 Process
e Task

0
3

\ 4
1]

Instruction pointer
(also called “program counter”)

Y. Cheng UVA DS51 10 Spring 2023

Process

Code Data

1=

Instruction pointer belongs to a thread within the process
NE—————

Y. Cheng UVA DS51 10 Spring 2023

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

H=

F— | e =

Core
(CPU)

Multi-core processor (CPU)

Y. Cheng UVA DS51 10 Spring 2023 5

Process 1 Process 2 Process 3 Process 4
e —— s J
Code Data Code Data Code Data Code Data

+

il

=

ing: 1, 2
Ready: 3,

—

Multi-core processor (CPU)

Y. Cheng

UVA DS5110 Spring 2023

Process 4

Code

Data

Process 1 Process 2 Process 3
Code Data Code Data Code Data
_ %
N
Running: 1, 2
Ready: 3,4

Multi-core processor (CPU)

Y. Cheng

UVA DS5110 Spring 2023

Process 1 Process 2 Process 3
Code Data Code Data Code Data
— — || HE |
N /

\ 7
Running: 1, 3
Ready: : 2,4 >

Multi-core processor (CPU)
Y. Cheng UVA DS5110 Spring 2023

Process 4

Code

Data

Process 4

Code

Data

Process 1 Process 2 Process 3
Code Data Code Data Code Data
N — - »—
//
\ 7
Running: 1, 3
Ready: 2,4
The more cores we have, the more
Multi-core processor (CPU) tasks we can run simultaneously
Y. Cheng UVA DS5110 Spring 2023

Wasted compute resources

Two problems
—2 Not enough distinct (parallelizable) tasks to utilize all cores
. Some operations require waiting (task is “blocked”)

Problem 1

Not enough distinct (parallelizable) tasks to utilize all cores

L1 _ el
Process1 > \—
Code Data
1=
S— Wasted
\

Running: 1
Ready:

Multi-core processor (CPU)

Problem 2

Some operations require waiting (task is “blocked”)

Process 1

Code

Data

Operations may require to wait on

external resources
 f.read()

o>

* requests.get(URL)
* time.sleep(SECONDS)

Wasted

Wasted

Running:
Ready:
Blocked:

Multi-core processor (CPU)

Solution

* Thread-level parallelism
* Process-level parallelism
 Task-level parallelism

Solution

 Thread-level parallelism
* Process-level parallelism
 Task-level parallelism

Y. Cheng UVA DS51 10 Spring 2023

Thread-level parallelism

Process 1

Code Data

Threads give us multiple instruction pointers
In a process, allowing us to execute multiple
parts of the code at the same time!

Multi-core processor (CPU)

Thread-level parallelism

Process 1

Code Data

In general, threads help:
« Use multiple cores
* Do useful work when threads are blocking

Running: 1, 3
Ready: 2

Multi-core processor (CPU)

Thread-level parallelism in Python

Process 1

Code Data

In generat Python, threads help:
+Use-multiple-cores (b/c of the\GIL)

* Do useful work when threads are blocking

Wasted https://wiki.python.ora/moin/GloballnterpreterLock

Running: 1
Ready: 3
Blocked: 2

Multi-core processor (CPU)

https://wiki.python.org/moin/GlobalInterpreterLock

Thread-level parallelism in Python

Recommendation: Don’t use threads unless
you learn a lot on asynchronous processing

Process 1 and/or coroutines Ea—
https://doCSPYIOTToTay 3/ library/asyncio-task.html
Code Data

In generat Python, threads help:
«Use-multiple-cores (b/c of the GIL)

* Do useful work when threads are blocking

Wasted https://wiki.python.ora/moin/GloballnterpreterLock

Running: 1
Ready: 3
Blocked: 2

Multi-core processor (CPU) 18

https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/asyncio-task.html

Solution

* Thread-level parallelism
* Process-level parallelism
 Task-level parallelism

Y. Cheng UVA DS51 10 Spring 2023

Process-level parallelism

Process 1

Code Data

¥

)

Core

(CPU)

Multi-core processor (CPU)

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

=

)

Core
(CPU)

Multi-core processor (CPU)

Y. Cheng UVA DS5110 Spring 2023 21

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

[]]]
[]]]
A

Compute
Running:32, 3
Ready: 1,4

Multi-core processor (CPU)

Y. Cheng UVA DS5110 Spring 2023 22

Process-level parallelism

Process 1 Process 2 @

Code Data Code Data Code Data Code Data

= Ie lie =

1
\

\4

Compute

Running: 2, 4
Foad 1.5

Y. Cheng UVA DS5110 Spring 2023 23

Multi-core processor (CPU)

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

— ||| 4=

Multi-core processor (CPU)

Y. Cheng UVA DS5110 Spring 2023 24

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

=

3= ||| 4= |y =

~ —

Send data back

(g S N

Core

(CPU)

(Rupningﬂ)
Ready: 2, 3,4
Multi-core processor (CPU)

Y. Cheng UVA DS5110 Spring 2023 25

Process-level parallelism

Process 1

Code Data

=

P

Core

(CPU)

Multi-core processor (CPU)

Process-level parallelism in Python

Process 1

Code Data

=

a// 11

https://docs.python.org/3/library/multiprocessing.html

from multiprocessing importg Pool>

def f(x):
return _l{*}v

if name == ‘' main

with Pool(as p:

c fa,yauﬂ«(\"V\“4 l
ore
J
f\ b, 13

Multi-core processor (CPU) ‘/

Y. Cheng

/Vw:'rev

UVA DS5110 Spring 2023 27

https://docs.python.org/3/library/multiprocessing.html

Solution

* Thread-level parallelism
* Process-level parallelism
» Task-level parallelism

Y. Cheng UVA DS51 10 Spring 2023

28

Task-level parallelism

16
AN
T4 TS
n n Task DAG
- (Directed Acyclic Graph)
T1 T2

W

Data

Task-level parallelism

T6
T4 T5
T1 T2 T3
Data Data Data

Task-level parallelism

T6
T4 T5
T1 T2 T; %Vscachedule T1 to W1, T2 to W2, T3
Data Data Data

Worker 1 Worker 2 Worker 3 S1: Copy whole dataset to all workers

Task-level parallelism

16

alo«l-ft (oo U1 ‘3’
T4 T5 ____——— S3:Run T4 after T1 on W1, run T5
T after T2 on W2; after T3, W3 is idle

T1 -|-2 T3 S2: Schedule T1 to W1, T2 to W2, T3
X to W3
Data Data Data

Worker 1 Worker 2 Worker 3 S1: Copy whole dataset to all workers
Tl

. e

Task-level parallelism

S4: After T4 and T4 ends, run T6 on
W1 ; after T5, W2 is idle

16
PR p ety
15

T4 S3: Run T4 after T1 on W1, run T5
\-T-—- T after T2 on W2; after T3, W3 is idle
T1 T2 T3 S2: Schedule T1 to W1, T2 to W2, T3
X to W3
Data Data Data

Worker 1 Worker 2 Worker 3 S1: Copy whole dataset to all workers

Task-level parallelism

16

T4 15

A 4

' ' Degree of parallelism is the largest

amount of parallelism possible in the

T1 T2 T3 DAG:

4 A A How many tasks can be run in

/ \ parallel at most

Data Data Data

Task-level parallelism

16 Resource wastage on idle workers
T4 T5 Overtime degree of parallelism drops!
| I Degree of parallelism is the largest
amount of parallelism possible in the
T1 12 T3 DAG:
4 A A How many tasks can be run in
/ \ parallel at most

Data

Worker 1 Worker 2 Worker 3

Quantify benefit of parallelism: Speedup

N———\

Completion time given 1 worker
Speedup =

Completion time given N worker

Ty ge—

Quantify benefit of parallelism: Speedup

Completion time given 1 worker

Speedup =
Completion time given N worker

Q: Given N workers, can we get a speedup of N?

br_dlepercts

Mrop P

Quantify speedup

Sgeedup (fixed data size)

12
Linear
speedup
3
4
Sublinear
1 speedup

-
1 4 3 12

Number of workers

‘/:Strong scaling)

Y. Cheng UVA DS5110 Spring 2023

Quantify speedup

Saeedup (fixed data size)

12
Linear
speedup
8
4
Sublinear
d
1 speedup >
1 4 8 12

Number of workers

Strong scaling

Y. Cheng

Speedup (increased data size)

A
2
Linear
speedup
e
il
Sublinear
speedup

workers and data size

0.5

Kév?

Weak scaling

UVA DS5110 Spring 2023 39

|dle resources in task-level parallelism

‘. How 0,2 VVW\'G(j\ﬂ) CUW‘)\.e:‘YQ.
6 {0 S J

N Wi /T’ T¢ ‘ 6\'6{
s 1o W T [Te) Te E_?_]lx_[‘
T T T2 2, T3. |T3 ’ T;J ' l .
1 T2 A
5 v 3 3¢
T @ \ @ | -SL:MQ/?/O
Data Data Data

55 cec

Task completion time varies 'Ta ho GME, 7,

Y. Cheng UVA DS5110 Spring 2023 40

|dle resources in task-level parallelism

« Job completion time is always
T6 10 3G sec
— j—— bounded by the longest path
AN TnheDAG
T4 T —
5 8. 20
T 1
T1 12 T3
Data Data Data

Task completion time varies

|dle resources in task-level parallelism

T6 10
A N
T4
5 e 20
T 1
T1 T2 T3
Data Data Data

Task completion time varies

Job completion time is always
bounded by the longest path
in the DAG

Potential optimization: The
scheduler can elastically
release a worker if it knows
the worker will be idle till the
end

« Can save $ cost in cloud

Cevevlecs (ovputig

|dle resources in task-level parallelism

Q: What’s the job completion
T6 10 time with 1 worker?
/ \
T4 T5
5 20
T 1
T1 12 13 Q: What’s the job completion
f 10 T ® \ 19 time with 3 worker?
Data Data Data

Q: What's the speedup?

Task parallelism in Dask

Collections Task Graph

(create task graphs)

Dask Array

Dask DataFrame O_

Dask Bag O_,

Dask Delayed :}_. O—

Futures

...

* https://docs.dask.org/en/stable/
* https://docs.dask.org/en/stable/scheduling.html

Y. Cheng UVA DS51 10 Spring 2023

Schedulers

(execute task graphs)

Single-machine
(threads, processes,
synchronous)

/ Distribh

_v

44

https://docs.dask.org/en/stable/
https://docs.dask.org/en/stable/scheduling.html

Dask’s task graph and workflow

import dask
import dask.array as da
ef? x = da.random.normal(size=1 000 000, chunks=100 000)
S ———,

Dask’s task graph and workflow

import dask

import dask.array as da
x = da.random.normal(size=1 000 000, chunks=100 000)

l Lazy evaluationy/ Dask computation can be

data = x.compute() triggered manually, e.g., .compute ()
— « only when the result is needed

Y. Cheng UVA DS51 10 Spring 2023 46

Dask’s task graph and workflow

import dask

import dask.array as da
x = da.random.normal(size=1 000 000, chunks=100 000)

l Lazy evaluation: Dask computation can be
data = x.compute() triggered manually, e.g., .compute ()
« only when the result is needed

dask.visualize(x) Draw the task graph using .visualize()

= -

RREEERRREE

Dask task graph

Next steps

* Assignment 2 Is out
* Due on Wednesday, 03/15, 11am ET

 Project bidding is due this Friday, 02/24

* Next Monday, 02/27

 Midterm review

Dask demo

