
Google MapReduce
DS 5110: Big Data Systems (Spring 2023)

Lecture 3b

Yue Cheng

Y. Cheng UVA DS5110 Spring 2023 2

Applications

Batch SQL Machine
learning

Emerging
apps?

Scalable computing engines

Scalable storage systems

Datacenter infrastructure

ETL

The big picture (motivation)
• Datasets are too big to process using a single

computer

Y. Cheng UVA DS5110 Spring 2023 3

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

Y. Cheng UVA DS5110 Spring 2023 4

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures

Y. Cheng UVA DS5110 Spring 2023 5

Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write
distributed programs to process them
• Scale so large jobs can complete before failures

Y. Cheng UVA DS5110 Spring 2023 6

Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be
imbued with the ability to write parallel, scalable,
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts

which problems it works for

Y. Cheng UVA DS5110 Spring 2023 7

Application: Word Count

Y. Cheng UVA DS5110 Spring 2023 8

cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word

Deal with multiple files?

Y. Cheng UVA DS5110 Spring 2023 9

Deal with multiple files?

1. Compute word counts from individual files

Y. Cheng UVA DS5110 Spring 2023 10

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

Y. Cheng UVA DS5110 Spring 2023 11

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

Y. Cheng UVA DS5110 Spring 2023 12

What if the data is too big to fit in one
computer?

Y. Cheng UVA DS5110 Spring 2023 13

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

Y. Cheng UVA DS5110 Spring 2023 14

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

Y. Cheng UVA DS5110 Spring 2023 15

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

Y. Cheng UVA DS5110 Spring 2023 16

MapReduce+GFS: Put everything together

Y. Cheng UVA DS5110 Spring 2023 17

Job master

Worker Worker Worker

Master node 1

Worker node 1 Worker node 2 Worker node N

Chunks Chunks Chunks

GFS chunkservers (managing data chunks)

GFS Master

Master node 2
ClientsClientsClientsClients

MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results

Y. Cheng UVA DS5110 Spring 2023 18

MapReduce: Word Count

Y. Cheng UVA DS5110 Spring 2023 19

map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Word Count execution

Y. Cheng UVA DS5110 Spring 2023 20

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce

Word Count execution

Y. Cheng UVA DS5110 Spring 2023 21

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce
quick, 1

the, 1 brown, 1
fox, 1

ate, 1

mouse, 1

the, 1fox, 1the, 1

cow, 1

how, 1 now, 1

brown, 1

Word Count execution

Y. Cheng UVA DS5110 Spring 2023 22

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

quick, 1

ate, 1
mouse, 1

cow, 1

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1

fox, 1

the, 1

the, 1

Word Count execution

Y. Cheng UVA DS5110 Spring 2023 23

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1
the, 1 fox, 1

the, 1

quick, 1

ate, 1
mouse, 1

cow, 1

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce data flows in paper

Y. Cheng UVA DS5110 Spring 2023 24

How it started: Apache Hadoop

• An open-source implementation of Google’s
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File

System (HDFS)

Y. Cheng UVA DS5110 Spring 2023 25

Y. Cheng UVA DS5110 Spring 2023 26

How it’s going …

Stragglers

Y. Cheng UVA DS5110 Spring 2023 27

Map task completion time distribution

ta

sk
s

Stragglers

• Tail execution time means some workers
(always) finish late

• Q: How can MR work around this?
• Hint: its approach to fault-tolerance provides the

right tool

Y. Cheng UVA DS5110 Spring 2023 28

Map task completion time distribution

ta

sk
s

Resilience against stragglers

• If a task is going slowly (i.e., straggler):
• Launch second copy of task on another node
• Take the output of whichever finishes first

Y. Cheng UVA DS5110 Spring 2023 29

More design

• Master failure

• Locality

• Task granularity

Y. Cheng UVA DS5110 Spring 2023 30

GFS usage at Google

• 200+ clusters
• Many clusters of 1000s of machines
• Pools of 1000s of clients
• 4+ PB filesystems
• 40 GB/s read/write load
• In the presence of frequent hardware failures

Y. Cheng UVA DS5110 Spring 2023 31

* Jeff Dean, LADIS 2009

MapReduce usage statistics over time

Y. Cheng UVA DS5110 Spring 2023 32

* Jeff Dean, LADIS 2009

MapReduce discussion

What will likely serve as a performance bottleneck
for Google’s MapReduce used back in 2004 (or
even earlier)? CPU? Memory? Disk? Network?
Anything else?

Y. Cheng UVA DS5110 Spring 2023 33

MapReduce discussion

What will likely serve as a performance bottleneck
for Google’s MapReduce used back in 2004 (or
even earlier)? CPU? Memory? Disk? Network?
Anything else?

How does MapReduce reduce the effect of slow
network?

Y. Cheng UVA DS5110 Spring 2023 34

MapReduce discussion

Y. Cheng UVA DS5110 Spring 2023 35

MapReduce discussion
Consider a log analytics job where you perform log-based
debugging. You want to extract the timestamp info of all
entries that match a keyword and then calculate the count
of all matched entries:

1. Filter the entries with the keyword;
2. Calculate the count of all matched entries

What are the main shortcomings of using MapReduce to
support such pipeline-like applications?

Y. Cheng UVA DS5110 Spring 2023 36

Next step

• Look out for
• Project suggestion doc
• Fill the team composition form
• Project bid and team composition due by Feb 24

• Next week: Apache Spark

Y. Cheng UVA DS5110 Spring 2023 37

