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Applications

Batch SQL Machine 
learning

Emerging 
apps?

Scalable computing engines

Scalable storage systems

Datacenter infrastructure

ETL



The big picture (motivation)
• Datasets are too big to process using a single 

computer
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The big picture (motivation)
• Datasets are too big to process using a single 

computer

• Good parallel processing engines are rare (back 
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle 

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures
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Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write 
distributed programs to process them
• Scale so large jobs can complete before failures
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Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed 

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be 
imbued with the ability to write parallel, scalable, 
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts 

which problems it works for
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Application: Word Count
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cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word



Deal with multiple files?
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1. Compute word counts from individual files
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Deal with multiple files?
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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What if the data is too big to fit in one 
computer?
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates
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MapReduce+GFS: Put everything together
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Job master

Worker Worker Worker

Master node 1

Worker node 1 Worker node 2 Worker node N

Chunks Chunks Chunks

GFS chunkservers (managing data chunks)

GFS Master

Master node 2
ClientsClientsClientsClients



MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of 

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results
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MapReduce: Word Count
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map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));



Word Count execution
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Word Count execution
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MapReduce data flows in paper
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How it started: Apache Hadoop

• An open-source implementation of Google’s 
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File 

System (HDFS)
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How it’s going … 



Stragglers
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Map task completion time distribution
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Stragglers

• Tail execution time means some workers 
(always) finish late

• Q: How can MR work around this?
• Hint: its approach to fault-tolerance provides the 

right tool

Y. Cheng UVA DS5110 Spring 2023 28

Map task completion time distribution

# 
ta

sk
s



Resilience against stragglers

• If a task is going slowly (i.e., straggler):
• Launch second copy of task on another node
• Take the output of whichever finishes first
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More design

• Master failure

• Locality

• Task granularity
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GFS usage at Google

• 200+ clusters
• Many clusters of 1000s of machines
• Pools of 1000s of clients
• 4+ PB filesystems
• 40 GB/s read/write load
• In the presence of frequent hardware failures
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* Jeff Dean, LADIS 2009



MapReduce usage statistics over time
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* Jeff Dean, LADIS 2009



MapReduce discussion

What will likely serve as a performance bottleneck 
for Google’s MapReduce used back in 2004 (or 
even earlier)? CPU? Memory? Disk? Network? 
Anything else?
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MapReduce discussion

What will likely serve as a performance bottleneck 
for Google’s MapReduce used back in 2004 (or 
even earlier)? CPU? Memory? Disk? Network? 
Anything else?

How does MapReduce reduce the effect of slow 
network?
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MapReduce discussion
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MapReduce discussion
Consider a log analytics job where you perform log-based 
debugging. You want to extract the timestamp info of all 
entries that match a keyword and then calculate the count 
of all matched entries:

1. Filter the entries with the keyword;
2. Calculate the count of all matched entries

What are the main shortcomings of using MapReduce to 
support such pipeline-like applications?
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Next step

• Look out for
• Project suggestion doc
• Fill the team composition form
• Project bid and team composition due by Feb 24

• Next week: Apache Spark
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