Operating Systems:
Memory and File System

DS 5110: Big Data Systems (Spring 2023)
L ecture 2¢

Yue Cheng

[UNIVERSITY
T\/IRGINIA

Some material taken/derived from:
* Wisconsin CS301 by Tyler Harter.
@ 2023 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

The memory hierarchy

Recap: How fast can a CPU run a
program?

* Most programs do not keep CPU always busy

* Memory access instructions stall the CPU: i.e., ALU &
CU idle during DRAM-register transfer

* Worse, data may not be in DRAM — wait for disk I/O!

 Actual runtime of a program may be 10-100x higher
than what clock rate calculation model suggests

Recap: How fast can a CPU run a
program?

* Most programs do not keep CPU always busy

* Memory access instructions stall the CPU: i.e., ALU &
CU idle during DRAM-register transfer

* Worse, data may not be in DRAM — wait for disk I/O!

 Actual runtime of a program may be 10-100x higher
than what clock rate calculation model suggests

Key principle: Optimizing use of CPU caches (and faster
storage) is critical for processor performance!

Memory-storage hierarchy

~100GB/s

~100MB/s

Y. Cheng

*UCSD DSC 102: Svstems for scalable analvsis. Arun Kumar

Workload characteristics

Application A
sum = 0
for i in range(0,1024):
sum += a[i]

Workload characteristics

Application A Application B
sum = 0 import random
for 1 in range(0,1024):
sum += a[i] sum = 0

random.seed(1234)
for 1 in range(0,512):
sum += a[random.randint(0,1023)]

random.seed(1234) # same seed
for i in range(0,512):
sum += a[random.randint(0,1023)]

Access patterns

Application A Application B
A A
]
3 3
< <]]
] L
]
>

Time Time

Y. Cheng UVA DS5110 Spring 2023

Access patterns

Application A Application B
A A
] L]
3 3
< <]]
] L]
] L]
> >
Time Time

Spatial Locality Temporal Locality

Y. Cheng UVA DS51 10 Spring 2023 9

Locality of data accesses

« Spatial locality:
 Future access will be to nearby addresses

» Temporal locality:
 Future access will be repeated to the same data

Y. Cheng UVA DS5110 Spring 2023

Locality of data accesses

« Spatial locality:
 Future access will be to nearby addresses

» Temporal locality:
 Future access will be repeated to the same data

* Q: What is the implication of data locality to Data
Science applications”?

Locality optimization in Data Science

« Consider a tensor (matrix) named data with 128*128 elements

« Each row is of size 128 words and prefetching+caching means full row of
accessed data item is brought to CPU cache

Locality optimization in Data Science

« Consider a tensor (matrix) named data with 128*128 elements

» Each row is of size 128 words and Befetch|ng+cach|ng means full row of
accessed data item is brought to CPU cache

* Program 1

for j in range(0,128):
for i in range(O 128):
data[i][]J] = O

128 x 128 = 16,384 CPU cache misses
Not too hardware-efficient (not able to exploit prefetching+caching)

Locality optimization in Data Science

« Consider a tensor (matrix) named data with 128*128 elements

« Each row is of size 128 words and Befetch|ng+cach|ng means full row of
accessed data item is brought to CPU cache

* Program 1

for j in range(0,128):
for i in range(O 128):
data[i][]J] = O

128 x 128 = 16,384 CPU cache misses
_ _ _ Not too hardware-efficient (not able to exploit prefetching+caching)

* Program 2

for i in range(0,128):
for j in range(O 128):
data[i][]J] = O

Only 128 CPU cache misses
Row data[i] is prefetched to cache so subsequent accesses are hits!

Y. Cheng UVA DS5110 Spring 2023 |4

Virtualizing (sharing) memory

0S memory management: Paging

* Paging is a memory management scheme that
allows the physical address space of a process to
be non-contiguous

* Divide iINnto fixed-sized blocks
called frames

* Divide a program’s virtual memory into blocks of
same size called pages

 Flexible mapping: Any page can go to any free
frame

« Scalability: To run a program of size n pages, need
to find n free frames and load program

« Grow memory segments wherever we please!

Y. Cheng UVA DS51 10 Spring 2023 16

A toy example

page 0

page 1

page 2

page 3

Program’s virtual
address space

Y. Cheng

reserved for OS page frame 0 of physical memory
(unused) page frame 1
page 3 of AS page frame 2
An 8-frame
page 0 of AS page frame 3 physical memory
(128B)
(unused) page frame 4
page 2 of AS page frame 5
(unused) page frame 6 Each page is of 16B
page 1 of AS page frame 7
UVA DS5110 Spring 2023 17

File system abstraction

What is a File?

 File: Array of bytes on a disk
« Ranges of bytes can be read/written

* File system (FS) is an on-disk data structure that
consists of many files

* Files need names so programs can choose the
right one

File names

* Three types of names (abstractions)
* inode (low-level names)
 path (human readable)
» file descriptor (runtime state)

Y. Cheng UVA DS5110 Spring 2023

20

Inodes

* Each file has exactly one inode number
* Inodes are unique (at a given time) within a FS

* Numlbers may be recycled after deletes

Inodes

* Each file has exactly one inode number
* Inodes are unique (at a given time) within a FS
 Numbers may be recycled after deletes

e Show inodes via stat
« § stat <file or dir>

stat example

PROMPT>: stat test.dat

File: ‘test.dat’ Size: 5 Blocks: 8 I0 Block: 4096 regular
file

Device: 803h/2051d Inode: 119341128 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1001/ yue) Gid: (1001/ yue)

Context: unconfined u:object r:user home t:s@
Access: 2015-12-17 04:12:47.935716294 -0500
Modify: 2014-12-12 19:25:32.669625220 -0500
Change: 2014-12-12 19:25:32.669625220 -0500
Birth: -

Path (multiple directories)

« A directory is a file
* Associated with an inode

e Contains a list of <user-
readable name, low-level

name> pairs

Path (multiple directories)

<ll fooll ’ “ n
A}

« A directory is a file
* Associated with an inode

e Contains a list of <user-
readable name, low-level

name> pairs

Path (multiple directories)

<ll fooll ’ “ n
A}

« A directory is a file
* Associated with an inode

e Contains a list of <user-
readable name, low-level

name> pairs

* Directory tree: reads for

getting final inode called
traversal [traverse /bar/foo/bar.txt]

File naming

 Directories and files can
nave the same name as
ong as they are in different
ocations of the file-system
tree

* .IX1, .C, etcC.
* Naming convention

* In Linux, no enforcement for
extension name

Special directory entries

prompt> ls -al
total 216

drwxr-xr-x 19 yue staff 646 Nov 23 16:28 .
drwxr-xr-x+ 40 yue staff 1360 Nov 15 01:41 ..
-rw-r--r--@ 1 yue staff 1064 Aug 29 21:48 common.h
-TWXT-XTI-X 1 yue staff 9356 Aug 30 14:03 cpu
-rw-r--r--@ 1 yue staff 258 Aug 29 21:48 cpu.c
-TWXT-XI'-X 1 yue staff 9348 Sep 6 12:12 cpu _bound
-rwW-Ir--I-- 1 yue staff 245 Sep 5 13:10 cpu_bound.c

Y. Cheng

UVA DS5110 Spring 2023

28

Basic file interactions

Basic file interactions

 Basic file system operations
* opening/closing
* reading/writing

* OS-related module
e listdir, mkdir, exists, join

Basic file interactions

 Basic file system operations
* opening/closing
* reading/writing

* OS-related module
e listdir, mkdir, exists, join

File objects

f = open(path)

read data from f
OR
write data to f

f.close()

File objects

/ Built-in open function

¥
f = open(path)

File object File path

read data from f
OR
write data to f

f.close()

Y. Cheng UVA DS5110 Spring 2023

File objects

main.py

/ Built-in open function

¥
f = open(path)

File object File path

read data from f
OR
write data to f

f.close()

Y. Cheng UVA DS5110 Spring 2023

® ®@® demo » Q

TXT PYTHON

data file.txt main.py

We are running the code here

34

File objects

main.py / Built-in open function

¥
f = open(path)

File object File path

read data from f
OR
write data to f

f.close()

@ ® demo

data

TXT

file.txt

» Q

PYTHON

main.py

Suppose we want to open file.txt

Y. Cheng UVA DS5110 Spring 2023

35

File objects

main.py / Built-in open function

¥
f = open(“file.txt”)

File object File path

read data from f
OR
write data to f

f.close()

@ ® demo

data

TXT

file.txt

» Q

PYTHON

main.py

Suppose we want to open file.txt

Y. Cheng UVA DS5110 Spring 2023

36

File ObjeCtS ®®@® demo S
main.py / Built-in open function
¥ o
f - Ope n () . TXT PYTHON
data file.txt main.py
X\fdata/export.csv") \\\
File object \ e e ats .
File path
—
read data from f
OR export.csv snapshots
write data to £
data/export.csv
f.close()
37

Y. Cheng UVA DS5110 Spring 2023

Flle ObJeCtS ® ©® demo
main.py s Built-in open function
¥ —_—
f = open(—J o
“data/snapshots/B") d"“’\\‘f"‘“*‘
| ® ®® data

File object \
File path

read data from £

OR
write data to £

f.close()

—_—

L=

Ccsv ==
export.y snapshots

® © @ snapshots

data/snapshots/B

PYTHON

main.py

> O]

» Q

» Q

Y. Cheng UVA DS51 10 Spring 2023

38

File objects

main.py

f = open(“file.txt”)

read data from f
OR
write data to f

f.close()

Y. Cheng UVA DS5110 Spring 2023 39

File objects

main.py

f = open(“file.txt”)

read data from f &
OR
write data to f

Using file

f.close()

Y. Cheng UVA DS5110 Spring 2023 40

File objects

main.py

f = open(“file.txt”)

read data from f &
OR
write data to f

Using file

f.close() F Cleanup

Y. Cheng UVA DS5110 Spring 2023 41

Imagine a file object as a sandwich ...

File objects £ = opent

main.py f.close()

f = open(“file.txt”)

Reasons for closing:
* Avoid data loss
« Limited number of open files

read data from f &

OR Using file
write data to f
f.close() F Cleanup

Y. Cheng UVA DS5110 Spring 2023 42

Basic file interactions

 Basic file system operations
* opening/closing
* reading/writing

* OS-related module
e listdir, mkdir, exists, join

Reading a file p—

»

—_—
f = open(“file.txt"”) . |
read data from £
OR | promise to always

write data to £

close my files

f.close()

Y. Cheng UVA DS5110 Spring 2023

Reading a file

@ ® demo

data = f.read()

print(data)

AN

f.close()

f = open(“file.txt”)

data

TXT

file.txt

»

PYTHON

main.py

| promise to always
close my files

Y. Cheng

UVA DS5110 Spring 2023

datais: “I promise to always\nclose my files”

read () method

 Fetch entire content
* Return as a string

45

Writing a file p———

f = open(“file.txt”)

read data from f
OR
write data to f

f.close()

Y. Cheng UVA DS5110 Spring 2023

data file.txt main.py

»

| promise to always
close my files

Writing a file

f = open(“file.txt”,
IIWII)

\ “w” mode indicates
to write to this file

read data from £
OR
write data to f

f.close()

® ®©@® demo »
—_—
data file.txt main.py
| promise to always
close my files
47

Y. Cheng UVA DS5110 Spring 2023

Writing a file p———

f = open(“file.txt”,
IIWII)

\ “w” mode indicates
to write to this file

f.write(”hello”)
f.write(” world\n")
f.write(“!!!\n")

f.close()

Y. Cheng UVA DS5110 Spring 2023

»
—
data file.txt main.py
| promise to always
close my files
48

Writing a file

*f = open (

IIWII)

AN

f.close()

“file.txt”,

“w” mode indicates
to write to this file

f.write(”hello”)
f.write(” world\n")
f.write(“!!!\n")

Y. Cheng

@ ® demo »
—_—
data file.txt main.py
| promise to always
close my files
Let’s run it!
49

UVA DS5110 Spring 2023

Writing a file

IIWII)

AN

f.close()

f = open(“file.txt”,

+ f.write(”hello”)
f.write(” world\n”)
f.write(”!!!\n")

“w” mode indicates
to write to this file

Y. Cheng

UVA DS5110 Spring 2023

@ ® demo

data

TXT

file.txt

» Q

PYTHON

main.py

Open with “w” is dangerous.
It immediately wipes out

your file

(Or create a new one if there
isn’t already a file.txt)

50

Writing a file

f = open(“file.txt”,
IIWII)

\ “w” mode indicates
to write to this file

f.write(“hello”)
* f.write(” world\n”)
f.write(“!!1\n")

f.close()

®®@® demo »
h
TXT PYTHON
data file.txt main.py
hello
51

Y. Cheng UVA DS5110 Spring 2023

Writing a file

IIWII)

f.close()

f = open(“file.txt”,

-

f.write(”hello”)
f.write(” world\n")

+ f.write(”

w” mode indicates
to write to this file

111\n")

Y. Cheng

UVA DS5110 Spring 2023

@ ® demo

TXT

data file.txt

PYTHON

main.py

»

hello world

52

Writing a file p———

f = open(“file.txt”,
IIWII)

\ “w” mode indicates
to write to this file

f.write(”hello”)
f.write(” world\n")
f.write(“!!!\n")

*f.close()

Y. Cheng UVA DS5110 Spring 2023

TXT

data file.txt

PYTHON

main.py

»

hello world
11

53

Writing a file oo s) a

f = Open (" file ° tXt " ’ = = TXT PYTHON

data file.txt main.
n W n) Py

\ “w” mode indicates
to write to this file

f.write(“hello”)
f.write(” world@') f'l?}lo worldO
f.write(”!!!\n") o

Be careful with newlines
f.close() (write doesn’t add them like print does)

Y. Cheng UVA DS5110 Spring 2023 54

Basic file interactions

 Basic file system operations
* opening/closing
* reading/writing

* OS-related module
e listdir, mkdir, exists, join

0S module

« Many functions in 0s and o0s.path for working w/
files
 Os.listdir
e 0S.mkdir
e 0S.path.exists
* 0S.path.join

0S module

« Many functions in os and os.path for working w/
files
 os.listdir
e 0S.mkdir P
e 0S.path.exists
* 0S.path.join

® ©@® demo » Q

data file.txt main.py

>>> import os
>>> os.listdir(”.")
[“file.txt”, “main.py”, *“data”]

Y. Cheng UVA DS5110 Spring 2023 57

0S module

« Many functions in os and os.path for working w/
files

e Os.listdir ® demo » Q
e 0s.mkdir -

e 0S.path.exists

* OS.path.join data fle.txt ——

>>> import os
>>> os.mkdir(“test”)

Y. Cheng UVA DS5110 Spring 2023 58

0S module

« Many functions in os and os.path for working w/
files

* Os.listdir SIS BS » Q
* os.mkdir —_—

* 0s.path.exists -

* OS.pa’[h.join e test fle. txt Mk

>>> import os
>>> os.mkdir(“test”)

Y. Cheng UVA DS5110 Spring 2023 59

0S module

« Many functions in os and os.path for working w/
files

* 0s.listdir B OR < 0 dec /e » Q
* 0S.mkdir —

* os.path.exists - a |3

* 0S.path.join date . mainpy

>>> import os
>>> os.path.exists(“file.txt”)
True

Y. Cheng UVA DS5110 Spring 2023 60

0S module

« Many functions in os and os.path for working w/
files

* 0s.listdir B OR < 0 dec /e » Q
* 0S.mkdir —

* os.path.exists - a |3

* 0S.path.join date . mainpy

>>> import os
>>> os.path.exists(“haha.txt”)
False

Y. Cheng UVA DS5110 Spring 2023 6l

0S module

« Many functions in os and os.path for working w/
files

* os.listdir REa = B » Q
* 0s.mkdir —

* 0s.path.exists L. .
° os.path.join data test fle.txt mainpy

>>> import os
>>> os.path.join(“data”, *“export.csv”)
data/export.csv

f

on Linux/MacQOS on Windows: data\export.csv

Y. Cheng UVA DS5110 Spring 2023 62

Tabular data: CSVs/JSONs vs. Databases

CSV SQL Database
o c 1 Pooul " Capitals Population

Richmond 226,604 A2774.2 C— 026,604
Areas
o Characteristics
Characteristics 427742« Collections of tables
« One table ’
each named

Y. Cheng UVA DS5110 Spring 2023 64

CSV SQL Database

[Capital Population]
State Cap|ta| State Populatlon
226,604 42774.2

Richmond
Richmond 226,604

Areas

State | Area
[--] Characteristics

427742« Collections of tables,
each named
« Columns always
named

Characteristics
« One table
 (Columns sometimes named

Y. Cheng UVA DS5110 Spring 2023 65

C3SV SQL Database
. _ Capitals Population
Capital Population)
Capital Population
string string string string toxdt — text integer
string string string string text text text integer
string string string string text text text integer
string string string string text text text integer
Areas No text allowed
"
Characteristics T — Characteristics
. One table e « Collections of tables,
Columns sometimes named text real ((e:acl:h nameld
. Everything is a strin * Lolumns always
y 9 g text real named
text real « Types per column
(enforced)
Y. Cheng UVA DS51 10 Spring 2023 66

Why use a database?

1. More relations

Database
CN R R
text integer real
text integer real
text integer real
text integer real

Same fields and same
types in every column

Y. Cheng

CcsSV

A,B,C

string,string,string
string,string,string
string,string,string
string,string,string

JSON

Everything is a string

UVA DS5110 Spring 2023

[{“A”:“Val”,“B”:1 O’GGC”:Z--I }’
{“A”:“Val”}’
{“A”:“V3”,“B”:2,“C”:True}]

Types, but...
Semi-structured data
Missing values
Types may differ across
columns

67

Why use a database?

1. More relations

2. Sharlng Regular file Concurrent writes are not OK!
Yikes! |a,B,C Yikes!
string,string,string
w““es string,string,string Vwﬁés
string,string,string

Program 1 Database Program 2
Wiy HECEECEE
text integer real
text integer real
text integer real
text integer real

OK to have multiple programs write to same DB

Y. Cheng UVA DS5110 Spring 2023 68

Why use a database?

1. More relations

2. Sharing
: Query: which NBA player
3. Queries played for the most teams?
Python code to find the NBA player Jim Jeickson
who played for the most teams
¢ v
Database
Regular il A e —Tc
text integer real
text integer real
text integer real
text integer real

Y. Cheng UVA DS5110 Spring 2023 69

Why use a database?

1. More relations

2. Sharing
, Question formulated in SQL
3. Queries (structured query language)

Python code to find the NBA player Jim Jackson

A
who played for the most teams
A
v
Database

Regular il A s o

text integer real

text integer real

text integer real

text integer real

Y. Cheng UVA DS5110 Spring 2023 70

Why use a database?

More relations
Sharing
Queries
Performance

=

Why use a database?

1. More relations
2. Sharing

3. Queries

4. Performance
Exercise:

* I’'m going to show a table and ask you two questions

* You get out your stop watch
* Answer both questions, measuring how long each took you

Parker 26 21
Heidy 22 22
Shirly 27 22
Arla 21 22
Bella 22 22
Bill 28 22
Hollis 26 23
Maurita 22 24
Milda 22 25
Pearline 29 25
Teresa 25 25
Ceola 30 26
Milford 25 26
Alisha 30 27
Antonio 28 28
Ryan 25 28
Karma 23 28
Breana 21 30
Sara 26 30

Y. Cheng UVA DS5110 Spring 2023 73

Parker 26 21

Heidy 22 22

Question 1: Shirly 27 29
How many people are 23 or younger? Aria ° =
' Bella 22 22

Bill 28 22

Hollis 26 23

Question 2: Maurita 22 24
Milda 22 25

How many people scored 23 or less? Pearline 29 25
Teresa 25 25

Ceola 30 26

Milford 25 26

Alisha 30 27

Antonio 28 28

Ryan 25 28

Karma 23 28

Breana 21 30

Sara 26 30

Y. Cheng UVA DS5110 Spring 2023 74

Parker 26 21

Heidy 22 22

Question 1: Shirly 27 29
How many people are 23 or younger? Aria ° =
' Bella 22 22

Bill 28 22

Hollis 26 23

Question 2: Maurita 22 24
Milda 22 25

How many people scored 23 or less? Pearline 29 25
Teresa 25 25

Ceola 30 26

Milford 25 26

Alisha 30 27

Which question took longer? Why? Antonio o8 08
Ryan 25 28

Karma 23 28

Breana 21 30

Sara 26 30

Y. Cheng UVA DS5110 Spring 2023 75

Arla Parker
Breana 21 30 Heidy 22 22
Heidy 22 22 Shirly 27 22
Bella 22 22 Arla 21 22
Maurita 22 24 Bella 22 22
DBs can keep multiple copies of the ~ Milda 22 25 2l 25 22
same data Karma 23 28 Hollis 26 23
* Which copy to use is Teresa 25 25 Maurita 22 24
automatical!y determineql based Milford o5 o6 Milda 50 o5
on the question (query) being
asked Ryan 25 28 Pearline 29 25
Parker 26 21 Teresa 25 25
Hollis 26 23 Ceola 30 26
Sara 26 30 Milford 25 26
Shirly 27 22 Alisha 30 27
Bill 28 22 Antonio 28 28
Antonio 28 28 Ryan 25 28
Pearline 29 25 Karma 23 28
Ceola 30 26 Breana 21 30
Alisha 30 27 Sara 26 30
Copy 1 Copy 2

Y. Cheng UVA DS5110 Spring 2023 76

Why use a database?

More relations
Sharing
Queries
Performance

> o~

Why use a database?

More relations
Sharing
Queries
Performance

> o~

Why not use a database?

1. It’s often an overkill and too heavyweight
2. For many situations, writing ad-hoc Python code on
a simple CSV/JSON file is easier to use

Next step...

« Assignment 1 is out today!

* Next week: GFS, MapReduce

