Computer Organization:
Data Representation

DS 5110: Big Data Systems (Spring 2023)
L ecture 2a

Yue Cheng

[UNIVERSITY
T\/IRGINIA

https://creativecommons.org/licenses/by-sa/4.0/

What is a computer?

A programmable electronic device that can store,
retrieve, and process digital data

Computer science aka “Datalogy”

Y. Cheng UVA DS51 10 Spring 2023 2

What is in a computer?

Output devices System unit

~ g

B ()
N

Input devices

What is in a computer?

Output dewces System unit - T GPU T ooy T
-~ e N (vt
/ [code

I static data :
1 heap ;
| -
| .
|
: stack
1 Process
|
|
|

_— |
|
|
|
|
|
|
|

Loading:
\ \ : liogram Takes ori?iislrllgprogram
\ and reads it into the
\\ : © address space of process
Input devices N Disk

Key parts of computer hardware

° CPU i NN I_\{I.eiTc.er
« Hardware to execute e

Instructions to manipulate
data as specified by a
program

Program Loading:
9 Takes on-disk program

and reads it into the
address space of process

Y. Cheng UVA DS51 10 Spring 2023 5

Key parts of computer hardware

° CPU i NN I_\{I.e-Tc.er
- Hardware to execute i

Instructions to manipulate
data as specified by a
program

- Memory (DRAM) §

* Hardware to store data
and programs that allow
fast storage/retrieval (byte
addressable)

Program Loading:
9 Takes on-disk program

and reads it into the
address space of process

Y. Cheng UVA DS5110 Spring 2023 6

Key parts of computer hardware

-CPU T U emary T

* Hardware to execute |

instructions to manipulate e
data as specified by a
program

« Memory (DRAM)

* Hardware to store data
and programs that allow
fast storage/retrieval (byte
addressable)

* Disk (second storage)

 Persistent, slower storage
with higher capacity (block
addressable)

Program Loading:
9 Takes on-disk program

and reads it into the
address space of process

Y. Cheng UVA DS51 10 Spring 2023 7

How different parts interact

CPU

Control
Unit

Arithmetic
& Logic

Unit

Registers

Caches

I

Dynamic Random
Access Memory
(DRAM)

|

Bus

!

Input
Devices

Y. Cheng

!

Output
Devices

!

UVA DS5110 Spring 2023

Secondary Storage
(e.g., Magnetic hard
disk, Flash SSD, etc.)

Key aspects of software

* Instruction
A command understood by hardware

* Finite vocabulary for a CPU: Instruction Set
Architecture (ISA)

 Bridge between hardware and software

Key aspects of software

* Instruction
* A command understood by hardware

* Finite vocabulary for a CPU: Instruction Set
Architecture (ISA)

* Bridge between hardware and software

* Program
o A collection of instructions for hardware to execute

Key aspects of software

* Instruction
A command understood by hardware

* Finite vocabulary for a CPU: Instruction Set
Architecture (ISA)

 Bridge between hardware and software

* Program
o A collection of instructions for hardware to execute

* Programing language (PL)
* A human-readable formal language to write programs
« At a much higher level than ISA

Key aspects of software

* Instruction
« A command understood by hardware

* Finite vocabulary for a CPU: Instruction Set Architecture
(ISA)
 Bridge between hardware and software

* Program
* A collection of instructions for hardware to execute

* Programing language (PL)
« A human-readable formal language to write programs
« At a much higher level than ISA

* Application programming interface (API)

A set of functions (“interfaces”) exposed by a program for
use by human/other programs

Key aspects of software

* Instruction
« A command understood by hardware
 Finite vocabulary for a CPU: Instruction Set Architecture (ISA)
 Bridge between hardware and software

* Program
A collection of instructions for hardware to execute

* Programing language (PL)
* A human-readable formal language to write programs
« At a much higher level than ISA

« Application programming interface (API)

« A set of functions (“interfaces”) exposed by a program for use
by human/other programs

 Data

« Digital representation of information that is stored, processed,
displayed, retrieved, or sent by a program

Main kinds of software

* Firmware

« Read-only programs “baked into” a device to offer
basic hardware control functionalities

Main kinds of software

* Firmware

« Read-only programs “baked into” a device to offer
basic hardware control functionalities

* Operating system (OS)
« Sophisticated (kernel-space) software programs that
collectively work as an intermediary/manager to

enable application programs to use hardware
efficiently

Main kinds of software

* Firmware

« Read-only programs “baked into” a device to offer
basic hardware control functionalities

* Operating system (OS)

« Sophisticated (kernel-space) software programs that
collectively work as an intermediary/manager to
enable application programs to use hardware
efficiently

* Application software programs

A (user-space) program or a collection of (user-space)
programs to perform a certain task for human use

« Examples: Office, Chrome, Zoom

What is data?

Digital representation of data

* Bits: All digital data are sequences of Os and 1s
(binary)

« Amenable to high-low/on-off electromagnetism

Digital representation of data

* Bits: All digital data are sequences of Os and 1s
(binary)

« Amenable to high-low/on-off electromagnetism

« Data types: First layer of abstraction to interpret
a bit sequence with human-understandable
category of information

« Example data types: Boolean, byte, integer, floating
point number (float), character, string

Digital representation of data

* Bits: All digital data are sequences of Os and 1s
(binary)

« Amenable to high-low/on-off electromagnetism

« Data types: First layer of abstraction to interpret
a bit sequence with human-understandable
category of information

« Example data types: Boolean, byte, integer, floating
point number (float), character, string

« Data structures: A second layer of abstraction
to organize multiple instances of same or varied
data types as a more complex object with
specific properties

« Examples: Array, dictionary (hash table), tree, graph

Data types in Python 3

[None
(class NoneType) Set types |

m Sets Frozen sets

m (class set) (class frozenset)
Intearal Real Complex
/K‘ (class float) (class complex)

Integer Booleans

(class int) (class bool) ——
Dictionaries
Sequences (class dict

Immutable Mutable Callable

m /\ < Functions, Methods, Classes >
Strings Tuples Bytes Lists Byte Arrays

(class str) (class tuple) (class bytes) (class list) (class bytearray) m

Y. Cheng UVA DS5110 Spring 2023 21

Data types

e Byte: an 8-bit unit

Data types

e Byte: an 8-bit unit

 Boolean: Yes/No, True/False

 Information encoded in a Boolean type is just 1 bit,
but actual size of Boolean typed variable is always 1
byte (7 bits are wasted!)

Data types

e Byte: an 8-bit unit

 Boolean: Yes/No, True/False

 Information encoded in a Boolean type is just 1 bit,
but actual size of Boolean typed variable is always 1
byte (7 bits are wasted!)

* Integer:
« Examples: count of something — # friends
* Typically 4B but many variants (short, unsigned, etc.)
e Java int: -231 to (2°1-1)
« Cunsigned int: 0 to (2%2-1)
« Python3 int: effectively no max limit

Binary examples

Q: How many unique data items can be
represented by 4 bytes?

Binary examples

Q: How many unique data items can be
represented by 4 bytes?
« Given k bits, we can represent 2k unique data items
« 4 pbytes = 32 bits = 232 items

« Common approximation: 210 = 1024 ~ 108 (i.e.,
1000); recall kibibyte (KiB) vs. kilobyte (KB) and so on

Binary examples

Q: How many unique data items can be
represented by 4 bytes?

« Given k bits, we can represent 2k unique data items

« 4 pbytes = 32 bits = 232 items

« Common approximation: 210 = 1024 ~ 108 (i.e.,

1000); recall kibibyte (KiB) vs. kilobyte (KB) and so on

Q: How many bits are needed to encode 97 data
items”?

Binary examples

Q: How many unique data items can be
represented by 4 bytes?
« Given k bits, we can represent 2k unique data items
« 4 pbytes = 32 bits = 232 items

« Common approximation: 210 = 1024 ~ 108 (i.e.,
1000); recall kibibyte (KiB) vs. kilobyte (KB) and so on

Q: How many bits are needed to encode 97 data
items?
« For k unique items, invert the exponent: log,(K)

* #bits should be integer, so we do [log,(k)]
 [l0g,(97)]: 97 = 128 = 27, s0, 7 bits

Binary examples

Q: How to convert a decimal to a binary?

Binary examples

Q: How to convert a decimal to a binary?
1. Given decimal n, if power of 2 (say, 2%), put 1 at bit
position k; if k=0, stop; else pad with trailing O till
position O

Binary examples

Q: How to convert a decimal to a binary?

1. Given decimal n, if power of 2 (say, 2%), put 1 at bit
position k; if k=0, stop; else pad with trailing O till
position O

2. It nis not power of 2, identify the power of 2 just
below n (say, 2¥); #bits is then k; put 1 at position k

Binary examples

Q: How to convert a decimal to a binary?

1. Given decimal n, if power of 2 (say, 2%), put 1 at bit
position k; if k=0, stop; else pad with trailing O till
position O

2. It nis not power of 2, identify the power of 2 just
below n (say, 2¥); #bits is then k; put 1 at position k

3. Reset n as n-2%; repeat step 1-2

Binary examples

Q: How to convert a decimal to a binary?

1. Given decimal n, if power of 2 (say, 2%), put 1 at bit
position k; if k=0, stop; else pad with trailing O till
position O

2. It nis not power of 2, identify the power of 2 just
below n (say, 2¥); #bits is then k; put 1 at position k
Reset n as n-2k; repeat step 1-2

Fill remaining positions in between with Os

B~ W

Binary examples

Q: How to convert a decimal to a binary?

1. Given decimal n, if power of 2 (say, 2%), put 1 at bit
position k; if k=0, stop; else pad with trailing O till
position O

2. It nis not power of 2, identify the power of 2 just

below n (say, 2¥); #bits is then k; put 1 at position k
Reset n as n-2k; repeat step 1-2
Fill remaining positions in between with Os

7 6 5 4 3 2 1 0 Position/Exponent of 2
Decimal 128 64 32 16 8 4 2 1 Powerof2
810
2610
16310

Y. Cheng UVA DS5110 Spring 2023 34

B~ W

Hexadecimal examples

* Hexadecimal representation is a common stand-
In for binary representation; more succinct and
readable

» Base 16 instead of base 2 cuts display length by 4x
* Digitsare 0, 1, ..., 9, A(1040), B, ..., F (154p)
* From binary: combine 4 bits at a time from lowest

Hexadecimal examples

* Hexadecimal representation is a common stand-
In for binary representation; more succinct and
readable

» Base 16 instead of base 2 cuts display length by 4x
* Digitsare 0, 1, ..., 9, A(1040), B, ..., F (154p)
* From binary: combine 4 bits at a time from lowest

Decimal Binary Hexadecimal
910 1012
4710 10 11112

16310 1010 00112
1610 1 00002

Hexadecimal examples

* Hexadecimal representation is a common stand-
In for binary representation; more succinct and
readable

» Base 16 instead of base 2 cuts display length by 4x
* Digitsare 0, 1, ..., 9, A(1040), B, ..., F (154p)
* From binary: combine 4 bits at a time from lowest

Decimal Binary Hexadecimal
510 1012 S16
4710 1011112 2F 15
16310 1010 00112 A3

1610 1 00002 1046

Y. Cheng UVA DS5110 Spring 2023 37

Hexadecimal examples

* Hexadecimal representation is a common stand-
In for binary representation; more succinct and
readable

» Base 16 instead of base 2 cuts display length by 4x
* Digitsare 0, 1, ..., 9, A(1040), B, ..., F (154p)
* From binary: combine 4 bits at a time from lowest

Decimal Binary Hexadecimal
510 1012 S16 Alternative
4710 1011112 2F 6 notations
16310 1010 00112 A344 OxA3 or A3H

1610 1 00002 1046

Y. Cheng UVA DS5110 Spring 2023 38

Float

* Float
« Examples: salary, model weights

» |EEE-754 single-precision format is 4B long; double-
precision format is 8B long

« Java and C float is single; Python float is double

Float

 Float
« Standard |IEEE format for single (aka binary32)

Float

 Float
« Standard |IEEE format for single (aka binary32)

sign exponent (8 bits) fraction (23 bits)
|

0|0|1|1(2(2(2(0f(0J0|1j0|0|0|0|0O|0Of(O[O[O|O|0O|0O|O|O(O(O[O[O|0O|O|O

Qe

31 30 2322 (bit index)

Y. Cheng UVA DS5110 Spring 2023 41

Float

 Float
« Standard |IEEE format for single (aka binary32)

sign exponent (8 bits) fraction (23 bits)
|

0|0|1|1(2(2(2(0f(0J0|1j0|0|0|0|0O|0Of(O[O[O|O|0O|0O|O|O(O(O[O[O|0O|O|O

Qe

31 30 2322 (bit index)

23
(_1)sign w gexponent—127 (1 4 Zb23—z’2_i)
1=1

Y. Cheng UVA DS5110 Spring 2023 42

Float

 Float
« Standard |IEEE format for single (aka binary32)

sign exponent (8 bits) fraction (23 bits)
|

0|0|1|1(2(2(2(0f(0J0|1j0|0|0|0|0O|0Of(O[O[O|O|0O|0O|O|O(O(O[O[O|0O|O|O

31 30 2322 (bit index) 0

23
(_1)sign w gexponent—127 (1 4 Zb23—z’2_i)
1=1

(—1)0 x 21247127 5 (1 +1.272)=(1/8) x (1 + (1/4)) = 0.15625

Y. Cheng UVA DS5110 Spring 2023 43

Float

* Due to representation imprecision issues,
floating point arithmetic (addition, multiplication)
IS not associative

ds5110-spring23 $ python3
Python 3.9.6 (default, Oct 18 2022, 12:41:40)

[Clang 14.0.0 (clang-1400.0.29.202)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 0.1 + 0.3
0.4
(6.1 + ©.3) + 0.6

(0.3 + 90.6)
0.9999999999999999

>>2 I

Y. Cheng UVA DS5110 Spring 2023

44

Float

* Due to representation imprecision issues,
floating point arithmetic (addition, multiplication)
IS not associative

ds5110-spring23 $ python3
Python 3.9.6 (default, Oct 18 2022, 12:41:40)
[Clang 14.9.0 (clang-1400.0.29.202)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 0.1 + 0.3
0.4

(.1 + 0.3) + 0.6

(0.3 + 90.6)
0.9999999999999999

>>2 I

* In binary32, special encodings recognized:
* Exponent OxFF and fraction O is +/- “infinity”

» Exponent OxFF and fraction <> O is “NaN”
« Max is 2127 x (2-229), i.e., ~3.4 x 1038

Y. Cheng UVA DS5110 Spring 2023 45

More on float standards

» Double-precision (floate4, 8B) and half-precision
(float16, 2B)

 Different #bits for exponent, fraction

e float16 is now common for deep learning
parameters

Char and string

» Representing character (char) and string

 |etters, numerals, punctuations, etc.
« A string is typically just a variable-sized array of chars

Char and string

* Representing character (char) and string
 |etters, numerals, punctuations, etc.
« A string is typically just a variable-sized array of chars

 C char is 1B; Java char is 2B; Python does not have a
char type (use str or bytes)

Char and string

» Representing character (char) and string

 |etters, numerals, punctuations, etc.
« A string is typically just a variable-sized array of chars

 C char is 1B; Java char is 2B; Python does not have a
char type (use str or bytes)

« American Standard Code for Information Interchange
(ASCII) for encoding characters
* Initially 7-bit, later extended to 8-Dbit
« Examples: ‘D’ is 68, ‘d’ is 100, ‘I’ is 33, ‘7’ is 63

Char and string

» Representing character (char) and string

 |etters, numerals, punctuations, etc.
« A string is typically just a variable-sized array of chars

 C char is 1B; Java char is 2B; Python does not have a
char type (use str or bytes)

« American Standard Code for Information Interchange
(ASCII) for encoding characters
* Initially 7-bit, later extended to 8-Dbit
« Examples: ‘D’ is 68, ‘d’ is 100, ‘I’ is 33, ‘7’ is 63
« Unicode UTF-8 subsumes ASCI|

* 4B for ~1.1 million “code points” including many other language
scripts, math symbols, emajis, etc.

« & . https://unicode.org/emoiji/charts/full-emoiji-list.ntml

https://unicode.org/emoji/charts/full-emoji-list.html

Data structures

» Data structures: A second layer of abstraction to
organize multiple instances of same or varied
data types as a more complex object with
specific properties

* ML feature vectors: array of floats

* Neural network weights: set of multi-dimensional
arrays (matrices or tensors) of floats

* Trees: binary trees, N-ary trees

« Graphs: sets of vertices (integers) and sets of edges
(pair of integers) that connect vertices

 And a lot more...

