Introduction

DS 5110: Big Data Systems (Spring 2023)
L ecture

Yue Cheng

A
“= [UNIVERSITY
Blliis y IRGINIA

Some material taken/derived from:
* Wisconsin CS 744 by Shivaram Venkataraman.
@ 2023 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Who am |?

* On the faculty of Data Science & Computer Science
« Web: https://tddg.qgithub.io
e Email: mrz7dp@virginia.edu

3. With UVA!

2. Faculty at George Mason —

1. PhD from Virginia Tech

* My current research: Designing scalable, high-
performance, and easy-to-use computer systems
that manage and process huge volume of data

Y. Cheng UVA DS51 10 Spring 2023 2

https://tddg.github.io/
mailto:mrz7dp@virginia.edu

Course staff and getting help

e Instructor: Yue Cheng
 Office hours: Thursday, 11am-12pm on Zoom

* GTA: Jingyi Gao
« Email: etc6bd@virginia.edu
 Office hours: Friday, 6pm-10pm on Zoom

mailto:etc6bd@virginia.edu

Course staff and getting help

e Instructor: Yue Cheng
« Office hours: Thursday: 11am-12pm on Zoom

« GTA: Jingyi Gao
e Email: etc6bd@virginia.edu
« Office hours: Friday, 6pm-10pm on Zoom

 Discussion, gquestions: Ed
e https://edstem.org/us/dashboard

« Alternative place to ask questions about assignments,
materials, and projects

* NO anonymous posts or questions
« Can use private posts to instructor/GTA

Y. Cheng UVA DS5110 Spring 2023

mailto:etc6bd@virginia.edu
https://edstem.org/us/dashboard

Today’s agenda

 \What is this course about”?

* Why are we studying Big Data Systems?

« What will you do in this course”

A brief history about Big Data

Google Trends

machine learning

—Dbig data

120

100

80

60

40

20

60-2¢0¢
¢0-¢c0¢
,0-1c0¢
¢l-0c0¢
G0-0c0c
0lL-610¢
€0-610¢
80-810¢
10-8102
90-210¢
LL-9102
¥0-910¢
60-G10¢
¢0-G910c
,0-¥10¢
¢l-€10¢
G0-€10¢
0lL-¢l0c¢
€0-¢l0c¢
80-110¢
10-+102C
90-010¢
L1-6002
¥0-600¢
60-800¢
¢0-800¢
£0-1/00¢
¢l-900¢
G0-900¢
01-G00¢
€0-4900¢
80-700¢
10-¥002

UVA DS5110 Spring 2023

Y. Cheng

SeP = (=

Search Stanford

Google circa 1997 ————

Search The Web

10results ~ clusteringon ~ | Search

mm’,“l.a: .
st oo |\ N}

Y. Cheng UVA DS51 10 Spring 2023 7

Everything is about data

“... Storage space must be used efficiently to store
iIndices and, optionally, the documents themselves.
The indexing system must process hundreds of
gigabytes of data efficiently...”

“The system... downloading the last 11 million pages
IN just 63 hours... The sorter can be run completely in
parallel; using four machines, the whole process of
sorting takes about 24 hours...”

The anatomy of a large-scale hypertextual Web search engine !

Sergey Brin 2, Lawrence Page *

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract

GOOgle Clrca 2000 Commodity CPUs

Lots of disks

Low bandwidth network

Cheap'

,“\
Yo
~ L
-~
-
™ -
-
e
-
-
-

UVA DS5110 Spring 2023

Y. Cheng

. - W

FGeogl\e Datacenter in

-

Hamina

—~

>

{2 i

e T ..1

%
v
2
2
2
==

ol g

Data explosion

» Facebook’s (now Meta) daily logs: 60 TB

« Google web index: 10+ PB

Annual Size of the Global Datasphere 175 ZB

180
160
w 140
8
2 120
@ 100
N
80
60
40

20

2010 20M 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Y. Cheng UVA DS5110 Spring 2023 14

Exciting time in big data systems

Moore’s law ending = many challenges

10!‘
HUMAN
10" BRAIN
ELECTROMECHANICAL SOLID- VACUUM TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
on RELAY
MOUSE
CORE i7 QUAD @) BRAIN
o 10"
g pENTIUM 4, @ CORE 2DUO
> PENTIUM Il ' B
100 |- PENTIUM II .
w IANTUM,
a COMPAQ QUDNA
2 DESKPRO 386 COMPUTING?
Q10° = 2o
S ALTAnRasoo ‘ PENTIUM
“ IBM 1130 :
w104 =~
IBM AT-80286
- DEC PDP-1
5 IBM PC
= 100 ™
< UNIVAC | Ec APPLE Il
3 PDP-10
_<' 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L L
o COLOSSUS
IBM IBM 704
HOLLERITH
TABULATOR
| eugs pels
10+ & NATIONAL CALCULATOR
ELLIS 3000 ol © BCA Research 2013
ANALYTICAL ENGINE
o g o w (=] w o el w o w o w o w o w o w o w o w o w
§ 85 s 88883 ¢g g g e g eEE et

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY™, P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND
2012 REPRESENT BCA ESTIMATES.

Increased complexity - Computation

Software

CPU

Y. Cheng UVA DS5110 Spring 2023

Increased complexity - Computation

Software

!

Software

CPU CPU

Y. Cheng UVA DS5110 Spring 2023

Increased complexity - Computation

Software

i
i

Software

CPU

Y. Cheng UVA DS51 10 Spring 2023

Increased complexity - Memory

2015

L1/L2 cache ~1ns

L3 cache ~10ns

Main memory ~100 ns / ~80 GB/s / ~100GB

NAND SSD ~100 usec/~10GB/s/~1TB

Fast HDD ~10 msec /~100 MB/s /~10 TB

Y. Cheng UVA DS5110 Spring 2023

Increased complexity - Memory

2015 2020

L1/L2 cache

L3 cache

Main memory

NAND SSD

Fast HDD

Y. Cheng

~1lns L1/L2 cache

~10 ns L3 cache

~100 ns / ~80 GB/s / ~100GB
Main memory

NVM
~100 usec /~10GB/s /~1TB

NAND SSD
~10 msec /~100 MB/s /~10 TB Fast HDD

UVA DS5110 Spring 2023

~1ns

~10 ns
~10ns/~1TB/s /~10GB
~100 ns / ~80 GB/s / ~100GB

~1 usec/~10GB/s/~1TB

~100 usec /~10GB/s/~10TB

~10 msec / ~100 MB/s / ~100 TB

20

Increased complexity - more and

more choices

Basic tier: AO, A1, A2, A3, A4
Optimized Compute : D1, D2,
D3, D4, D11, D12, D13
D1v2, D2v2, D3v2, D11v2,...
Latest CPUs: G1, G2, G3, ...
Network Optimized: A8, A9

Compute Intensive: A10, A11,...

Microsoft Azure

Y. Cheng

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge,
m4.4xlarge, m3.medium,
c4.large, c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge
d2.2xlarge, d2.4xlarge,...

Amazon EC2

UVA DS5110 Spring 2023

n1-standard-1, ns1-standard-2,
ns1-standard-4, ns1-standard-8,
ns1-standard-16, ns1highmem-2,
ns1-highmem-4, ns1-highmem-8,
n1-highcpu-2, n1-highcpu-4, n1-
highcpu-8, n1-highcpu-16, n1-
highcpu-32, f1-micro, g1-small...

Google Cloud

21

\MELXtended AWS outage disrupts

services across the globe

By Diana Goovaerts - Dec 7, 2021 05:48pm

COMPANIES > AMAZON

Breaking: AWS Experienced an
Outage in Its US-East 2

Cows responsible for short outages to Google fiber

Availability Zone nefwork

Abner Li - May. 21st 2020 2:20 pm PT W

Yet another outage at AWS, this time at its US-East 2 r
availability region, leads

effects of cloud outages Big Tech

Alibaba cloud services unit’s review finds system breakdown
Lisa D Sparks | Dec 05, 2022 (. .
- week ago ‘longest major-scale failure’ in Hong Kong and
Macau

» The Alibaba subsidiary’s incident review found that the system failure was caused by ‘a malfunctior
the data centre’s chillers’

+ The incident resulted in a lengthy service outage that stretched for more than 24 hours at some
customer sites

= = Tracy Qu in Shanghal | + mynEWS
Y. Cheng ‘- 4 Lempicws

The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

* Jeff Dean, LADIS’09

Y. Cheng UVA DS5110 Spring 2023 23

Applications
Machine § Emerging
= |60 S S

Scalable computing engines

Scalable storage systems

Datacenter infrastructure

Y. Cheng UVA DS51 10 Spring 2023

25

Background survey: Familiarity w/ tools

Familiarity with tools

I Haven'ttried it so far [l Some familiarity Very familiar [l Expert
40
20
0
Python Java C/C++ Multi-thread Apache Hadoop Apache Spark GPU/CUDA
programming programming

Y. Cheng UVA DS5110 Spring 2023 26

Prior courses

Which prior courses did you take?
52 responses

Algorithms and Data Structures 36 (69.2%)

Operating Systems 3 (5.8%)
Distributed Systems
Machine Learning

48 (92.3%)

Optimization Algorithms 6 (11.5%)

0 10 20 30 40 50

Y. Cheng UVA DS5110 Spring 2023 27

Paper reading

How much experience do you have in critically reading and evaluating systems research papers?
52 responses

@ | am totally new to this!

@ | have evaluated a few papers before
but | am still learning how to do this.

@ | have some experience in critically
reading papers but | can learn more

@ | have significant experience!

Y. Cheng UVA DS5110 Spring 2023 28

What do you hope to learn from this
course?

“Through this course, | hope to gain a deeper understanding of how
data systems can be designed and constructed in such a way as to
achieve superb scalability and parallelization”

“Through hands-on programming experiences, | hope to become
adept at engagmg with existing big data and cloud computing
resources.

“Skills associated with cloud computing and a greater knowledge of
the behind-the-scenes systems that support big data.”

“Furédamentals of common cloud storage hosting services, particularly
AV\/)

“Building scalable machine learning algorithms that can serve
millions of users”

Course syllabus

Big picture course goals

e | earn about some of the most influential works
INn big data systems

« Explain the design and architecture of big data
systems

« Read and evaluate research papers

* Develop and deploy applications on open-
source big data frameworks

* Design and report some research ideas

Schedule (tentative)

« Readings, assignments, due dates

| ess concrete further out; don’t get too far ahead

DS5110, Spring'23

Course Syllabus
Course Schedule
Lectures

Staff
Assignments

Reading List

Course Schedule

https://tddqg.qgithub.io/ds5110-spring23/

Being less concrete further out, the course scheduling is tentative and subject to changes.

Mon, Jan 16

MLK day (no class) - Background survey (fill

Week 1 it before Wed's class)
Mon, Jan 23
Week 2 Basics of computer organization
Mon, Jan 30
Basics of operating systems Il
Week 3
Mon, Feb 06
Week 4

Google MapReduce

Wed, Jan 18
Introduction to Big Data
Systems

Assignment 0 out

Wed, Jan 25
Basics of operating systems
|

Wed, Feb 01

Assignment 0
' Due at 11:00 am

Google File System (GFS)

Assignment 1 out

Wed, Feb 08
Spark RDD |

https://tddg.github.io/ds5110-spring23/

Course format: Lectures

« Some lecture + some discussion
« Slides available on course website (night before)

 First 3 weeks: Basics of computer organization and
operating systems
* Mostly from textbook

« Week 3-9: GFS/MapReduce, Spark, Python analytics
* Week 7: Midterm exam

 After midterm: Cloud data systems, ML systems, and
data warehousing / datacenters

« Some lectures have required readings
* Review forms to help drive lecture discussion

Course format: Review forms

» Goal: read and be prepared for discussion

* Review form will be posted on Ed few days
before lecture

 You need to fill out review form by 11am same day of
lecture

* Review form will cover required reading with a strong
focus on stimulating a fruitful discussion

* No late submission will be accepted (with two
wildcards)

» Contact instructor for exceptions in severe
circumstances only

How to read a paper: GFS

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google*

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points.

The file system has successfully met our storage needs.
It is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application

How to read a paper: Summary

« Start your reading early
» Repeat, give time between iterations

« 18t pass: Read abstract, introduction, section
headings, conclusion

« 2" pass: Read all sections, make notes
e terate... (if your schedule fits)

« Some key points (examples):
« What is the problem being solved?
« What are the main contributions? What is the design?
« What workloads, setups were considered in evaluation?
* How do they compare to prior work?
* What parts of the claims are adequately backed up?

Y. Cheng UVA DS5110 Spring 2023

36

Course format: Discussion

 Your participation is very important
* As an indicator of how well you’ve prepared

* Paper review form examples
* One or two sentence summary of the paper
 Description of the problem or assumptions made
« Comparison to other papers that you read in class?
» Experimental setup and what the results mean”?
* One flaw or thing that can be improved?

Research results matter: MapReduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

Jelf@google.com, sanjay @ googhe.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram's execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to cas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers

Y. Cheng

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record™ in our input in order 1o
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-

UVA DS5110 Spring 2023

éFlink

S distributed stream
computing platform

5> STORM

38

Research results matter: NoSQL

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT
Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
es and i trust. The Amazon.com
plalform, which pl’OVIdﬁ services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon's
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories and Subject Descriptors

D.4.2 [Operating Sy]: Storage M: s DAS
[Operating Systems]: Relmbxhty D42 [0penung Systems):
Performance;

General Terms
Algorithms, Management, Measurement, Performance, Design,
Reliability.

1. INTRODUCTION

Amazon runs a world-wide e-commerce platform that serves tens
of millions customers at peak times using tens of thousands of
servers located in many data centers around the world. There are

Y. Cheng

One of the lessons our organization has learned from operating
Amazon's platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly d lized, loosely pled, service
oriented archi isting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For pl s should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
dﬁ(myed by tommados. Therefore, the service responsible for
hopping carts requires that it can always write to and
mdfmmusdauston: and that its data needs to be available
across multiple data centers.
Dcaling with failures in an infrastructure comprised of millions of
is our dard mode of operation; there are always a
small but significant number of scrwr and network components
that are failing at any given time. As such Amazon's software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

To meet the reliability and scaling needs, A has developed
a number of storage technologies, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon S3), is probably the best known. This paper presents the
design and implementation of Dynamo, another highly available
and scalable distributed data store built for Amazon’s platform.
Dynamo is used to manage the state of services that have very
high rch-bulny reqummems and need tight control over the

deoffs between & y, cost-effectiveness and
performance. Amazon's phlform has a very diverse set of
applications with different storage requirements. A select set of
lpphuuons requm a storage tcchnology lhnl is flexible cnough

UVA DS5110 Spring 2023

amazon
DynamoDB

cassandra

39

Textbooks?

» Papers and documentations (required or optional)
serve as reference for many topics that aren’t
directly covered by a text

e Slides/lecture notes

 Two optional textbooks (free PDFs available online)

« “Operating Systems: Three Easy Pieces (OETEP)” by
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

- “Distributed Systems 3" edition” by van Steen and
Tenenbaum will supply optional alternate explanations

Assignments

* Two programming assignments in Python on
AWS

« Assignment O0: Using AWS Academy and AWS EC?2
« Assignment 1: A tour of Apache HDFS and Spark
« Assignment 2: Dask.distributed analytics

 All assignments are individual

« Short coding-based assignments
* Preparation for the course project

Course project

» Goal: Explore new research ideas or
Implementation in the area of big data systems
* Define the problem
» Execute the research
* Write up and present your research

* TWO project styles (tentative)

 Data analysis: Work towards analyzing large, real-
world dataset of interest using big data tools

« System implementation: \Work towards open-source
contribution to big data tools

Course project steps

o | will distribute a list of project ideas (Week 4)
* You can either choose one or come up with your own
* We will meet together to discuss

* (Not mandatory) Pick your teammates: a team of up
to 3 students

* Milestones (tentative)

Project bid + team composition due Friday, Feb 24
Project checkpoint 1 due Friday, Mar 24

Project checkpoint 2 due Friday, Apr 14

Final project presentation on Wed, Apr 26

Final project everything due Wed, May 3

Grading

» Assignments (20% total)
* Assignment O (0%)
* Assignment 1 (10%)
« Assignment 2 (10%)

» Reading review forms (5%)
* Quizzes (5%) and in-class participation (5%)
* Midterm exam (15%): open-book, open-note

* Project (560%)

Assignment 0

« Assignment 0 (0%): Using AWS Academy and
AWS EC?2

FAQ: Why take this course?

* Interesting — hard problems, powerful solutions

» Used by real systems — driven by the rise of
large businesses (e.g., Google, Amazon)

* Active research area — |ots of progress + big
unsolved problems

 Hands-on - you'll build something by the end of
the semester

FAQ: What this course is not about

 Not a course on databases, relational models,
or SQL

* Not a course on internals of RDBMSs
* Not a training module for how to use Spark

* Not a course on ML theories or data mining
algorithms

