
Serverless Computing
DS 5110/CS 5501: Big Data Systems

Spring 2024
Lecture 8b

Yue Cheng

Some material taken/derived from:
• Berkeley CS 262a (Spring ‘18) by Ali Ghodsi and Ion Stoica;
• Tyler Harter’s HotCloud ’18 OpenLambda talk;
@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

• Understand the motivation behind serverless
computing
• Know the different generations of cloud

computing
• Virtual machines
• Containers
• Serverless functions

• Know FaaS’ current limitations

Y. Cheng UVA DS5110/CS5501 Spring '24 2

Motivation

Y. Cheng UVA DS5110/CS5501 Spring '24 3

When to use the cloud?

• Data
• Large amounts of data – can’t store locally
• Shared data across users
• Long-term storage

• Compute
• Need lots of CPUs for data processing
• Varying computing demands (resources)
• No admin (for managing your local hardware)

Y. Cheng UVA DS5110/CS5501 Spring '24 4

When to use the cloud?

• Data
• Large amounts of data – can’t store locally
• Shared data across users
• Long-term storage

• Compute
• Need lots of CPUs for data processing
• Varying computing demands (resources)
• No admin (for managing your local hardware)

Y. Cheng UVA DS5110/CS5501 Spring '24 5

Why is there no “cloud button”?

Y. Cheng UVA DS5110/CS5501 Spring '24 6https://instances.vantage.sh/

https://instances.vantage.sh/

#thecloudistoodamnhard
1. What type of instances?
2. How many to spin up?
3. What base image?
4. On-demand or spot?
5. What storage service to use?
6. And then wait to start…
7. Not the end of the horror story:

1. When to scale out?
2. When to scale in?
3. When to switch to different

instance types?
8. Go back to Step 1…
Y. Cheng UVA DS5110/CS5501 Spring '24 7

Decision paralysis??
Go for Serverless Computing!

Y. Cheng UVA DS5110/CS5501 Spring '24 8

Microsoft Azure Functions

Google Cloud Functions

What is serverless computing?

Y. Cheng UVA DS5110/CS5501 Spring '24 9

What is serverless computing?

Serverless computing (Function-as-a-Service, or
FaaS) is a programming abstraction that enables
users to upload programs, run them at (virtually)
any scale, and pay only for the resources used

Y. Cheng UVA DS5110/CS5501 Spring '24 10

A car analogy

Y. Cheng UVA DS5110/CS5501 Spring '24 11

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

Concept of serverless is not new
• Google App Engine

• Fully managed platform as a service (PaaS)
for developing and hosting web applications

• Google BigQuery
• Fully managed data warehouse
• “Arbitrarily” large data and queries
• Pay per byte being processed
• No concept of server or cluster

• AWS S3
• Fully managed object storage service
• Pay per byte being stored and written
• No server maintenance or resource scaling

Y. Cheng UVA DS5110/CS5501 Spring '24 12

Cloud evoluation history:
A virtualization story

Y. Cheng UVA DS5110/CS5501 Spring '24 13

Classic cloud app stack

Y. Cheng UVA DS5110/CS5501 Spring '24 14

Application

Server

Operating system

Hardware

Requests

Virtual memory
CPU scheduling
…

1st generation: virtual machine (VM)

Y. Cheng UVA DS5110/CS5501 Spring '24 15

Application

Server

Operating system

Hardware
Virtual hardware

Requests

1st generation: virtual machine (VM)

Y. Cheng UVA DS5110/CS5501 Spring '24 16

Application

Server

OS

Hardware
Virtual hardware

Application

Server

OS

Requests

2nd generation: containers

Y. Cheng UVA DS5110/CS5501 Spring '24 17

Application

Server

Hardware

Virtual OS

Application

Server

Operating system

Requests

3rd generation: serverless functions

Y. Cheng UVA DS5110/CS5501 Spring '24 18

Application

Hardware

Virtual servers
Application

Operating system

Server

Requests

3rd generation: serverless functions

Y. Cheng UVA DS5110/CS5501 Spring '24 19

FnA

Hardware

Virtual servers

Operating system

Server

FnZ Fn0 Fn9… …
Requests

Tradeoff discussion

Y. Cheng UVA DS5110/CS5501 Spring '24 20

Serverless functions
(AWS Lambdas) Containers VMs

Isolation?

Flexibility?

Overhead?

++++ ++

++++++

+ +++++

Could be strong,
depending on the
underlying
virtualization
technique used

Least flexible:
not long-running, resource-
constrained, not being able to
use GPUs/TPUs

Least overhead:
fast startup, agile
auto-scaling.

Sharing the
same OS

Very flexible but you can
only containerize a set
of processes, that’s not
flexible enough
compared to IaaS.

Above the surface: Core capability
1. (Provider) Manage a set of user-defined functions
2. Take an event sent over HTTP or received from an

event source
3. Determine function(s) to which to dispatch the

event
4. Find an existing instance of function or create a

new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110/CS5501 Spring '24 21

Above the surface: Core capability
1. (Provider) Manage a set of user-defined functions
2. Take an event sent over HTTP or received from an

event source
3. Determine function(s) to which to dispatch the

event
4. Find an existing instance of function or create a

new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110/CS5501 Spring '24 22

Above the surface: Core capability
1. (Provider) Manage a set of user-defined functions
2. Take an event sent over HTTP or received from an

event source
3. Determine function(s) to which to dispatch the

event
4. Find an existing instance of function or create a

new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110/CS5501 Spring '24 23

Above the surface: Core capability
1. (Provider) Manage a set of user-defined functions
2. Take an event sent over HTTP or received from an

event source
3. Determine function(s) to which to dispatch the

event
4. Find an existing instance of function or create a

new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110/CS5501 Spring '24 24

Above the surface: Core capability
1. (Provider) Manage a set of user-defined functions
2. Take an event sent over HTTP or received from an

event source
3. Determine function(s) to which to dispatch the

event
4. Find an existing instance of function or create a

new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110/CS5501 Spring '24 25

Above the surface: Core capability
1. (Provider) Manage a set of user-defined functions
2. Take an event sent over HTTP or received from an

event source
3. Determine function(s) to which to dispatch the

event
4. Find an existing instance of function or create a

new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when it is no longer needed

Y. Cheng UVA DS5110/CS5501 Spring '24 26

Above the surface: Core capability
1. (Provider) Manage a set of user-defined functions
2. Take an event sent over HTTP or received from an

event source
3. Determine function(s) to which to dispatch the

event
4. Find an existing instance of function or create a

new one
5. Send the event to the function instance
6. Wait for a response
7. Gather execution logs
8. Make the response available to the user
9. Stop the function when the execution terminates

Y. Cheng UVA DS5110/CS5501 Spring '24 27

Clients
Y. Cheng 28

UI

API
gateway

Event
sources

Scheduler

Python

Server

Container

Container

…

Scheduler

…

…Fn1 FnN

Fn1

Function registry

Workers

Developer

FaaS backend infrastructure

Node.js

Server

Fn2
Fn2

Under the hood: FaaS architecture

Clients
Y. Cheng 29

UI

API
gateway

Event
sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Workers

Developer Node.js

Server

Fn2
Upload
function

Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients
Y. Cheng 30

UI

API
gateway

Event
sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Workers

Developer Node.js

Server

Fn2

Req

Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients
Y. Cheng 31

UI

API
gateway

Event
sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Workers

Developer Node.js

Server

Fn2

Req

Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients
Y. Cheng 32

UI

API
gateway

Event
sources

Scheduler

Python

Server

Container

…

Scheduler

…

…Fn1 FnN

Fn1

Workers

Developer Node.js

Server

Fn2

Req

Function registry

Under the hood: FaaS architecture

FaaS backend infrastructure

Clients
Y. Cheng 33

UI

API
gateway

Event
sources

Scheduler

Python

Server

…

Scheduler

…

…Fn1 FnN

Fn1

Developer

Servers are
auto-scaled

Node.js

Server

Fn2

Req

Function registry

Fn1

Under the hood: FaaS architecture

FaaS backend infrastructure

AWS Lambda

• Lambda capacity config keeps evolving:
300 seconds 900 seconds (15 minutes)
single-core two-core à up to 6 cores
1.5 GB à 10 GB memory
512 MB à up to 10GB of /tmp file system
Python, Java, Node.js, Go, …
Pricing:

• Fine-grained billing: 1-millisecond billed duration
• $0.20 per 1M requests (invocations charge $)
• $0.0000166667 for every GB-second (compute time

charges $$)
• 6,000 1 GB Lambda functions for one second: 10¢

Y. Cheng UVA DS5110/CS5501 Spring '24 34

1st gen Current offering

Desirable properties

• (Near) zero administration overhead
• No need to handle server provisioning, failure, etc.

• Elastic auto-scaling
• Spin up / tear down functions quickly based on load

• Pay-per-use
• Only pay for the resources used (CPU-mem bundle)

Y. Cheng UVA DS5110/CS5501 Spring '24 35

Limitations

• Banned inbound network

• No guaranteed data availability

• Lambdas are resource-constrained

• Lambdas have limited execution time

• High cold startup cost and invocation cost

Y. Cheng UVA DS5110/CS5501 Spring '24 36

Quiz 7 and AWS Lambda demo

Y. Cheng UVA DS5110/CS5501 Spring '24 37

