
Spark Internals
and Performance

DS 5110/CS 5501: Big Data Systems
Spring 2024
Lecture 5b

Yue Cheng

Some material taken/derived from:
• Wisconsin CS 320 by Tyler Caraza-Harter.
@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

• Know different storage and caching levels of
Spark RDD
• Understand basic hash partitioning and join

operations
• Describe the Spark implementation of the

PageRank graph mining algorithm and roles
various Spark optimizations play

Y. Cheng UVA DS5110/CS5501 Spring '24 2

Collecting data

Y. Cheng UVA DS5110/CS5501 Spring '24 3

Collecting data (OK)

Y. Cheng UVA DS5110/CS5501 Spring '24 4

Large CSV fileHDFS

RAM RAM

CPU CPU

df partitions

Spark workers
(2 computers)

RAM Spark application
(1 computer)

df refers to CSV file
results = df.where(???).collect()
results = df.where(???).toPandas()

Collecting data (OK)

Y. Cheng UVA DS5110/CS5501 Spring '24 5

Large CSV fileHDFS

RAM RAM
Task 1

df partitions

Spark workers
(2 computers)

RAM Spark application
(1 computer)

df refers to CSV file
results = df.where(???).collect()
results = df.where(???).toPandas()

Task 2 Task 3 Task 4

Collecting data (OK)

Y. Cheng UVA DS5110/CS5501 Spring '24 6

Large CSV fileHDFS

RAM RAM
Task 5

df partitions

Spark workers
(2 computers)

RAM Spark application
(1 computer)

df refers to CSV file
results = df.where(???).collect()
results = df.where(???).toPandas()

Task 6 Task 7 Task 8

Collecting data (bad)

Y. Cheng UVA DS5110/CS5501 Spring '24 7

Large CSV fileHDFS

RAM RAM

CPU CPU

df partitions

Spark workers
(2 computers)

RAM Spark application
(1 computer)

df refers to CSV file
results = df.where(???).collect()
results = df.where(???).toPandas()

Collecting data (bad)

Y. Cheng UVA DS5110/CS5501 Spring '24 8

Large CSV fileHDFS

RAM RAM
Task 1

df partitions

Spark workers
(2 computers)

RAM Spark application
(1 computer)

Task 2 Task 3 Task 4

df refers to CSV file
results = df.where(???).collect()
results = df.where(???).toPandas()

Out of memory! (Only 2 of 8 partitions fit!)X

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 9

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 10

Large CSV fileHDFS

RAM RAM

df partitions

Spark workers
(2 computers)

Scenario: want to do lots of computations on df2
Goal: avoid repeatedly reading HDFS and filtering df

Local
FS

Local
FS

df2 partitions

df refers to CSV file
df2 = df.where(???)

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 11

Large CSV fileHDFS

RAM RAM

df partitions

Spark workers
(2 computers)

Persist level
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY

Local
FS

Local
FS

df2 partitions

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.???)

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 12

Large CSV fileHDFS

RAM RAM

df partitions

Spark workers
(2 computers)

Persist level
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY

Local
FS

Local
FS

df2 partitions

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.???) # df.cache()

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 13

Large CSV fileHDFS

RAM RAM

df partitions

Spark workers
(2 computers)

Persist level
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY

Local
FS

Local
FS

df2 partitions

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.???)

serialized serialized

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 14

Large CSV fileHDFS

RAM RAM

df partitions

Spark workers
(2 computers)

Persist level
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY

Local
FS

Local
FS

df2 partitions

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.???)

Documentation snippet: https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning
By default, Java objects are fast to access, but can easily consume a factor of 2-5x more space
than the “raw” data inside their fields. This is due to several reasons:
• Each distinct Java object has an “object header”, which is about 16 bytes and contains

information such as a pointer to its class. For an object with very little data in it (say one Int
field), this can be bigger than the data.

• Java Strings have about 40 bytes of overhead over the raw string data (since they store it in
an array of Chars and keep extra data such as the length), and store each character as two
bytes due to String’s internal usage of UTF-16 encoding. Thus a 10-character string can
easily consume 60 bytes.

• Common collection classes, such as HashMap and LinkedList, use linked data structures,
where there is a “wrapper” object for each entry (e.g. Map.Entry). This object not only has a
header, but also pointers (typically 8 bytes each) to the next object in the list.

• Collections of primitive types often store them as “boxed” objects such as
java.lang.Integer.

serialized serialized

https://spark.apache.org/docs/2.2.2/tuning.html

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 15

Large CSV fileHDFS

RAM RAM

df partitions

Spark workers
(2 computers)

Persist level
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY

Local
FS

Local
FS

df2 partitions

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.???)

Documentation snippet: https://spark.apache.org/docs/2.2.2/tuning.html#memory-tuning
By default, Java objects are fast to access, but can easily consume a factor of 2-5x more space
than the “raw” data inside their fields. This is due to several reasons:
• Each distinct Java object has an “object header”, which is about 16 bytes and contains

information such as a pointer to its class. For an object with very little data in it (say one Int
field), this can be bigger than the data.

• Java Strings have about 40 bytes of overhead over the raw string data (since they store it in
an array of Chars and keep extra data such as the length), and store each character as two
bytes due to String’s internal usage of UTF-16 encoding. Thus a 10-character string can
easily consume 60 bytes.

• Common collection classes, such as HashMap and LinkedList, use linked data structures,
where there is a “wrapper” object for each entry (e.g. Map.Entry). This object not only has a
header, but also pointers (typically 8 bytes each) to the next object in the list.

• Collections of primitive types often store them as “boxed” objects such as
java.lang.Integer.

Documentation snippet: https://spark.apache.org/docs/2.2.2/tuning.html#serialized-rdd-storage
When your objects are still too large to efficiently store despite this tuning, a much simpler way
to reduce memory usage is to store them in serialized form, using the serialized StorageLevels in
the RDD persistence API, such as MEMORY_ONLY_SER. Spark will then store each RDD
partition as one large byte array. The only downside of storing data in serialized form is slower
access times, due to having to deserialize each object on the fly.

serialized serialized

https://spark.apache.org/docs/2.2.2/tuning.html
https://spark.apache.org/docs/2.2.2/tuning.html

Persisting/Caching

Y. Cheng UVA DS5110/CS5501 Spring '24 16

Large CSV fileHDFS

RAM RAM

df partitions

Spark workers
(2 computers)

Persist level
• MEMORY_ONLY
• MEMORY_ONLY_SER
• DISK_ONLY

Local
FS

Local
FS

df2 partitions

from pyspark.storagelevel import StorageLevel
df2 = df.where(???)

df2.persist(StorageLevel.???)

serialized serialized

Join and partitioning

Y. Cheng UVA DS5110/CS5501 Spring '24 17

Join and partitioning (best case)

Y. Cheng UVA DS5110/CS5501 Spring '24 18

Alice 5

Bob 6

Claire 4

Alice F

Bob M

Claire F
⨝

Alice 5 F

Bob 6 M

Claire 4 F
=

Computer 1

Computer 2

Join and partitioning (worst case)

Y. Cheng UVA DS5110/CS5501 Spring '24 19

A 5

A 2

A 3

B 4

B 1

C 6

C 8

C 5

B 2

A 3

B 4

A 1

B 6

C 8

If partitioning doesn’t
match, then need to
shuffle (via network)
to match pairs.

Computer 1

Computer 2

Alice 5

Bob 6

Claire 4

Alice F

Bob M

Claire F
⨝

Alice 5 F

Bob 6 M

Claire 4 F
=

Computer 1

Computer 2

⨝

Join and partitioning (optimization)

Y. Cheng 20

A 5

A 2

A 3

B 4

B 1

C 6

C 8

A 3

A 1

B 2

B 4

B 6

C 5

C 8

partitionBy() is
specific to key-value
pair RDDs. It is used
to partition RDDs
based on keys, by
default using a hash
partitioner.

Computer 1

Computer 2

⨝

Alice 5

Bob 6

Claire 4

Alice F

Bob M

Claire F
⨝

Alice 5 F

Bob 6 M

Claire 4 F
=

Computer 1

Computer 2

Example: PageRank

Y. Cheng UVA DS5110/CS5501 Spring '24 21

Example: PageRank

Y. Cheng UVA DS5110/CS5501 Spring '24 22

1. Start each page with a rank of 1
2. On each iteration, update each dest page’s
rank to Σi∈neighbors rankneighbor_i / |neighborsi|

links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
 ranks = links.join(ranks).flatMap {
 (url, (links, rank)) =>
 links.map(dest => (dest, rank/links.size))
 }.reduceByKey(_ + _)
}

links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
 ranks = links.join(ranks).flatMap {
 (url, (links, rank)) =>
 links.map(dest => (dest, rank/links.size))
 }.reduceByKey(_ + _)
}

Example: PageRank

Y. Cheng UVA DS5110/CS5501 Spring '24 23

1. Start each page with a rank of 1
2. On each iteration, update each dest page’s
rank to Σi∈neighbors rankneighbor_i / |neighborsi|

RDD[(URL, Seq[URL])]

RDD[(URL, Rank)]

RDD[(URL, (Seq[URL],Rank))]

For each neighbor in links emits (URL, RankContrib)

Reduce to RDD[(URL, Rank)]

Demo …

Y. Cheng UVA DS5110/CS5501 Spring '24 24

Optimizing placement

Y. Cheng UVA DS5110/CS5501 Spring '24 25

reduce

Contribs0

join

join

Contribs2

Ranks0
(url, rank)

Links
(url, neighbors)

. . .

Ranks2

reduce

Ranks1

• links & ranks repeated joined
• Can co-partition them (e.g., hash

both on source URLs) to avoid
shuffles

links = links.partitionBy(N)
ranks = ranks.partitionBy(N)

Optimizing placement

Y. Cheng UVA DS5110/CS5501 Spring '24 26

reduce

Contribs0

join

join

Contribs2

Ranks0
(url, rank)

Links
(url, neighbors)

. . .

Ranks2

reduce

Ranks1

• links & ranks repeated joined
• Can co-partition them (e.g., hash

both on source URLs) to avoid
shuffles

links = links.partitionBy(N)
ranks = ranks.partitionBy(N)

Q2: Where might we have placed
.persist(DISK_ONLY)?

Q1: Should we apply .persist(DISK_ONLY)
to links or ranks?

Discussion: Spark perf (paper)

Y. Cheng UVA DS5110/CS5501 Spring '24 27

