Parallel Processing
In Python

DS 5110/CS 5501: Big Data Systems
Spring 2024
L ecture 3

Yue Cheng

%U IVERSITY
JIIE 9\ TRGINIA

Some material taken/derived from:
» Wisconsin CS 320 by Tyler Caraza-Harter.
@ 2024 released for use under a CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

 Describe the execution model of
 process-level parallelism
 thread-level parallelism
 task-level parallelism

* Know how to measure the speedup metric

« Understand the difference of strong scaling vs.
weak scaling

Outline

* Motivation

* Three parallel execution models
* Demo

* Measuring speedup metric
 Task parallelism in Dask

* Demo

Code Data

Instruction pointer
(also called “program counter”)

Y. Cheng UVA DS5110/CS5501 Spring 24

Process

Code Data

+=

Instruction pointer belongs to a thread within the process

Y. Cheng UVA DS5110/CS5501 Spring 24

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

= |y

+
1]

Multi-core processor (CPU)

Y. Cheng UVA DS5110/CS5501 Spring 24 6

+

Process 1 Process 2 Process 3
Code Data Code Data Code Data
| = | d | = —
\r \
N \
Running: 1, 2
Ready: 3,4

Multi-core processor (CPU)

Y. Cheng

UVA DS5110/CS5501 Spring 24

Process 4

Code

Data

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data
= = =
N\
b
Running: 1, 2
Ready: 3,4

Multi-core processor (CPU)

Y. Cheng UVA DS5110/CS5501 Spring 24 8

Process 1 Process 2 Process 3
Code Data Code Data Code Data
— — || [
N /

N 7
Running: 1, 3
Ready: 2,4

Multi-core processor (CPU)
Y. Cheng UVA DS5110/CS5501 Spring 24

Process 4

Code

Data

Process 4

Code

Data

Process 1 Process 2 Process 3
Code Data Code Data Code Data
N — - »—
//
\ 7
Running: 1, 3
Ready: 2,4
The more cores we have, the more
Multi-core processor (CPU) tasks we can run simultaneously
Y. Cheng UVA DS5110/CS5501 Spring 24

Parallel execution models

* Process-level parallelism
* Thread-level parallelism
 Task-level parallelism

Parallel execution models

* Process-level parallelism
* Thread-level parallelism
 Task-level parallelism

Y. Cheng UVA DS5110/CS5501 Spring 24

Process-level parallelism

Process 1

Code Data

¥

)

Core

(CPU)

Multi-core processor (CPU)

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

=

)

Core
(CPU)

Multi-core processor (CPU)

Y. Cheng UVA DS5110/CS5501 Spring 24 |4

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

[]]]
[]]]
A

Compute

Running: 2, 3
1,4

Ready:

Multi-core processor (CPU)

Y. Cheng UVA DS5110/CS5501 Spring 24 I5

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

1]
+

1
\

i

= i

Compute

Running: 2, 4
Ready: 1,3

Multi-core processor (CPU)

Y. Cheng UVA DS5110/CS5501 Spring 24 6

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

— ||| 4=

Compute

Running: 3, 4
Ready: 1,2

Multi-core processor (CPU)

Y. Cheng UVA DS5110/CS5501 Spring 24 |7

Process-level parallelism

Process 1 Process 2 Process 3 Process 4

Code Data Code Data Code Data Code Data

=

3= ||| 4= |y =

~ —

Send data back

Core

(CPU)

Running: 1
Ready: 2, 3,4
Multi-core processor (CPU)

Y. Cheng UVA DS5110/CS5501 Spring 24 18

Process-level parallelism

Process 1

Code Data

=

P

Core

(CPU)

Multi-core processor (CPU)

Process-level parallelism in Python

https://docs.python.org/3/library/multiprocessing.html

=

Process 1
Code Data
\ I
\

from multiprocessing import Pool

def f(x):
return x*x

if name == Y main ':

with_gool(3) as p:
print (p.map (£, [1,2,3]))

(CPU)

Multi-core processor (CPU)

https://docs.python.org/3/library/multiprocessing.html

Parallel execution models

* Process-level parallelism
 Thread-level parallelism
 Task-level parallelism

Y. Cheng UVA DS5110/CS5501 Spring 24

21

Thread-level parallelism

Process 1

Code Data

Threads give us multiple instruction pointers
In a process, allowing us to execute multiple
parts of the code at the same time!

Multi-core processor (CPU)

Thread-level parallelism

Process 1

Code Data

In general, threads help:
« Use multiple cores
* Do useful work when threads are blocking

Running: 1, 3
Ready: 2

Multi-core processor (CPU)

Thread-level parallelism in Python

Process 1

Code Data

In generat Python, threads help:
«Use-multiple-cores (b/c of the GIL)

* Do useful work when threads are blocking

Wasted https://wiki.python.ora/moin/GloballnterpreterLock

Running: 1
Ready: 3
Blocked: 2

Multi-core processor (CPU)

https://wiki.python.org/moin/GlobalInterpreterLock

Thread-level parallelism in Python

Recommendation: Don’t use threads unless
you learn a lot on asynchronous processing

Process 1 and/or coroutines
https://docs.python.org/3/library/asyncio-task.html

Code Data

In generat Python, threads help:
«Use-multiple-cores (b/c of the GIL)

* Do useful work when threads are blocking

Wasted https://wiki.python.ora/moin/GloballnterpreterLock

Running: 1
Ready: 3
Blocked: 2

Multi-core processor (CPU) 25

https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/asyncio-task.html

Demo ...

Y. Cheng

UVA DS5110/CS5501 Spring 24

26

Parallel execution models

* Process-level parallelism
* Thread-level parallelism
» Task-level parallelism

Y. Cheng UVA DS5110/CS5501 Spring 24

27

Task-level parallelism

16
A ™~
T4 T5
T T Task DAG
= (Directed Acyclic Graph)
T1 T2

W

Data

Task-level parallelism

T6
T4 T5
T1 T2 T3
Data Data Data

Task-level parallelism

16
T4 15
S2: Schedule T1 to W1, T2 to W2, T3
T1 T2 T; > WSC edule o] o]
Data Data Data

Worker 1 Worker 2 Worker 3 S1: Copy whole dataset to all workers

Task-level parallelism

16

Data

Worker 1

Y. Cheng

T5 S3: Run T4 after T1 on W1, run T5
T after T2 on W2; after T3, W3 is idle

To T3 S2: Schedule T1 to W1, T2 to W2, T3
\ to W3
Data Data

Worker 2 Worker 3 S1: Copy whole dataset to all workers

UVA DS5110/CS5501 Spring 24 31

Task-level parallelism

T6
A

T4

T1

Data

Worker 1

Y. Cheng

S4: After T4 and T5 ends, run T6 on
W1; after T5, W2 is idle

™

T5 S3: Run T4 after T1 on W1, run T5
after T2 on W2; after T3, W3 is idle

To T3 S2: Schedule T1 to W1, T2 to W2, T3
\ to W3
Data Data

Worker 2 Worker 3 S1: Copy whole dataset to all workers

UVA DS5110/CS5501 Spring 24 32

Task-level parallelism

16

T4 15

A 4

' ' Degree of parallelism is the largest

amount of parallelism possible in the

T1 T2 T3 DAG:

4 A A How many tasks can be run in

/ \ parallel at most

Data Data Data

Task-level parallelism

Observations:

T6 Resource wastage on idle workers
Overtime degree of parallelism drops!
T4 15
| I Degree of parallelism is the largest
amount of parallelism possible in the
T1 T2 T3 DAG:
4 A A « How many tasks can be run in
/ \ parallel at most
Data

Worker 1

Worker 2

Worker 3

Quantify benefit of parallelism: Speedup

Completion time given 1 worker
Speedup =

Completion time given N worker

Quantify benefit of parallelism: Speedup

Completion time given 1 worker
Speedup =

Completion time given N worker

Q: Given N workers, can we get a speedup of N?

Quantify speedup

Saeedup (fixed data size)

12

Linear
speedup

Sublinear
speedu
P P >

1 4 3 12

Number of workers

Strong scaling

Quantify speedup

Saeedup (fixed data size)

12

Linear
speedup

Sublinear
speedu
P P >

1 4 3 12

Number of workers

Strong scaling

SpeAedup (increased data size)

2

Linear
speedup

Sublinear
speedup

0.5

>
1 4 8 12
workers and data size

Weak scaling

|dle resources in task-level parallelism

T6 10
A N
T4 5 T5 0
T 1
T1 T2 13
Data Data Data

Task completion time varies

|dle resources in task-level parallelism

T6 10 « Job completion time is always
/ \ bOL:]nd[e)i (ta)y the longest path
in the
T4 T
5 > 20
T 1
T1 T2 T3
Data Data Data

Task completion time varies

|dle resources in task-level parallelism

T6 10 « Job completion time is always
/ \ bounded by the longest path
in the DAG
T4 T
5 > 20 . Potential optimization: The
T T scheduler can elastically
T1 T2 T3 release a worker if it knows

the worker will be idle till the

f1O T5 ;\15 ond

« (Can save $ cost in cloud
Data Data Data

Task completion time varies

|dle resources in task-level parallelism

Q: What’s the job completion
T6 10 time with 1 worker?
/ \
T4 T5
5 20
T 1
T1 12 13 Q: What’s the job completion
f 10 T ® \ 19 time with 3 worker?
Data Data Data

Q: What's the speedup?

Task parallelism in Dask

Collections Task Graph

(create task graphs)

Dask Array

Dask DataFrame O_

Dask Bag O_,

Dask Delayed :}_. O—

Futures

...

* https://docs.dask.org/en/stable/
* https://docs.dask.org/en/stable/scheduling.html

Y. Cheng UVA DS5110/CS5501 Spring 24

Schedulers

(execute task graphs)

Single-machine
(threads, processes,
synchronous)

Distributed

43

https://docs.dask.org/en/stable/
https://docs.dask.org/en/stable/scheduling.html

Dask’s task graph and workflow

import dask

import dask.array as da
x = da.random.normal (size=1 000 000, chunks=100 000)

Dask’s task graph and workflow

import dask
import dask.array as da
x = da.random.normal (size=1 000 000, chunks=100 000)

l Lazy evaluation: Dask computation can be
data = x.compute () triggered manually, e.g., . compute ()
« only when the result is needed

Dask’s task graph and workflow

import dask
import dask.array as da
x = da.random.normal (size=1 000 000, chunks=100 000)

l Lazy evaluation: Dask computation can be

data = x.compute () triggered manually, e.g., . compute ()
« only when the result is needed

dask.visualize (x) Draw the task graph using .visualize ()

2228282388

Y. Cheng UVA DS5110/CS5501 Spring 24 46

Demo ...

Y. Cheng

UVA DS5110/CS5501 Spring 24

47

