
Caching
DS 5110/CS 5501: Big Data Systems

Spring 2024
Lecture 2d

Yue Cheng

Some material taken/derived from:
• Wisconsin CS 544 by Tyler Caraza-Harter.
@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/

Learning objectives

• Describe the cache hierarchy
• Understand spatial locality and temporal locality
• Trace through access patterns with FIFO and

LRU caching policies
• Calculate cache performance metrics

Y. Cheng UVA DS5110/CS5501 Spring '24 2

Outline

• Challenge: latency
• Cache hierarchy
• CPU, RAM, SSD, Disk, Network
• Tradeoffs

• Data access patterns, data locality, data access
granularity
• Spatial locality
• Temporal locality
• Cache lines and locality optimization

• What data should be cached?
• Eviction policies: FIFO, LRU

Y. Cheng UVA DS5110/CS5501 Spring '24 3

Interaction between CPU and RAM

Y. Cheng UVA DS5110/CS5501 Spring '24 4

CPU
3
4
0

r1:
r2:

r3:

RAMCPU clock has
billions of cycles

per second
CPU registers are
like variables built

into the CPU

Interaction between CPU and RAM

Y. Cheng UVA DS5110/CS5501 Spring '24 5

CPU
3
4
7

r1:
r2:

r3:

RAM

Instruction:
r3 = r1 + r2

(fast)

Load and store

Y. Cheng UVA DS5110/CS5501 Spring '24 6

CPU
3
4
7

r1:
r2:

r3:

RAM

Challenge: If we want to add some
numbers stored in RAM, we need to load

before adding and store after

6
2
0

Latency to load from RAM

Y. Cheng UVA DS5110/CS5501 Spring '24 7

CPU
6
4
7

r1:
r2:

r3:

RAM

Very slow, but not long enough to switch to
a different thread…

6
2
0

about 100ns, or 200 cycles

Latency

Y. Cheng UVA DS5110/CS5501 Spring '24 8

CPU
6
4
7

r1:
r2:

r3:

RAM

“How much time” is a latency measure.

Throughput (bytes/second) depends on
how many loads we can do simultaneously.

6
2
0

about 100ns, or 200 cycles

CPU Cache

Y. Cheng UVA DS5110/CS5501 Spring '24 9

CPU
6
4
7

r1:
r2:

r3:

RAM

Idea: CPUs can have a small but very fast memory
built in for data that is frequently accessed

6
2
0

Cache

Copies of hot data

Latency measurements

• Latency metrics
• Average latency
• Median latency
• “Tail” latency (99th percentile, 99.9th percentile, etc.)

• Which metrics do we expect caching to help
with the most?

Y. Cheng UVA DS5110/CS5501 Spring '24 10

Cache hierarchy

Y. Cheng UVA DS5110/CS5501 Spring '24 11

Flash Storage (SSD)~1
00

 u
se

c

CPU

Main
Memory

Magnetic Hard Disk Drive (HDD)

A
 C

 C
 E

 S
 S

 L

 A
 T

E N
 C

 Y

~1
0 m

se
c

~1
00

 n
s

Cache

Capacity

Ac
ce

ss
 B

an
dw

id
th

~10GB/s

~80GB/s

~100GB/s ~MBs
~$2/MB

~10GBs
~$5/GB

~TBs
~$200/TB

~10TBs
~$30/TB~100MB/s

~1
-5

0 n
s

Registers

*UCSD DSC 102: Systems for scalable analysis. Arun Kumar

Faster/
smaller

Bigger/
slower

Resource tradeoffs
• File system caches file data in RAM

• Uses memory
• Avoids storage reads

• Browser caches recently visited pages as disk files
• Uses local storage space
• Avoids network transfers

• Python dictionary caches return values in a dict
(key=args, val=return)
• Uses memory space
• Avoids repeated compute

Y. Cheng UVA DS5110/CS5501 Spring '24 12

cache = {}
def f(x):
 if not x in cache:
 cache[x] = g(x)
 return cache[x]

Workload characteristics

13

sum = 0
for i in range(0,1024):
 sum += a[i]

Application A

Y. Cheng UVA DS5110/CS5501 Spring '24

Workload characteristics

14

sum = 0
for i in range(0,1024):
 sum += a[i]

import random

sum = 0
random.seed(1234);
for i in range(0,512):
 sum += a[random.randint(0,1023)]

random.seed(1234) # same seed
for i in range(0,512):
 sum += a[random.randint(0,1023)]

Application A Application B

Y. Cheng UVA DS5110/CS5501 Spring '24

Access patterns

15

Application A

Time

Ad
dr …

Application B

Time

Ad
dr …

Y. Cheng UVA DS5110/CS5501 Spring '24

Access patterns

16

Application A

Time

Ad
dr …

Application B

Time

Ad
dr …

Spatial Locality Temporal Locality
Y. Cheng UVA DS5110/CS5501 Spring '24

Locality of data accesses

• Spatial locality:
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

17Y. Cheng UVA DS5110/CS5501 Spring '24

Locality of data accesses

• Spatial locality:
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What is the implication of data locality to
data systems applications?

18Y. Cheng UVA DS5110/CS5501 Spring '24

Locality optimization in Data Science
• Consider a matrix named data with 16*16 elements
• Each row is of size 16 floats and prefetching+caching means 1/2 row of

accessed data item is brought to CPU cache at a time

19Y. Cheng UVA DS5110/CS5501 Spring '24

Locality optimization in Data Science
• Consider a matrix named data with 16*16 elements
• Each row is of size 16 floats and prefetching+caching means 1/2 row of

accessed data item is brought to CPU cache at a time
• Program 1

for i in range(len(data[0]):

for row in data:

sum += row[i]

16 x 16 = 256 CPU cache misses
Not too hardware-efficient (not able to exploit prefetching+caching)

20Y. Cheng UVA DS5110/CS5501 Spring '24

Locality optimization in Data Science
• Consider a matrix named data with 16*16 elements
• Each row is of size 16 floats and prefetching+caching means 1/2 row of accessed

data item is brought to CPU cache at a time
• Program 1

for i in range(len(data[0]):

for row in data:
sum += row[i]

16 x 16 = 256 CPU cache misses
Not too hardware-efficient (not able to exploit prefetching+caching)

• Program 2
for row in data:

for element in row:

sum += element

Only 16*2 CPU cache misses
• Each time ½ row of data[i] is prefetched to cache so subsequent accesses are

hits! 21

Peeking behind the scene…

• Data access granularity
• If a process reads one byte and misses, how much

data should the CPU bring into the CPU cache?
• Tradeoff:

• Too little? Will have many more misses if we read nearby
bytes soon (recall spatial locality)

• Too much? Wasteful to load data to cache that might never
be accessed

• CPU caches data in units called cache lines
• Typically, 64 bytes for modern CPUs (8 float64

numbers)

Y. Cheng UVA DS5110/CS5501 Spring '24 22

Cache lines and misses

Y. Cheng UVA DS5110/CS5501 Spring '24 23

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

ca
ch

e
lin

e
ca

ch
e

lin
e

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

ca
ch

e
lin

e
ca

ch
e

lin
e

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

fp64
fp64
fp64
fp64
fp64
fp64
fp64
fp64

ca
ch

e
lin

e
ca

ch
e

lin
e

How many misses? How many misses? How many misses?

Memory layout of a matrix

Y. Cheng UVA DS5110/CS5501 Spring '24 24

Row

Row

Row

Row

Matrix of numbers
Logically, 2-dimensional

Virtual address space

Row Row Row stack

Physically, those rows are arranged along 1-dimension in the virtual address space

Code Row

Memory layout of a matrix

Y. Cheng UVA DS5110/CS5501 Spring '24 25

Row

Row

Row

Row

Matrix of numbers
Logically, 2-dimensional

Row Row Row RowCode stack

Summing over row:
data consolidated into a few cache lines (CPU cache friendly)

…

Memory layout of a matrix

Y. Cheng UVA DS5110/CS5501 Spring '24 26

Row

Row

Row

Row

Matrix of numbers
Logically, 2-dimensional

Summing over column: each number is in its own cache line and triggers a cache miss

Row Row Row RowCode stack

Summing over row:
data consolidated into a few cache lines (CPU cache friendly)

…

Demo …

Y. Cheng UVA DS5110/CS5501 Spring '24 27

Caching policies

• When to load data to a cache?
• Whenever the program reads something, add it to

cache

• When to evict data from a cache (eviction
policy)? Several policies:
• Random: select any data at random for eviction
• FIFO (first-in, first-out): evict whichever data that has

been in the cache the longest
• LRU (least recently used): evict which data that has

been used the least recently

Y. Cheng UVA DS5110/CS5501 Spring '24 28

Worksheet …

Y. Cheng UVA DS5110/CS5501 Spring '24 29

