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Learning objectives

• Describe the cache hierarchy
• Understand spatial locality and temporal locality
• Trace through access patterns with FIFO and 

LRU caching policies
• Calculate cache performance metrics
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Outline

• Challenge: latency
• Cache hierarchy
• CPU, RAM, SSD, Disk, Network
• Tradeoffs

• Data access patterns, data locality, data access 
granularity
• Spatial locality
• Temporal locality
• Cache lines and locality optimization

• What data should be cached?
• Eviction policies: FIFO, LRU
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Interaction between CPU and RAM
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Interaction between CPU and RAM
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Load and store
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Latency to load from RAM
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Latency
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CPU Cache
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Latency measurements

• Latency metrics
• Average latency
• Median latency
• “Tail” latency (99th percentile, 99.9th percentile, etc.)

• Which metrics do we expect caching to help 
with the most?
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Cache hierarchy

Y. Cheng UVA DS5110/CS5501 Spring '24 11

Flash Storage (SSD)~1
00

 u
se

c

CPU

Main 
Memory

Magnetic Hard Disk Drive (HDD)

A 
 C

  C
  E

  S
  S

    
   L

 A
 T 

E N
 C

 Y

~1
0 m

se
c

~1
00

 n
s

Cache

Capacity

Ac
ce

ss
 B

an
dw

id
th

~10GB/s

~80GB/s

~100GB/s ~MBs
~$2/MB

~10GBs
~$5/GB

~TBs
~$200/TB

~10TBs
~$30/TB~100MB/s

~1
-5

0 n
s

Registers

*UCSD DSC 102: Systems for scalable analysis. Arun Kumar

Faster/
smaller

Bigger/
slower



Resource tradeoffs
• File system caches file data in RAM

• Uses memory
• Avoids storage reads

• Browser caches recently visited pages as disk files
• Uses local storage space
• Avoids network transfers

• Python dictionary caches return values in a dict
(key=args, val=return)
• Uses memory space
• Avoids repeated compute
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cache = {}
def f(x):
    if not x in cache:
        cache[x] = g(x)
    return cache[x]



Workload characteristics
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sum = 0
for i in range(0,1024): 
  sum += a[i]

Application A
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Workload characteristics
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sum = 0
for i in range(0,1024): 
  sum += a[i]

import random

sum = 0
random.seed(1234);
for i in range(0,512):
  sum += a[random.randint(0,1023)]

random.seed(1234) # same seed
for i in range(0,512):
  sum += a[random.randint(0,1023)]

Application A Application B
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Access patterns
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Access patterns
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Spatial Locality Temporal Locality
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Locality of data accesses

• Spatial locality: 
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data
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Locality of data accesses

• Spatial locality: 
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What is the implication of data locality to 
data systems applications?

18Y. Cheng UVA DS5110/CS5501 Spring '24



Locality optimization in Data Science
• Consider a matrix named data with 16*16 elements
• Each row is of size 16 floats and prefetching+caching means 1/2 row of 

accessed data item is brought to CPU cache at a time
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Locality optimization in Data Science
• Consider a matrix named data with 16*16 elements
• Each row is of size 16 floats and prefetching+caching means 1/2 row of 

accessed data item is brought to CPU cache at a time
• Program 1

for i in range(len(data[0]):

for row in data:

sum += row[i]

16 x 16 = 256 CPU cache misses
Not too hardware-efficient (not able to exploit prefetching+caching)
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Locality optimization in Data Science
• Consider a matrix named data with 16*16 elements
• Each row is of size 16 floats and prefetching+caching means 1/2 row of accessed 

data item is brought to CPU cache at a time
• Program 1

for i in range(len(data[0]):

for row in data:
sum += row[i]

16 x 16 = 256 CPU cache misses
Not too hardware-efficient (not able to exploit prefetching+caching)

• Program 2
for row in data:

for element in row:

sum += element

Only 16*2 CPU cache misses
• Each time  ½ row of data[i] is prefetched to cache so subsequent accesses are 

hits! 21



Peeking behind the scene… 

• Data access granularity
• If a process reads one byte and misses, how much 

data should the CPU bring into the CPU cache?
• Tradeoff:

• Too little? Will have many more misses if we read nearby 
bytes soon (recall spatial locality)

• Too much? Wasteful to load data to cache that might never 
be accessed

• CPU caches data in units called cache lines
• Typically, 64 bytes for modern CPUs (8 float64 

numbers)
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Cache lines and misses
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Memory layout of a matrix 
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Memory layout of a matrix 
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Summing over row: 
data consolidated into a few cache lines (CPU cache friendly)
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Memory layout of a matrix 
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Summing over column: each number is in its own cache line and triggers a cache miss

Row Row Row RowCode stack

Summing over row: 
data consolidated into a few cache lines (CPU cache friendly)

… 



Demo … 
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Caching policies

• When to load data to a cache?
• Whenever the program reads something, add it to 

cache

• When to evict data from a cache (eviction 
policy)? Several policies:
• Random: select any data at random for eviction
• FIFO (first-in, first-out): evict whichever data that has 

been in the cache the longest
• LRU (least recently used): evict which data that has 

been used the least recently
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Worksheet … 
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