
Amazon Dynamo
DS 5110/CS 5501: Big Data Systems 

Spring 2024
Lecture 10c

Yue Cheng

Some material taken/derived from: 
• Princeton COS-418 materials created by Michael Freedman.
• Wisconsin CS 544 by Tyler Caraza-Harter.
@ 2024 released for use under a CC BY-SA license.

https://creativecommons.org/licenses/by-sa/4.0/


Learning objectives

• Learn how Dynamo replicates data
• Walk a token ring to identify multiple nodes 

responsible for a given key (row)
• Tune read and write quorum requirements to 

achieve desired tradeoffs in availability, durability, 
and performance
• Describe common approaches to eventual 

consistency and conflict resolution

Y. Cheng UVA DS5110/CS5501 Spring '24 2



Replication

Y. Cheng UVA DS5110/CS5501 Spring '24 3

Computers: node 1 node 2 node 3

Token map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

Replication factor (RF) of N (where N == 2)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
????



Replication

Y. Cheng UVA DS5110/CS5501 Spring '24 4

Computers: node 1 node 2 node 3

Token map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

RF = N (where N == 2)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 4, 2

Walk until we get enough nodes



Replication

Y. Cheng UVA DS5110/CS5501 Spring '24 5

Computers: node 1 node 2 node 3

Token map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 4, 2, 3

Walk until we get enough nodes



Replication

Y. Cheng UVA DS5110/CS5501 Spring '24 6

Computers: node 1 node 2 node 3

Token map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: ????



Replication

Y. Cheng UVA DS5110/CS5501 Spring '24 7

Computers: node 1 node 2 node 3

Token map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

Replication factor of N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 3, 1, 2



Replication

Y. Cheng UVA DS5110/CS5501 Spring '24 8

Computers: node 1 node 2 node 3

Token map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: ????



Replication

Y. Cheng UVA DS5110/CS5501 Spring '24 9

Computers: node 1 node 2 node 3

Token map:
token(node1) = {t1, t2}
token(node2) = {t3, t4}
token(node3) = {t5, t6}
token(node4) = {t7, t8}

RF = N (where N == 3)

node 4node 1 node 2node 3node 4

Row in a table replicated in : 
nodes: 1, 2, 4

Important: Keeping multiple copies on vnodes on the same node 
provides little safety (when a node dies, all its vnodes die). Same 

“failure domain”. 
Dynamo skips nodes to ensure replicas reside on different nodes.



Write acks

• In distributed storage/database systems, an ack 
means our data is committed

• “Committed” means our data is “safe”, even if 
bad things happen. The definition varies system 
to system, based on what bad things are 
considered. For example:
• A node could hang until rebooted; a node’s disk 

could permanently fail
• A rack could lose power; a datacenter could be 

destroyed

Y. Cheng UVA DS5110/CS5501 Spring '24 10



Write acks: WhatsApp example

Y. Cheng UVA DS5110/CS5501 Spring '24 11

https://faq.whatsapp.com/665923838265756/?cms_platform=android&helpref=platform_switcher 

These are examples of “acks” (acknowledgments) 

https://faq.whatsapp.com/665923838265756/?cms_platform=android&helpref=platform_switcher


Dynamo writes

Y. Cheng UVA DS5110/CS5501 Spring '24 12

Node 1 Node 2 Node 3

CoordinatorClient program

5 B

5 A 3 X 5 A 3 X 5 A 3 X

RF = 3. Coordinator will attempt to write data to all 3 
replicas. 



Dynamo writes

Y. Cheng UVA DS5110/CS5501 Spring '24 13

Node 1 Node 2 Node 3

CoordinatorClient program

5 B

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3. Coordinator will attempt to write data to all 3 
replicas. 

rebooting… 

ack ack

At what point should we send an ack back to the client? 



Dynamo writes

Y. Cheng UVA DS5110/CS5501 Spring '24 14

Node 1 Node 2 Node 3

CoordinatorClient program

5 B

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3. Coordinator will attempt to write data to all 3 
replicas. 

rebooting… 

ack ack

At what point should we send an ack back to the client? 
Configurable: W = 2 lets coordinator ack now, and data is fairly safe. 

ack



Dynamo reads

Y. Cheng UVA DS5110/CS5501 Spring '24 15

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

HDFS reads go to one replica. What if Dynamo tries that? 

read

???



Dynamo reads

Y. Cheng UVA DS5110/CS5501 Spring '24 16

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

HDFS reads go to one replica. What if Dynamo tries that? 

old data
5 A5 A



Dynamo reads

Y. Cheng UVA DS5110/CS5501 Spring '24 17

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

Read from R replicas (R is configurable). Here R = 2.
Hopefully at least one of the replicas has new data. 



Dynamo reads

Y. Cheng UVA DS5110/CS5501 Spring '24 18

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

R = 2 means we’ll often read identical data from two replicas (wasteful)

data

data data



Dynamo reads

Y. Cheng UVA DS5110/CS5501 Spring '24 19

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

RF = 3 

R = 2 means we’ll often read identical data from two replicas (wasteful)
Optimization: Read one copy, and only request checksum from others.

data

checksum(data) A checksum (like md5) is a hash function where 
collisions are extremely rare and hard to find.

data



When R + W > RF 

Y. Cheng UVA DS5110/CS5501 Spring '24 20

Node 1 Node 2 Node 3

5 B 3 X 5 B 3 X 5 A 3 X

When R + W > RF, the replicas read + written will overlap.

RF = 3

Write quorum = 2 Read quorum = 2



Tradeoff: Tuning R and W

Y. Cheng UVA DS5110/CS5501 Spring '24 21

RF R W Behavior
3 2 2 Parameters from the Dynamo paper:

Relatively balanced configuration;
Good durability, good R/W latency

3 3 1 Slow reads, weak durability, fast writes
Writes are highly available, therefore fast;
Reads will not return data even if one node is down; reads may fail;
Risk: If the one node that took the write fails permanently, we’ll lose 
committed data. 

3 1 3 Slow writes, strong durability, fast reads
Reads are highly available, therefore fast;
Writes are slow (from client’s perspective) as they involve writing to three 
replicas.

3 3 3 More likely that reads see all prior writes?
3 1 1 Read quorum doesn’t overlap write quorum

Speed + availability more important than consistency



Getting conflicting versions

Y. Cheng UVA DS5110/CS5501 Spring '24 22

Node 1 Node 2 Node 3

CoordinatorClient program

5 A 3 X 5 A 3 X 5 A 3 X

Let RF = 3, R = 2, W = 25 B



Getting conflicting versions

Y. Cheng UVA DS5110/CS5501 Spring '24 23

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

Let RF = 3, R = 2, W = 25 B

rebooting… 

data

data data



Getting conflicting versions

Y. Cheng UVA DS5110/CS5501 Spring '24 24

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 X 5 B 3 X 5 A 3 X

Let RF = 3, R = 2, W = 2



Getting conflicting versions

Y. Cheng UVA DS5110/CS5501 Spring '24 25

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 3 Y 5 B 3 X 5 A 3 Y

Let RF = 3, R = 2, W = 25 Y

rebooting… 

data

data data



Getting conflicting versions

Y. Cheng UVA DS5110/CS5501 Spring '24 26

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 5 B 5 A

Let RF = 3, R = 2, W = 2

3 Y 3 X 3 Y



Getting conflicting versions

Y. Cheng UVA DS5110/CS5501 Spring '24 27

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 5 B 5 A

Which version of row 5 should be 
sent back? Both contain some new 
data not contained by others.

data data

Systems that allow conflicting 
versions to co-exist, fixing it up 
later are “eventually consistent”. 

3 Y 3 X 3 Y

rebooting… 



Getting conflicting versions

Y. Cheng UVA DS5110/CS5501 Spring '24 28

Node 1 Node 2 Node 3

CoordinatorClient program

5 B 5 B 5 A

Which version of row 5 should be 
sent back? Both contain some new 
data not contained by others.

data data

Systems that allow conflicting 
versions to co-exist, fixing it up 
later are “eventually consistent”. 

Approach: 
• Send all versions back to client, which will need specialized conflict resolution code
• Automatically combine them into a new row, and write that (if possible to all replicas) 

3 Y 3 X 3 Y

rebooting… 



Timestamps (logical clock)

Y. Cheng UVA DS5110/CS5501 Spring '24 29

Node 1 Node 2 Node 3

Coordinator

5 B 5 B 5 A

Each cell of every table has a 
timestamp:

data data

• Approximate (since clocks of nodes 
in a cluster are never perfectly in 
sync)

• Policy is LWW (last write wins), 
meaning prefer new data

5 B 3 Y

24
36412
5 64

24
3

12
5

3 Y 3 X 3 Y

rebooting… 64 64

Client



Extra slides

Y. Cheng UVA DS5110/CS5501 Spring '24 30



Dynamo API

• Basic interface is a key-value store
• get(k) and put(k, v)
• Keys and values opaque to Dynamo

• get(key) à value, context
• Returns one value or multiple conflicting values
• Context describes version(s) of value(s)

• put(key, context, value) à “OK”
• Context indicates which versions this version 

supersedes or merges

Y. Cheng UVA DS5110/CS5501 Spring '24 31

Contains the (logical) timestamp info.



Version vector (vector clocks)

• Version vectors: List of (data node, counter) 
pairs
• e.g., [(A, 1), (B, 3), …]

• Dynamo stores a version vector with each stored key-
value pair

• Tracks causal relationship between different versions of 
data stored under the same key k

Y. Cheng UVA DS5110/CS5501 Spring '24 32



Version vector in Dynamo
• Rule: If vector clock comparison of v1 < v2, 

then the first is an ancestor of the second – 
Dynamo can forget v1

• Each time a put() occurs, Dynamo increments 
the counter in the V.V. for the corresponding data 
node

• Each time a get() occurs, Dynamo returns the 
V.V. for the value(s) returned (in the “context”)
• Then users must supply that context to put()s that 

modify the same key

Y. Cheng UVA DS5110/CS5501 Spring '24 33



Fig 3 example

Y. Cheng UVA DS5110/CS5501 Spring '24 34


