

Scaling Memcache
at Facebook

Presenter: Rajesh Nishtala (rajesh.nishtala@fb.com)
Co-authors: Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, Venkateshwaran Venkataramani

Infrastructure Requirements
for Facebook
1.  Near real-time communication
2.  Aggregate content on-the-fly from

multiple sources
3.  Be able to access and update very popular

shared content
4.  Scale to process millions of user requests

per second

Design Requirements
Support a very heavy read load

• Over 1 billion reads / second

•  Insulate backend services from high read rates

Geographically Distributed
Support a constantly evolving product

•  System must be flexible enough to support a variety of use cases

•  Support rapid deployment of new features

Persistence handled outside the system
•  Support mechanisms to refill after updates

*: Workload analysis of a large-scale key-value store, Sigmetrics 2012

memcached
• Basic building block for a distributed key-value store

for Facebook
•  Trillions of items

•  Billions of requests / second

• Network attached in-memory hash table
•  Supports LRU based eviction

Roadmap

Storage Cluster
(Master)

Storage Cluster
(Replica)

Front-End Cluster

FE
Memcache

Web Server

Geo Region 1.  Single front-end cluster
• Read heavy workload

• Wide fanout

• Handling failures

Front-End Cluster

FE
Memcache

Web Server

Geo Region

S
to

ra
ge

 R
ep

lic
at

io
n

2. Multiple front-end clusters
•  Controlling data replication

•  Data consistency

3. Multiple Regions
•  Data consistency

Just a few databases are enough to support the load
Pre-memcache

Database Database Database

Web Server Web Server Web Server Web Server

Data sharded across the databases

Interstitial slide

Why Separate Cache?
High fanout and multiple rounds of data fetching

Data dependency DAG for a small request

Interstitial slide
0 No memcache servers

1 A few memcache servers

2 Many memcache servers in one cluster

3 Many memcache servers in multiple clusters

4 Geographically distributed clusters

Scaling memcache in 4 “easy” steps
10s of servers & millions of operations per second

Need more read capacity

•  Two orders of magnitude
 more reads than writes

Database

Database Database

Memcache

1. Get (key)

4. Set (key)

2. Miss (key)

3. DB lookup

•  Solution: Deploy a few
memcache hosts to handle
the read capacity

•  How do we store data?
• Demand-filled look-aside cache

• Common case is data is
available in the cache

Web Server

Handling updates

• Memcache needs to be
 invalidated after DB write
•  Prefer deletes to sets

•  Idempotent

• Demand filled

•  Up to web application
 to specify which keys
 to invalidate after
 database update

Database

Memcache

2. Delete 1. Database
 update

Web Server

Problems with look-aside caching

•  Extend memcache
 protocol with “leases”

• Return and attach a
lease-id with every miss

•  Lease-id is invalidated
inside server on a delete

• Disallow set if the
lease-id is
invalid at the server

Stale Sets

Database Memcache

1. Read (A)

Web Server Web Server

4. Set (B)

2. Updated to (B)

MC & DB Inconsistent

5. Set (A)

3. Read (B)

A B

A B A B

Problems with look-aside caching

• Memcache server
arbitrates access
to database
• Small extension to leases

• Clients given a choice
of using a slightly stale
value or waiting

Thundering Herds

Database Memcache

Web
Server

Web
Server

B A

Web
Server

Interstitial slide
0 No memcache servers

1 A few memcache servers

2 Many memcache servers in one cluster

3 Many memcache servers in multiple clusters

4 Geographically distributed clusters

Scaling memcache in 4 “easy” steps
100s of servers & 10s of millions of operations per second

Need even more read capacity

•  Items are distributed across memcache servers by using
consistent hashing on the key
•  Individual items are rarely accessed very frequently so over replication

doesn’t make sense

Web Server Web Server Web Server Web Server

Memcache Memcache Memcache Memcache

• All web servers talk to all memcache servers
• Accessing 100s of memcache servers to process a user request is

common

Incast congestion

• Many simultaneous responses overwhelm shared
networking resources

Memcache Memcache Memcache Memcache

• Solution: Limit the number of outstanding requests
with a sliding window
•  Larger windows cause result in more congestion

• Smaller windows result in more round trips to the network

Get key1 Get key2 Get key3 Get keyN 10kB val 10kB val 5kB val 7kB val

Web Server
DROPS

Interstitial slide
0 No memcache servers

1 A few memcache servers

2 Many memcache servers in one cluster

3 Many memcache servers in multiple clusters

4 Geographically distributed clusters

Scaling memcache in 4 “easy”
steps 1000s of servers & 100s of millions of operations per second

Storage Cluster (Master)

Multiple clusters

•  All-to-all limits
horizontal scaling

Front-End Cluster

FE
Memcache

Web Server

Front-End Cluster

FE
Memcache

Web Server
•  Multiple memcache

clusters front one
DB installation
• Have to keep the caches

consistent

• Have to manage
over-replication of data

Databases invalidate caches

•  Cached data must be invalidated after database updates
•  Solution: Tail the mysql commit log and issue deletes based

on transactions that have been committed
• Allows caches to be resynchronized in the event of a problem

Front-End Cluster #1

Web Server

MC MC MC MC

Storage Server Commit Log

MySQL

Front-End Cluster #2

Web Server

MC MC MC

Front-End Cluster #3

Web Server

MC MC MC MC

McSqueal

Too many packets
Invalidation pipeline

• Aggregating deletes reduces
packet rate by 18x

• Makes configuration
management easier

• Each stage buffers deletes in
case downstream component is
down

MC MC MC

McSqueal

DB

McSqueal

DB

McSqueal

DB

MC MC MC MC

Memcache
Routers

Memcache
Routers

MC MC MC MC

Memcache
Routers

Memcache Routers

0 No memcache servers

1 A few memcache servers

2 Many memcache servers in one cluster

3 Many memcache servers in multiple clusters

4 Geographically distributed clusters

Scaling memcache in 4 “easy” steps
1000s of servers & > 1 billion operations per second

Geographically distributed clusters

Replica Master

Replica

Writes in non-master

• Race between DB replication and subsequent DB read

Database update directly in master

Replica
DB

Memcache

Web
Server

Web
Server

Master
DB

1. Write to master
2. Delete from mc

3. Read from DB
 (get missed)

4. Set potentially
 state value to
 memcache

3. MySQL replication

Race!

Remote markers
Set a special flag that indicates whether a race is likely

Replica
DB

Memcache

Web Server

Master
DB

2. Write to master

3. Delete from
 memcache

5. Delete remote
 marker

4. Mysql replication

 Read miss path:
If marker set
 read from master DB
else
 read from replica DB

1. Set remote
 marker

Storage Cluster
(Master)

Storage Cluster
(Replica)

Front-End Cluster

FE
Memcache

Web Server

Geo Region

Putting it all together

1.  Single front-end cluster
• Read heavy workload

• Wide fanout

• Handling failures

Front-End Cluster

FE
Memcache

Web Server

Geo Region

S
to

ra
ge

 R
ep

lic
at

io
n

2. Multiple front-end clusters
•  Controlling data replication

•  Data consistency

3. Multiple Regions
•  Data consistency

Lessons Learned
•  Push complexity into the client whenever possible
•  Operational efficiency is as important
 as performance
•  Separating cache and persistent store allows them
 to be scaled independently

Thanks! Questions?

http://www.facebook.com/careers

