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Infrastructure Requirements
for Facebook

1. Near real-time communication
2. Aggregate content on-the-fly from

multiple sources §|&Wé 0/
3. Be able to access and update very popular— —

shared content —

4. Scale to process millions of user requests
~—_N
per second



Design Requirements e« k 6

Support a very heavy read load
* Over 1 billion reads / second

* |Insulate backend services from high read rates
Geographically Distributed
Support a constantly evolving product ¢/

* System must be flexible enough to support a variety of use cases

* Support rapid deployment of new features

Persistence handled outside the system

* Support mechanisms to refill after updates

S
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Table 1: Memcached pools sampled (in one cluster).
These pools do not match their UNIX namesakes,
but are used for illustrative purposes here instead
of their internal names.

Pool | Size Description
»? USR | few user-account status information <—
APP | dozens object metadata of one application
_/-P ETC | hundreds | nonspecific, general-purpose
VAR | dozens server-side browser information
| SYS | few system data on service location

A\

o

: Workload analysis of a large-scale key-value store, Sigmetrics 2012
—~— e
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memecached

* Basic building block for a distributed key-value store
for Facebook

* Trillions of items
* Billions of requests / second

* Network attached in-memory hash table
* Supports LRU based eviction
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Roadmap

0. Pro— mameeed EC2

1. Single front-end cluster

* Read heavy workload

* Wide fanout
__\_/_/
* Handling failures
2. Multiple front-end clusters
* Controlling data replication
* Data consistency
3. Multiple Regions

* Data consistency

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Master)

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Replica)

Storage Replication




Pre-memcache

Just a few databases are enough to support the load

Database

Data sharded across the databases



Why Separate Cache?

High fanout and multiple rounds of data fetching

O % &
PB guer
e fnc it
—_— —_
Data dependency DAG for a small request




Scaling memcache in 4 “easy” steps

10s of servers & millions of operations per second

A few memcache servers




Need more read capacity

1. Get (key)

* Two orders of magnitude
more reads than writes

* Solution: Deploy a few
memcache hosts to handle
the read capacity

4. Set (key)
2. Miss (key

* How do we store data?

@Iook-aside cache
* Common case is data is

available in the cache

Memcache







Handling updates

* Memcache needs to be
invalidated after DB write

Web Server
@Delete

S
gTa(G w'p"?

* Prefer deletes to sets @

Database
Idempotent >Q e+es update

* Demand fllled

O

* Up to web application

to specify which keys Memcache
to invalidate after : -~

database update
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ms with look-aside caching

Stale Sets
L~
* Extend memcache
Web Server protocol with “leases”

Web Server
9 * Return and attach a

1. Read (A lease-id with every miss

3. Read (B 4. Set (B) * Lease-id is invalidated

inside server on a delete

* Disallow set if the

| lease-id is
Dathpase Meméache invalid at the server

2. Updated to (B)

MC & DB Inconsistent
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Problems with look-aside caching
Thundering Herds

Web Web Web * Memcache server
SIAVS L - arbitrates access
to database

* Small extension to leases
* Clients given a choice

of using a slightly stale
value or waiting

Database
B







Scaling memcache in 4 “easy” steps

100s of servers & 10s of millions of operations per second
BN ARy \




Need even more read capacity

( ———————— ——————————
( ———————— ——————————
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Memcache Memcache Memcache ooo Memcache

* Iltems are distributed across memcache servers by using
consistent hashing on the key 4 —"Fo- o M

* Individual items are rarely accessed very frequently so over replication
doesn’t make sense

* All web servers talk to all memcache servers

* Accessing 100s of memcache servers to process a user request is
common
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* Many simultaneous responses overwhelm shared

networking resources \eood — hex vy

‘\(SO\lutiorﬂLimit the number of outstanding requests — -
with a sliding window

—>* Larger windows cause result inr-more congestion

—>* Smaller windows result in more round trips to the network
/——\/"\_\_’_\







Scaling memcache in 4 “easy’
g)tésp)Sservers & 100s of millions of operations per second

I Many memcache servers in multiple clusters




Multiple clusters

Front-End Cluster

Web Server II

* All-to-all limits Front-End Cluster

Web Server II

horizontal scaling

* Multiple memcache
clusters front one
DB installation

* Have to keep the caches
consistent

\

Storage Cluster (Master)
* Have to manage

over-replication of data - XY -




Databases invalidate caches

Front-End Clust Front-End Cluste Front-End Clust
Web Server II Web Server II Web Server II

S \\ [ ~=2
(Cwsac }— 1] T k— ((Mesquear )

Storage Server -SEommit Log

~——
* Cached data must be invalidated after database updates
* Solution: Tail the mysqgl commit log and issue deletes based
on transactions that have been committed

* Allows caches to be resynchronized in the event of a problem



nvalidation pipeline
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Too many pacé?ts cCh 0 2 Youts,

\}

N\ 7/
L)

* Aggregating deletes reduces

“packetrate by 18x
gy P

* Makes configuration
management easier

* Each stage buffers deletes in
case downstream component is
down



Scaling memcache in 4 “easy” steps

1000s of servers & > 1 billion operations per second

Geographically distributed clusters




Geographically distributed clusters

Replica /.
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Writes in non-master Sontila.

Database update directly in master :
. . ~ AVER \
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*Race between DB replication and subsequent DBread 1

—

3. Read from DB
(get missed

FErrafTEiE T B =n —_

2. Delete from mc

+ | Race!

— — Replica
3. MySQL replicationk DB
i

i

4. Set potentially
state value to
memcache

1. Write to master

Master
DB







Remote markers ~ Leace

Set a special flag that indicates whether a race is likely

Read miss path: <,_J quk &&1‘97?“‘ V&/

If marker set
read from master DB

else :
read from replica DB :
rplcae

1. Set remote
marker

2. \Write to master

3. Delete from

memcache
Rephca )y
4. Mysql replication : DB

5. Delete remote
marker

Master
DB
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Putting it all together

1. Single front-end cluster
* Read heavy workload
* Wide fanout
* Handling failures
2. Multiple front-end clusters
* Controlling data replication

* Data consistency

3. Multiple Regions

* Data consistency

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Master)

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Replica)

Storage Replication




L essons Learned

* Push complexity into the client whenever possible

* QOperational efficiency is as important
as performance

* Separating cache and persistent store allows them
to be scaled independently



Thanks! Questions?

http://www.facebook.com/careers
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