facebook



Scaling I\/Iemcache@
at Facebook

—_—

Presenter: Rajesh Nishtala (rajesh.nishtala@fb.com)

Co-authors: Hans Fugal, Steven Grimm, Marc

Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,

Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, Venkateshwaran Venkataramani facebook



Infrastructure Requirements
for Facebook

1. Near real-time communication
2. Aggregate content on-the-fly from

multiple sources §|&Wé 0/
3. Be able to access and update very popular— —

shared content —

4. Scale to process millions of user requests
~—_N
per second



Design Requirements e« k 6

Support a very heavy read load
* Over 1 billion reads / second

* |Insulate backend services from high read rates
Geographically Distributed
Support a constantly evolving product ¢/

* System must be flexible enough to support a variety of use cases

* Support rapid deployment of new features

Persistence handled outside the system

* Support mechanisms to refill after updates

S



So(B xlov — CB

/\

Table 1: Memcached pools sampled (in one cluster).
These pools do not match their UNIX namesakes,
but are used for illustrative purposes here instead
of their internal names.

Pool | Size Description
»? USR | few user-account status information <—
APP | dozens object metadata of one application
_/-P ETC | hundreds | nonspecific, general-purpose
VAR | dozens server-side browser information
| SYS | few system data on service location

A\

o

: Workload analysis of a large-scale key-value store, Sigmetrics 2012
—~— e




VAR

APP

00:00 "YL

00:91 PaM

00:80 PaM

00:00 PaM
00:9L @ny

0o:goenL
00:00 @nL

00:914 uow

00:80 UOW
00:00 uoW

00:9} ung

00:80 Ung

00:00 ung

00:91 1eS
00:80 1eS

00:00 &S
00:94 ug
00:80 ud

00:00 ud
00:91 NyL

00:80 NyL

00:00 "yL
00:91 PaM

00:80 POM
00:00 PaM

110000

100000

160000

140000 [

120000 -

00:00 1e§

USR

SYS

|

!
“‘A vm /ﬁh‘\'

)

J

W

\

"

i

WM

|
|

ol

hil: |

350000

300000

8
8
&

0@s/s)sanbay

250000
150000
100000 ||

50000

0091 anp
86:88 3Rt
00:91 uow
00:80 oy

00:91 jes

20000

18000 |-

16000 |

4000

ER
8 8
@ ©

14000
12000 |
10000 |

o@s/s|sanbay

2000

00:80 Jes

ETC 24 hours

- 00:00

o0o:eg

o0o:ze

002

00:02
00:61

00:81L

00:Lb

009k
00:51

00:%1

00:et

o002k

00: 4
00:0k

00:60

00:80

00:20

00:90

00:50

00:%0
00:€0

00:20

00:10

80000

75000 -

s s &
g 8 § 8
R 8 8 8

50000 [

45000 [

00:00

40000
35000

00:9} POM

00:80 PaM
00:00 PoM
00:94 any

00:80 &Ny

00:00 8nL

00:91 UOW
00:80 UoW
4 00:00 uow
00:91 ung

00:80 ung

00:00 ung

00:91 1eS

00:91 NyL
=4 00:80 Nyl
00:00 NyL

00:91 PaM

00:80 PaM

00:00 POM
00:9L any

00:80 any

wwed 00100 BNL

00:91 uowy

00:80 uoW

00:00 uoy
-4 00:9} ung
00:80 ung

00:00 ung
00:9} 1es

00:80 1ES

90000

80000 |

70000

60000 |
50000 |

2es/sjsanbay ~

40000 -

30000



memecached

* Basic building block for a distributed key-value store
for Facebook

* Trillions of items
* Billions of requests / second

* Network attached in-memory hash table
* Supports LRU based eviction



. TCP/qu-

T

d lewrt (onlidkent ‘/\acld.a/




Roadmap

0. Pro— mameeed EC2

1. Single front-end cluster

* Read heavy workload

* Wide fanout
__\_/_/
* Handling failures
2. Multiple front-end clusters
* Controlling data replication
* Data consistency
3. Multiple Regions

* Data consistency

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Master)

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Replica)

Storage Replication




Pre-memcache

Just a few databases are enough to support the load

Database

Data sharded across the databases



Why Separate Cache?

High fanout and multiple rounds of data fetching

O % &
PB guer
e fnc it
—_— —_
Data dependency DAG for a small request




Scaling memcache in 4 “easy” steps

10s of servers & millions of operations per second

A few memcache servers




Need more read capacity

1. Get (key)

* Two orders of magnitude
more reads than writes

* Solution: Deploy a few
memcache hosts to handle
the read capacity

4. Set (key)
2. Miss (key

* How do we store data?

@Iook-aside cache
* Common case is data is

available in the cache

Memcache







Handling updates

* Memcache needs to be
invalidated after DB write

Web Server
@Delete

S
gTa(G w'p"?

* Prefer deletes to sets @

Database
Idempotent >Q e+es update

* Demand fllled

O

* Up to web application

to specify which keys Memcache
to invalidate after : -~

database update



N'@D S{War,[

[-Qﬂlo.{-

2 pB
UFD(M(*Q.

DB [ma



ms with look-aside caching

Stale Sets
L~
* Extend memcache
Web Server protocol with “leases”

Web Server
9 * Return and attach a

1. Read (A lease-id with every miss

3. Read (B 4. Set (B) * Lease-id is invalidated

inside server on a delete

* Disallow set if the

| lease-id is
Dathpase Meméache invalid at the server

2. Updated to (B)

MC & DB Inconsistent



1 G W D)
1>a ’\ g ' Ceat )
\re ?{F A) A < B

R V)f\\SS _r |
\rea : Stole
U‘»rokz( K,B) ) St <(</4\>i>




[m

P% B,

8 W’“"Q
Ce(@ Vl/l S¢
QA )




Problems with look-aside caching
Thundering Herds

Web Web Web * Memcache server
SIAVS L - arbitrates access
to database

* Small extension to leases
* Clients given a choice

of using a slightly stale
value or waiting

Database
B







Scaling memcache in 4 “easy” steps

100s of servers & 10s of millions of operations per second
BN ARy \




Need even more read capacity

( ———————— ——————————
( ———————— ——————————

h o |G

\ —N s

,’ —— - ‘

Memcache Memcache Memcache ooo Memcache

* Iltems are distributed across memcache servers by using
consistent hashing on the key 4 —"Fo- o M

* Individual items are rarely accessed very frequently so over replication
doesn’t make sense

* All web servers talk to all memcache servers

* Accessing 100s of memcache servers to process a user request is
common



. — 7 Satel %FMU
Incast congestion =7 N 4
7 W22

/)
D < 2 (7
/ a e lF— \’ﬂL
Get kd kB QokBeyall  SKBevak Y8, kB \Bbt keyN \"ac lﬂ—

* Many simultaneous responses overwhelm shared

networking resources \eood — hex vy

‘\(SO\lutiorﬂLimit the number of outstanding requests — -
with a sliding window

—>* Larger windows cause result inr-more congestion

—>* Smaller windows result in more round trips to the network
/——\/"\_\_’_\







Scaling memcache in 4 “easy’
g)tésp)Sservers & 100s of millions of operations per second

I Many memcache servers in multiple clusters




Multiple clusters

Front-End Cluster

Web Server II

* All-to-all limits Front-End Cluster

Web Server II

horizontal scaling

* Multiple memcache
clusters front one
DB installation

* Have to keep the caches
consistent

\

Storage Cluster (Master)
* Have to manage

over-replication of data - XY -




Databases invalidate caches

Front-End Clust Front-End Cluste Front-End Clust
Web Server II Web Server II Web Server II

S \\ [ ~=2
(Cwsac }— 1] T k— ((Mesquear )

Storage Server -SEommit Log

~——
* Cached data must be invalidated after database updates
* Solution: Tail the mysqgl commit log and issue deletes based
on transactions that have been committed

* Allows caches to be resynchronized in the event of a problem



nvalidation pipeline

Hie Vavchicaol

Too many pacé?ts cCh 0 2 Youts,

\}

N\ 7/
L)

* Aggregating deletes reduces

“packetrate by 18x
gy P

* Makes configuration
management easier

* Each stage buffers deletes in
case downstream component is
down



Scaling memcache in 4 “easy” steps

1000s of servers & > 1 billion operations per second

Geographically distributed clusters




Geographically distributed clusters

Replica /.

L ™
- :
¥ S

--j"i:é -
= .~ E™
- e . v

A F

-‘ ?‘z' “ <
e “'“"
"\



Writes in non-master Sontila.

Database update directly in master :
. . ~ AVER \
\J’b\f [N . lOD [ h »L\_; ; ( mg : PLF(((O‘

*Race between DB replication and subsequent DBread 1

—

3. Read from DB
(get missed

FErrafTEiE T B =n —_

2. Delete from mc

+ | Race!

— — Replica
3. MySQL replicationk DB
i

i

4. Set potentially
state value to
memcache

1. Write to master

Master
DB







Remote markers ~ Leace

Set a special flag that indicates whether a race is likely

Read miss path: <,_J quk &&1‘97?“‘ V&/

If marker set
read from master DB

else :
read from replica DB :
rplcae

1. Set remote
marker

2. \Write to master

3. Delete from

memcache
Rephca )y
4. Mysql replication : DB

5. Delete remote
marker

Master
DB



locrdl

twbaleuwce @ 7iD|<

.
K[\g\\fa
¥ \

e T e

T 1o T4 k]




How «o  ya-hash 7

oo data, (LD
@ . Mese -~ dat CHCLO()

oL, tﬁ\ :

(ccle
’—’\c H (K 2)

N \




Putting it all together

1. Single front-end cluster
* Read heavy workload
* Wide fanout
* Handling failures
2. Multiple front-end clusters
* Controlling data replication

* Data consistency

3. Multiple Regions

* Data consistency

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Master)

Geo Region

Front-End Cluster

Web Server II

Storage Cluster
(Replica)

Storage Replication




L essons Learned

* Push complexity into the client whenever possible

* QOperational efficiency is as important
as performance

* Separating cache and persistent store allows them
to be scaled independently



Thanks! Questions?

http://www.facebook.com/careers



facebook



