
WUKONG
Serverless DAG Engine

Benjamin Carver, Jingyuan Zhang, Ao Wang, Yue Cheng

Serverless Computing

● Emerging cloud computing platform based on the composition of fine-grained
user-defined functions

● Service provider is responsible for provisioning, scaling, and managing
resources

● Pay-per-use pricing model with fine granularity

2

AWS Lambda

● Amazon Web Service’s FaaS offering

● Can vary serverless function memory size between 128 - 3008MB

● Can vary execution time between 3 seconds - 15 minutes

● Cost:
○ $0.0000002 per request

○ $0.00001667 per GB second

● Supports JS, Go, Python, Ruby, Java, C#, and Powersh 3

Background - DAG Scheduling

● Data analytics applications can be modeled as a directed
acyclic graph (DAG) based workflow

● Nodes represent computations or “tasks”
○ Computations can be executed by a processor.
○ May require reading/writing shared memory.

● Edges represent dependencies between tasks.
○ Nodes can only be executed after their immediate

predecessors have been executed.

4

Background - DAG Scheduling

● DAG workflows well-suited for serverless computing (or
Functions-as-a-Service)
○ Auto-scaling accommodates short tasks and bursty

workloads
○ Workloads with short tasks can take advantage of

fine-grained pricing used by FaaS providers.
■ In general, pay-per-use pricing keeps cost of

short tasks low.

5

From Serverful to Serverless (Pt. 1)
● Serverful focuses on load balancing and cluster utilization

○ Bounded resources, unlimited time
○ User explicitly allocates tasks to processors
○ Servers managed by the user

● Serverless platforms provide a nearly unbounded amount of ephemeral
resources
○ Bounded time, unlimited resources
○ Cloud provider automatically allocates serverless

functions to VMs
○ Servers managed by the service provider

6

From Serverful to Serverless (Pt. 2)

● Assumptions of traditional serverful schedulers do not necessarily hold.

● A hypothetical serverless DAG scheduler may not necessarily care about
traditional “scheduling”-related metrics and constraints (e.g., load balancing,
cluster utilization).

● Individual tasks can be executed anywhere in the serverless data center
(which is essentially managed by the serverless provider).

7

AWS Lambda Constraints

● Lambda function invocation currently takes 50ms on average

● Outbound-only network connectivity

● Relatively low network bandwidth

● Execution time limits (900 seconds)

● Lack of quality-of-service (QoS) control, leading to stragglers
○ e.g., cold starts

8

Existing Parallel Frameworks Using Serverless Computing

● PyWren [SoCC’17]
○ Parallelize existing Python code with AWS Lambda

● Numpywren
○ System for linear algebra built atop PyWren

● ExCamera [NSDI’17]
○ Allows users to edit, transform, and encode videos using fine-grained serverless functions

● gg [ATC’19]
○ Framework and command-line tools to execute “everyday applications” within cloud functions

9

Typical Approaches

● Approach 1: Queue-based Master-Worker
○ Master submits ready tasks to a queue
○ Workers are cloud functions that process tasks in

parallel, e.g., Numpywren
○ Drawbacks: cannot exploit data locality as easily;

reading from queue could become a bottleneck

● Approach 2: Centralized scheduler directly invokes
cloud functions to process ready tasks,
e.g., ExCamera

○ Drawback: centralized scheduler can become a
bottleneck for system

10

Typical Approaches

● Approach 1: Queue-based Master-Worker
○ Master submits ready tasks to a queue
○ Workers are cloud functions that process tasks in

parallel, e.g., Numpywren
○ Drawbacks: cannot exploit data locality as easily;

reading from queue could become a bottleneck

● Approach 2: Centralized scheduler directly invokes
cloud functions to process ready tasks,
e.g., ExCamera

○ Drawback: centralized scheduler can become a
bottleneck for system

11

Wukong solves these
drawbacks.

Wukong

● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Cluster

● Evaluation

12

Our Approach - Wukong

13

Static Scheduling Dynamic Scheduling

● Decentralized, cooperative scheduling
○ Lambda functions coordinate with each

other to execute overlapping sections of
assigned sub-DAGs

● Statically partition DAG into sub-DAGs
○ Assign each partition to a Lambda function

Task executors cooperate here!

Wukong

● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Cluster

● Evaluation

14

15

Static Scheduler

16

● Partitions DAG into sub-DAG using
a depth-first search (DFS) from
each leaf node.

● Assigns sub-DAGs to executors

● Returns final results back to client.

(1) User submits a workload to the Scheduler

(2) Scheduler uses Dask to generate a DAG from the workload.

(3) Scheduler performs pre-processing on the newly-generated DAG.

(4) Scheduler assigns static schedules to serverless task executors.
17

DAG Pre-processing Stage

1. Generate DAG from user-submitted workload.

2. Iterate over generated tasks to find “leaf tasks”,
or the tasks with no dependencies (i.e.,
in-edges), and “final results”, or tasks with no
“downstream tasks” (i.e., out-edges).

3. Perform a series of depth-first searches
beginning at each “leaf task” to partition DAG
into a series of “static schedules”.

18

Identifying “Leaf Tasks” and Final Results

19

No dependencies (i.e., no in-edges)

No “downstream tasks”
(i.e., no out-edges)

Depth-First Search (DFS)

20

Two Static Schedules

21

Static Schedule #1

Static Schedule #2

Post-DAG Preprocessing Steps

● Once the DFS has been completed, the Static Scheduler will serialize each of
the static schedules and store them in the Key-Value Store (Redis).

22

● After storing the static schedules, the Static Scheduler will invoke a AWS
Lambda Task Executor for each leaf task.
○ If the static schedule is < 256 kB in size, then the Scheduler will send the

static Schedule to the Task Executor via the invocation payload.
○ If the static schedule is > 256 kB in size, then the Scheduler will simply

pass the Redis key of the static schedule. The Task Executor will retrieve
the static schedule once it begins execution.

Executors

23

● Decentralized, cooperating schedulers

● Schedule and execute tasks in assigned
sub-DAGs

● Cooperate on scheduling tasks contained in
two or more sub-DAGs

● “Serverless compute engine” for containers

● Works with Amazon Elastic Container Service (ECS) and Amazon Elastic
Kubernetes Servers (EKS)

● AWS Fargate is responsible for provisioning and managing the servers; user
just specifies resource allocation.

● Relatively inexpensive

24

Storage Cluster

25

● Performs storage operations on
behalf of Executors and Static
Scheduler

● Uses AWS Fargate cluster for
intermediate data storage.

● Use additional, separate Redis
instance running on EC2 for
dependency counters and static
schedule storage.

Storage Cluster - Cost Effectiveness

● Fargate Storage Cluster is 64.8% cheaper than hosting an equivalent cluster
on EC2 and 79.4% cheaper than hosting the same number of Redis instances
on AWS ElastiCache.

26

Storage Cluster Elasticity

27

Wukong

● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Manager

● Evaluation

28

Experimental Goals

● Identify and describe the factors influencing performance and scalability

● Compare WUKONG against Dask
○ Can WUKONG achieve performance comparable to Dask distributed executing on

general-purpose VMs, given the inherent limitations of AWS Lambda?

29

Experimental Setup

● Compare against Dask distributed.
○ 11-node EC2 cluster of r5.4xlarge VMs

● Wukong Static Scheduler, KV Store, and KV Store Proxy running on
r5n.16xlarge EC2 VMs.

● Task Executor allocated 3GB memory with timeout set to two minutes.

30

Four DAG Applications

● Microbenchmark
○ Tree Reduction: repeatedly add adjacent elements of an array until a single value remains

● Linear Algebra
○ General Matrix Multiplication (GEMM)

■ 5,000 × 5,000 through 25,000 × 25,000
○ Singular Value Decomposition (SVD)

■ n × n matrix and a tall-and-skinny matrix, varying sizes

● Machine Learning
○ Support Vector Classification (SVC)

■ 100,000 - 8,192,000 samples

31

Microbenchmark - Tree Reduction with Delays

32

General Matrix Multiplication (GEMM) -- Dask

33

Singular Value Decomposition (SVD) - “Tall and
Skinny”

34

SVD tall-and-skinny

X = da.random.random((200000, 100), chunks=(10000, 100))
u, s, v = da.linalg.svd(X)
v.compute() # Begin execution

Singular Value Decomposition - “n × n”

35

SVD-Compressed (rank 5) n × n

X = da.random.random((10000, 10000), chunks=(2000, 2000))
u, s, v = da.linalg.svd_compressed(X, k=5)
v.compute() # Begin execution

Support Vector Classification (SVC)

36

Scalability - Strong & Weak Scaling

● Weak Scaling:
○ Both the number of workers and the problem size are increased.

■ Keep amount of work per worker fixed, add more workers.
Does performance improve?

○ Usually relevant for memory-bound tasks.

● Strong Scaling:
○ The number of workers is increased while the problem size remains

constant.
■ Keep problem size fixed, but add more workers. Does

performance improve?
○ Usually relevant for CPU-bound tasks. 37

Scalability of Wukong (ABC)

38

Factors Influencing Performance of Wukong

39

Workload Parameters - Partition Size

40

Workload Parameters - Fargate Cluster Size

41

Diagnosing Performance - Workload
Characteristics

● How is the overall execution time divided up?

● What activities are being performed? Taking the longest?

● How can we optimize the common case?

42

Workload I/O Characteristics

43

Small number of extremely large
objects -- huge impact on performance!

SVD 50k x 50k Performance with Ideal Storage

44

45

Task Clustering and Delayed I/O

● We developed new techniques to eliminate large-object I/O during execution.

● Task Clustering
○ After executing a task that produces “large” intermediate data, execute all

immediate downstream tasks locally on the same Task Executor.

● Delayed I/O
○ If there are some downstream tasks which depend on the large

intermediate data but are not yet ready to execute due to some other
missing data dependency, place these tasks in a queue in keep retrying
them until they’re ready.

46

47

How do task clustering and delayed I/O impact
performance?

48

7.21x time spent invoking tasks
27.76x more I/O

49

20.85%
48.82%

46.21%

Overall: 4.6x faster compared to baseline.

Do task clustering and delayed I/O impact cost?

● YES

● For SVD 50,000 x 50,000:
○ Task clustering + delayed I/O reduce workload cost by 65.23% (from

$0.04556 to $0.01584).

● For SVD 100,000 x 100,000:
○ Task clustering + delayed I/O reduce workload cost by 73.50% (from

$1.17 to $0.31).
50

Conclusion

● Serverless platform introduces unique challenges and opportunities

● Decentralization provides a large performance increase
○ Data locality and minimizing network overhead are also important to performance

● WUKONG achieves performance comparable to serverful Dask distributed
running on general-purpose EC2 VMs.

51

Thank you!
Questions?

Contact: Benjamin Carver - bcarver2@gmu.edu

GitHub: https://github.com/mason-leap-lab/Wukong

52

https://github.com/mason-leap-lab/Wukong

