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Serverless Computing 

● Emerging cloud computing platform based on the composition of fine-grained 
user-defined functions

● Service provider is responsible for provisioning, scaling, and managing 
resources

● Pay-per-use pricing model with fine granularity 
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AWS Lambda

● Amazon Web Service’s FaaS offering 

● Can vary serverless function memory size between 128 - 3008MB

● Can vary execution time between 3 seconds - 15 minutes

● Cost: 
○ $0.0000002 per request

○ $0.00001667 per GB second 

● Supports JS, Go, Python, Ruby, Java, C#, and Powersh 3



Background - DAG Scheduling

● Data analytics applications can be modeled as a directed 
acyclic graph (DAG) based workflow

● Nodes represent computations or “tasks” 
○ Computations can be executed by a processor.
○ May require reading/writing shared memory.

● Edges represent dependencies between tasks.
○ Nodes can only be executed after their immediate 

predecessors have been executed.
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Background - DAG Scheduling

● DAG workflows well-suited for serverless computing (or 
Functions-as-a-Service)
○ Auto-scaling accommodates short tasks and bursty 

workloads
○ Workloads with short tasks can take advantage of 

fine-grained pricing used by FaaS providers.
■ In general, pay-per-use pricing keeps cost of 

short tasks low.
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From Serverful to Serverless (Pt. 1)
● Serverful focuses on load balancing and cluster utilization 

○ Bounded resources, unlimited time
○ User explicitly allocates tasks to processors
○ Servers managed by the user

● Serverless platforms provide a nearly unbounded amount of ephemeral 
resources 
○ Bounded time, unlimited resources
○ Cloud provider automatically allocates serverless 

functions to VMs
○ Servers managed by the service provider 
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From Serverful to Serverless (Pt. 2)

● Assumptions of traditional serverful schedulers do not necessarily hold.

● A hypothetical serverless DAG scheduler may not necessarily care about 
traditional “scheduling”-related metrics and constraints (e.g., load balancing, 
cluster utilization).

● Individual tasks can be executed anywhere in the serverless data center 
(which is essentially managed by the serverless provider).
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AWS Lambda Constraints

● Lambda function invocation currently takes 50ms on average

● Outbound-only network connectivity

● Relatively low network bandwidth 

● Execution time limits (900 seconds) 

● Lack of quality-of-service (QoS) control, leading to stragglers
○ e.g., cold starts 
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Existing Parallel Frameworks Using Serverless Computing

● PyWren [SoCC’17]
○ Parallelize existing Python code with AWS Lambda

● Numpywren 
○ System for linear algebra built atop PyWren 

● ExCamera [NSDI’17]
○ Allows users to edit, transform, and encode videos using fine-grained serverless functions

● gg [ATC’19]
○ Framework and command-line tools to execute “everyday applications” within cloud functions 
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Typical Approaches

● Approach 1: Queue-based Master-Worker
○ Master submits ready tasks to a queue 
○ Workers are cloud functions that process tasks in 

parallel, e.g., Numpywren
○ Drawbacks: cannot exploit data locality as easily; 

reading from queue could become a bottleneck

● Approach 2: Centralized scheduler directly invokes 
cloud functions to process ready tasks, 
e.g., ExCamera

○ Drawback: centralized scheduler can become a 
bottleneck for system
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Wukong solves these 
drawbacks.



Wukong

● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Cluster

● Evaluation 
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Our Approach - Wukong
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Static Scheduling Dynamic Scheduling

● Decentralized, cooperative scheduling
○ Lambda functions coordinate with each 

other to execute overlapping sections of 
assigned sub-DAGs 

● Statically partition DAG into sub-DAGs 
○ Assign each partition to a Lambda function

Task executors cooperate here!
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Static Scheduler
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● Partitions DAG into sub-DAG using 
a depth-first search (DFS) from 
each leaf node.

● Assigns sub-DAGs to executors

● Returns final results back to client.



(1) User submits a workload to the Scheduler 

(2) Scheduler uses Dask to generate a DAG from the workload.

(3) Scheduler performs pre-processing on the newly-generated DAG.

(4) Scheduler assigns static schedules to serverless task executors.
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DAG Pre-processing Stage

1. Generate DAG from user-submitted workload.

2. Iterate over generated tasks to find “leaf tasks”, 
or the tasks with no dependencies (i.e., 
in-edges), and “final results”, or tasks with no 
“downstream tasks” (i.e., out-edges).

3. Perform a series of depth-first searches 
beginning at each “leaf task” to partition DAG 
into a series of “static schedules”.

18



Identifying “Leaf Tasks” and Final Results
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No dependencies (i.e., no in-edges)

No “downstream tasks”
(i.e., no out-edges)



Depth-First Search (DFS)
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Two Static Schedules
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Static Schedule #1

Static Schedule #2



Post-DAG Preprocessing Steps

● Once the DFS has been completed, the Static Scheduler will serialize each of 
the static schedules and store them in the Key-Value Store (Redis).
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● After storing the static schedules, the Static Scheduler will invoke a AWS 
Lambda Task Executor for each leaf task. 
○ If the static schedule is < 256 kB in size, then the Scheduler will send the 

static Schedule to the Task Executor via the invocation payload.
○ If the static schedule is > 256 kB in size, then the Scheduler will simply 

pass the Redis key of the static schedule. The Task Executor will retrieve 
the static schedule once it begins execution.



Executors
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● Decentralized, cooperating schedulers

● Schedule and execute tasks in assigned 
sub-DAGs

● Cooperate on scheduling tasks contained in 
two or more sub-DAGs 



● “Serverless compute engine” for containers 

● Works with Amazon Elastic Container Service (ECS) and Amazon Elastic 
Kubernetes Servers (EKS)

● AWS Fargate is responsible for provisioning and managing the servers; user 
just specifies resource allocation. 

● Relatively inexpensive 
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Storage Cluster
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● Performs storage operations on 
behalf of Executors and Static 
Scheduler

● Uses AWS Fargate cluster for 
intermediate data storage.

● Use additional, separate Redis 
instance running on EC2 for 
dependency counters and static 
schedule storage.



Storage Cluster - Cost Effectiveness

● Fargate Storage Cluster is 64.8% cheaper than hosting an equivalent cluster 
on EC2 and 79.4% cheaper than hosting the same number of Redis instances 
on AWS ElastiCache.
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Storage Cluster Elasticity
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Wukong

● Approach

● Architecture
○ Static Scheduler
○ Task Executors
○ Storage Manager

● Evaluation 
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Experimental Goals

● Identify and describe the factors influencing performance and scalability 

● Compare WUKONG against Dask 
○ Can WUKONG achieve performance comparable to Dask distributed  executing on 

general-purpose VMs, given the inherent limitations of AWS Lambda? 
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Experimental Setup

● Compare against Dask distributed. 
○ 11-node EC2 cluster of r5.4xlarge  VMs 

● Wukong Static Scheduler, KV Store, and KV Store Proxy running on 
r5n.16xlarge EC2 VMs. 

● Task Executor allocated 3GB memory with timeout set to two minutes. 
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Four DAG Applications

● Microbenchmark
○ Tree Reduction: repeatedly add adjacent elements of an array until a single value remains 

● Linear Algebra 
○ General Matrix Multiplication (GEMM)

■ 5,000 × 5,000 through 25,000 × 25,000
○ Singular Value Decomposition (SVD)

■ n × n matrix and a tall-and-skinny matrix, varying sizes

● Machine Learning
○ Support Vector Classification (SVC)

■ 100,000 - 8,192,000 samples 
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Microbenchmark - Tree Reduction with Delays
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General Matrix Multiplication (GEMM) -- Dask
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Singular Value Decomposition (SVD) - “Tall and 
Skinny”
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SVD tall-and-skinny

X = da.random.random((200000, 100), chunks=(10000, 100))
u, s, v = da.linalg.svd(X)   
v.compute() # Begin execution



Singular Value Decomposition - “n × n”
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SVD-Compressed (rank 5) n × n

X = da.random.random((10000, 10000), chunks=(2000, 2000))
u, s, v = da.linalg.svd_compressed(X, k=5)
v.compute() # Begin execution



Support Vector Classification (SVC)
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Scalability - Strong & Weak Scaling

● Weak Scaling:
○ Both the number of workers and the problem size are increased.

■ Keep amount of work per worker fixed, add more workers. 
Does performance improve?

○ Usually relevant for memory-bound tasks.

● Strong Scaling:
○ The number of workers is increased while the problem size remains 

constant.
■ Keep problem size fixed, but add more workers. Does 

performance improve?
○ Usually relevant for CPU-bound tasks. 37



Scalability of Wukong (ABC)
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Factors Influencing Performance of Wukong
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Workload Parameters - Partition Size

40



Workload Parameters - Fargate Cluster Size
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Diagnosing Performance - Workload 
Characteristics

● How is the overall execution time divided up?

● What activities are being performed? Taking the longest?

● How can we optimize the common case?
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Workload I/O Characteristics
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Small number of extremely large 
objects -- huge impact on performance!



SVD 50k x 50k Performance with Ideal Storage

44



45



Task Clustering and Delayed I/O

● We developed new techniques to eliminate large-object I/O during execution.

● Task Clustering
○ After executing a task that produces “large” intermediate data, execute all 

immediate downstream tasks locally on the same Task Executor.

● Delayed I/O
○ If there are some downstream tasks which depend on the large 

intermediate data but are not yet ready to execute due to some other 
missing data dependency, place these tasks in a queue in keep retrying 
them until they’re ready.

46



47



How do task clustering and delayed I/O impact 
performance?
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7.21x time spent invoking tasks
27.76x more I/O
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20.85%
48.82%

46.21%

Overall: 4.6x faster compared to baseline.



Do task clustering and delayed I/O impact cost?

● YES

● For SVD 50,000 x 50,000:
○ Task clustering + delayed I/O reduce workload cost by 65.23% (from 

$0.04556 to $0.01584).

● For SVD 100,000 x 100,000:
○ Task clustering + delayed I/O reduce workload cost by 73.50% (from 

$1.17 to $0.31).
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Conclusion

● Serverless platform introduces unique challenges and opportunities 

● Decentralization provides a large performance increase
○ Data locality and minimizing network overhead are also important to performance 

● WUKONG achieves performance comparable to serverful Dask distributed 
running on general-purpose EC2 VMs.
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Thank you!
Questions?

Contact: Benjamin Carver - bcarver2@gmu.edu

GitHub: https://github.com/mason-leap-lab/Wukong
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https://github.com/mason-leap-lab/Wukong

