
InfiniCache: Exploiting Ephemeral
Serverless Functions to Build a
Cost-Effective Memory Cache

Ao Wang*, Jingyuan Zhang*, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,
Dimitrios Skourtis, Vasily Tarasov, Feng Yan, Yue Cheng

* These authors contributed equally to this work

Web applications are storage-intensive

2

Google Cloud Storage

Web applications — heterogeneous I/O

3

Client

Microservices

Case study: IBM Docker registry workloads

• IBM Cloud container registry service across 75 days during 2017

• Selected data centers: Dallas & London

4

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

5

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

6

Extreme variability in object sizes:

Ø Object sizes span over 9 orders of magnitude

Ø 20% of objects > 10MB

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

7

Caching large objects is beneficial:

Ø > 30% large object (>10MB) access 10+ times

Ø Around 45% of them got reused within 1 hour

Case study: IBM Docker registry workloads

• Object size distribution

• Large object reuse patterns

• Storage footprint

8

Extreme tension between small and large objects:

Ø Large objects (>10MB) occupy 95% storage footprint

Existing cloud storage solutions

9

Both dimensions: the lower the better

Price ($/GB/hour)

Pe
rfo
rm
an
ce

(la
te
nc
y)

Cheap $ Expensive $$$
Fast

Slow

Large objects managed by cloud object stores

10Price ($/GB/hour)

Object stores are cheap but too slow

Pe
rfo
rm
an
ce

(la
te
nc
y)

Both dimensions: the lower the better

AWS S3: $0.023 per GB per month

Cheap $ Expensive $$$
Fast

Slow

Small objects accelerated by in-memory caches

11Price ($/GB/hour)

In-memory caches are fast but too expensive

Pe
rfo
rm
an
ce

(la
te
nc
y)

Both dimensions: the lower the better

AWS ElastiCache: $0.016 per GB per hour

Cheap $ Expensive $$$
Fast

Slow

Object stores are cheap but too slow

Existing cloud storage solutions

12Price ($/GB/hour)

Pe
rfo
rm
an
ce

(la
te
nc
y)

Cheap $ Expensive $$$
Fast

Slow

• Caching both small and large objects is challenging
• Existing solutions are either too slow or expensive

Existing cloud storage solutions

13Price ($/GB/hour)

Pe
rfo
rm
an
ce

(la
te
nc
y)

Cheap $ Expensive $$$
Fast

Slow

• Caching both small and large objects is challenging
• Existing solutions are either too slow or expensive

How can we achieve the
best of both worlds?

14

Requires rethinking about a new cloud
cache/storage model that achieves both

cost effectiveness and high-performance!

• Caching both small and large objects is challenging
• Existing solutions are either too slow or expensive

15

InfiniCache: A cost-effective and high-
performance in-memory caching solution

atop Serverless Computing platform

• Insight #1: Serverless functions’ <CPU, Mem>
resources are pay-per-use

• Insight #2: Serverless providers offer “free” function
caching for tenants

16

InfiniCache: A cost-effective and high-
performance in-memory caching solution

atop Serverless Computing platform

• Insight #1: Serverless functions’ <CPU, Mem>
resources are pay-per-use

• Insight #2: Serverless providers offer “free” function
caching for tenants

à Cost-effectiveness

à High-performance

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived

tasks (i.e., Lambda functions) with high elasticity and fine-grained
resource billing

17
Serverless provider

Deploy

Functions
Tenants

Invoke

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived

tasks (i.e., Lambda functions) with high elasticity and fine-grained
resource billing

• Function: basic unit of deployment. Application consists of
multiple serverless functions

18
Serverless provider

Deploy

Functions
Tenants

Invoke

A primer on Serverless Computing
• Serverless computing enables cloud tenants to launch short-lived

tasks (i.e., Lambda functions) with high elasticity and fine-grained
resource billing

• Function: basic unit of deployment. Application consists of
multiple serverless functions

• Popular use cases: Backend APIs, data processing…

19
Serverless provider

Deploy

Functions
Tenants

Invoke

Serverless Computing is desirable

20

• Pay-per-use pricing model
• AWS Lambda: $0.2 per 1M invocations

$0.00001667 for every GB-sec

Serverless provider

Deploy

Functions
Tenants

Invoke

Serverless Computing is desirable
• Pay-per-use pricing model
• AWS Lambda: $0.2 per 1M invocations

$0.00001667 for every GB-sec

• Short-term function caching
• Provider caches triggered functions in memory without charging tenants

21
Serverless provider

Deploy

Functions
Tenants

Invoke

Serverless Computing is desirable
• Pay-per-use pricing model
• AWS Lambda: $0.2 per 1M invocations

$0.00001667 for every GB-sec

• Short-term function caching
• Provider caches triggered functions in memory without charging tenants

Goal: Exploit the serverless computing model to build
a cost-effective, high-performance in-memory cache

GET

Tenants
PUT

Serverless provider

Challenges: to build a memory cache with
serverless functions
• A strawman proposal
• Directly cache the objects in serverless

functions’ memory?

• No data availability guarantee

• Banned inbound network

• Limited per-function resources

23

Challenges: to build a memory cache with
serverless functions
• A strawman proposal
• Directly cache the objects in serverless

functions’ memory?

•No data availability guarantee

• Banned inbound network

• Limited per-function resources

24

⚠ Serverless functions could

be reclaimed any time

⚠ In-memory state is lost

Lambda

Challenges: to build a memory cache with
serverless functions
• A strawman proposal

• Directly cache the objects in serverless
functions’ memory?

• No data availability guarantee

• Banned inbound network

• Limited per-function resources

25

⚠ Serverless functions cannot

run as a server
Inboundconnection

Challenges: to build a memory cache with
serverless functions
• A strawman proposal

• Directly cache the objects in serverless
functions’ memory?

• No data availability guarantee

• Banned inbound network

• Limited per-function resources

26

⚠ Memory up to 3 GB

⚠ CPU up to 2 cores

Lambda Server

Our contribution: InfiniCache

• The first in-memory cache system built atop serverless functions

• InfiniCache achieves high data availability by leveraging erasure coding

and delta-sync periodic data backup across functions

• InfiniCache achieves high performance by utilizing the aggregated

network bandwidth of multiple functions in parallel

• InfiniCache achieves similar performance to AWS ElastiCache, while

improving the cost-effectiveness by 31—96X

27

Outline

• InfiniCache Design

• Evaluation

• Conclusion

28

InfiniCache bird’s eye view – Multi proxy

29

• Each application and each proxy
will be fully connected

• No intersection between different
lambda cache pools

InfiniCache bird’s eye view – zoom in (single proxy)

30

EC encoder/decoder InfiniCache client library

Application

Request routing

Lambda management InfiniCache proxy server

Lambda cache pool1

2

3

4

5

InfiniCache bird’s eye view

31

EC encoder/decoder InfiniCache client library

Application

Request routing

Lambda management InfiniCache proxy server

Lambda cache pool1

2

3

4

5

We use unique
lambda id to address

lambda functions

InfiniCache: PUT path

32

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

InfiniCache: PUT path

33

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

InfiniCache: PUT path

34

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

1. Object is split and encoded into
k+r chunks

k = 2, r = 1

InfiniCache: PUT path

35

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

1. Object split and encode into k+r
chunks

2. Object chunks are sent to the
proxy in parallel

k = 2, r = 1

InfiniCache: PUT path

36

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

d1 d2 p1

1. Object split and encode into k+r
chunks

2. Object chunks are sent to the
proxy in parallel

3. Proxy invoke Lambda cache
nodes

k = 2, r = 1

Invocation path

InfiniCache: PUT path

37

EC encoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

X

Request routing

d1 d2 p1

d1 d2 p1

d1 d2 p1

1. Object split and encode into k+r
chunks

2. Object chunks are sent to the
proxy in parallel

3. Proxy invoke Lambda cache
nodes

4. Proxy streams object chunks to
Lambda cache nodes

k = 2, r = 1

Data path

InfiniCache: GET path

38

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

InfiniCache: GET path

39

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

GET

InfiniCache: GET path

40

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

Invocation path

InfiniCache: GET path

41

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

3. Lambda cache nodes transfer
object chunks to proxy d1 p1 Data path

InfiniCache: GET path

42

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

3. Lambda cache nodes transfer
object chunks to proxy
• First-d optimization: Proxy

drops straggler Lambda

d1 p1 k = 2, r = 1

d2 is straggling…

Data path

InfiniCache: GET path

43

EC decoder InfiniCache client library

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated

Lambda cache nodes

3. Lambda cache nodes transfer

object chunks to proxy

4. Proxy streams k chunks in

parallel to client

d1 p1

d1 p1 k = 2 chunks

k = 2, r = 1

d2 is straggling…

Data path

InfiniCache: GET path

44

EC decoder

Application

InfiniCache proxy

Lambda cache pool

Request routing

d1 d2 p1

1. Client sends GET request

2. Proxy invokes associated
Lambda cache nodes

3. Lambda cache nodes transfer
object chunks to proxy

4. Proxy streams k chunks in
parallel to client

5. Client library decodes k chunks

d1 p1

d1 p1

X

InfiniCache client library

k = 2 chunks

k = 2, r = 1

d2 is straggling…

Data path

Maximizing data availability
• Erasure-coding

• Periodic warm-up

• Periodic delta-sync backup

45

Maximizing data availability
• Erasure-coding

• Periodic warm-up

• Periodic delta-sync backup

46

AWS Lambda reclaiming policy

47

0 4 8 12 16 20 24
Timeline (Hour)

0
50

100
150
200
250
300

#
)

un
c

re
cl

ai
m

ed 1 min (01/09/20)
9 min (08/21/19)

Maximizing data availability: Periodic warm-up

AWS Lambda reclaiming policy

48

0 4 8 12 16 20 24
Timeline (Hour)

0
50

100
150
200
250
300

#
)

un
c

re
cl

ai
m

ed 1 min (01/09/20)
9 min (08/21/19)

Maximizing data availability: Periodic warm-up

Function reclaiming

Maximizing data availability: Periodic warm-up

AWS Lambda reclaiming policy

• Shorter triggering interval will lower

the function reclaiming rate

49

0 4 8 12 16 20 24
Timeline (Hour)

0
50

100
150
200
250
300

#
)

un
c

re
cl

ai
m

ed 1 min (01/09/20)
9 min (08/21/19)

1min interval
significantly reduce

function reclaiming rate

Maximizing data availability: Periodic warm-up

50

Proxy1. Lambda nodes are cached by
AWS when not running
• AWS may reclaim cold

Lambda functions after they
are idling for a period

Maximizing data availability: Periodic warm-up

51

1. Lambda nodes are cached by
AWS when not running
• AWS may reclaim cold

Lambda functions after they
are idling for a period

2. Proxy periodically invokes
sleeping Lambda cache nodes to
extend their lifespan

Proxy

Maximizing data availability: Periodic backup

52

Proxy

Maximizing data availability: Periodic backup

53

Function deployment

Proxy

: Primary

: Backup

Maximizing data availability: Periodic backup

54

1. Proxy periodically sends out
backup commands to Lambda
cache nodes

Proxy

: Primary

: Backup

Maximizing data availability: Periodic backup

55

1. Proxy periodically sends out
backup commands to Lambda
cache nodes

2. Lambda node performs delta-
sync with its peer replica
• Source Lambda propagates delta-

update to destination Lambda

Relay

Proxy

: Primary

: Backup

Seamless failover

56

Proxy

Function deployment

: Primary

: Backup

Maximizing data availability: Seamless failover

57

1. Proxy invokes a Lambda cache
node with a GET request

Proxy

GET(key)

: Primary

: Backup

Maximizing data availability: Seamless failover

58

1. Proxy invokes a Lambda cache
node with a GET request

2. Primary Lambda gets reclaimed

Proxy

Reclaim
ed

GET(key)

: Primary

: Backup

Maximizing data availability: Seamless failover

59

1. Proxy invokes a Lambda cache
node with a GET request

2. Primary Lambda gets reclaimed

3. The invocation request gets
seamlessly redirected to the
backup Lambda

Reclaim
ed

Proxy

GET(key)

: Primary

: Backup

Maximizing data availability: Seamless failover

60

1. Proxy invokes a Lambda cache node with a GET
request

2. Source Lambda gets reclaimed

3. The invocation request gets seamlessly
redirected to the backup Lambda
• Failover gets automatically

done and the backup
becomes the primary

• By exploiting the auto-scaling
feature of AWS Lambda

Object chunk

Reclaim
ed

Proxy

GET(key)

: Primary

: Backup

Outline

• InfiniCache Design

• Evaluation

• Conclusion

61

Experimental setup
• InfiniCache
• 400 1.5GB Lambda cache nodes
• Client running on one c5n.4xlarge EC2 VM

• Warm-up interval: 1 minute; backup interval: 5 minutes

• Under one AWS VPC

• Production workloads
• The first 50 hours of the Dallas datacenter traces from IBM Docker

registry workloads

• All objects: including small and large objects

• Large object only: objects > 10MB

62

Cost effectiveness of InfiniCache

63

101

102

$518.40

$20.52 $16.51

$5.41

ElastiCache AWS ElastiCache
• One cache.r5.24xlarge

with 600GB memory
• $10.368 per hour

Cost effectiveness of InfiniCache

64

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)

Workload setup
• All objects
• Large object only
• Object larger than 10MB

Cost effectiveness of InfiniCache

65

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)

31x

Workload setup
• All objects
• Large object only
• Object larger than 10MB

Cost effectiveness of InfiniCache

66

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

Workload setup
• All objects

• Large object only
• Object larger than 10MB

• Large object w/o backup
96x

Cost effectiveness of InfiniCache

67

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

Workload ElastiCache InfiniCache InfiniCache w/o backup
All objects 67.9% 64.7% ---
Large object only 65.9% 63.6% 56.1%

Workload setup
• All objects

• Large object only
• Object larger than 10MB

• Large object w/o backup

Hit ratio

Cost effectiveness of InfiniCache

68

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

3x

Workload ElastiCache InfiniCache InfiniCache w/o backup
All objects 67.9% 64.7% ---
Large object only 65.9% 63.6% 56.1%

Workload setup
• All objects

• Large object only
• Object larger than 10MB

• Large object w/o backup

Hit ratio and $$ cost tradeoff

Cost effectiveness of InfiniCache

69

101

102

$518.40

$20.52 $16.51

$5.41

(lastiCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

96x

InfiniCache is 31 – 96x cheaper than ElastiCache because
tenant does not pay when Lambdas are not running

Workload setup
• All objects

• Large object only
• Object larger than 10MB

• Large object w/o backup

3x

Performance of InfiniCache

70

All objects Large objects only

All objects Large objects only

Performance of InfiniCache

71

> 100 times
improvement

Performance of InfiniCache

72

Performance of InfiniCache

73

Lambda invocation overhead (~13ms)
dominates when fetching small objects

Performance of InfiniCache

74

InfiniCache achieves same or higher
performance than ElastiCache for large objects

Evaluation

75

100B 200B 400B 600B 800B 1000B
2EM 6Lze(0B)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2
4+2

5+1
(OastLCache(10-node)
(OastLCache(1-node)

3008MB Lambda memory

100B 200B 400B 600B 800B 1000B
2bj 6ize(0B)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2

10+4
4+2
5+1

2048MB Lambda memory

100B 200B 400B 600B 800B 1000B
2bj 6ize(0B)

0

200

400

600

La
te

nc
y(

m
s)

10+0
10+1
10+2

10+4
4+2
5+1

512MB Lambda memory

• Microbenchmark

Evaluation – Production Workloads

76

0 10 20 30 40 50
TLmelLne (hRur)

(a) All REjeFts

0

200

400

600

CR
un

t

0 10 20 30 40 50
TLmelLne (hRur)

(E) /arge REj Rnly

0

200

400

600

0 10 20 30 40 50
TLmelLne (hRur)

(F) /arge REj Rnly w/R EaFkup

0

200

400

600
5eFRvery
5(6(T
)unFtLRn reFlaLmLng

All objects Large objects only Large objects only w/o backup

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

0 10 20 30 40 50
TLmelLne (hRur)

(a) All REjeFts

0

200

400

600

CR
un

t

0 10 20 30 40 50
TLmelLne (hRur)

(E) /arge REj Rnly

0

200

400

600

0 10 20 30 40 50
TLmelLne (hRur)

(F) /arge REj Rnly w/R EaFkup

0

200

400

600
5eFRvery
5(6(T
)unFtLRn reFlaLmLng

All objects Large objects only Large objects only w/o backup

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

• Cost Breakdown

• Warm-up cost

• Backup cost

• PUT/SET cost

Backup and Warm-up cost dominate total cost

Conclusion
• InfiniCache is the first in-memory cache system built atop a

serverless computing platform (AWS)

• InfiniCache synthesizes a series of techniques to achieve high

performance while maintaining good data availability

• InfiniCache improves the cost-effectiveness by 31-96x compared

to AWS ElastiCache

77

Thank you!
• Contact: Ao Wang – awang24@gmu.edu,

Jingyuan Zhang – jzhang33@gmu.edu

• https://github.com/mason-leap-lab/infinicache

78

mailto:awang24@gmu.edu
mailto:jzhang33@gmu.edu
https://github.com/mason-leap-lab/infinicache

Supplementary Topics
• Keep Lambdas alive
• Advanced proxy-lambda interaction
• How to use InfiniCache?

1. Storage for machine learning applications.
2. Client in the Lambda, a P2P approach

79

Keep Lambdas Alive - Problem
• What we knew?

•Lambda instances can be reclaimed any time.

•If invoked periodically every 60s, the lifetime ranges from 1 minute to 8.3
hours, with median instance lifetime ... is 6.2 hours.

•If idle, the instance will be reclamied within 27 minutes. [Wang ATC'18]

• Problem?

•We have N Lambda functions, 1 instance per function, how to avoid data
loss?

80

Keep Lambdas Alive - Idea
• Idea?
• Invoking Lambda instances every 60s, chances are N instances will not

all be reclaimed at any moment given the lifetime various.

• With erasure coding, data are stored in D+P Lambda instances. If more
than D instances survive on requesting, the data is recoverable.

• Challenge?
• If N instances get reclaimed at the same time, data can't be preserved.

• If the chance of losing P instances out of any D+P instances is high
enough, data can't be preserved.

• Can we invoke instances with longer interval, how about 9 minutes?

81

Keep Lambdas Alive - Experiment
• Solution: Experiment

• N = 400 Lambda functions was deployed. 1 instance per function.

• Instances are invoked every T=60s and T=540s.

• Every invocation, the start time of the instance is recorded. So a finding of
new start timestamp indicates the old instance is reclaimed.

• Every T interval, the number of new instances is reported.

82

T1

Invoke
T1

T=60s

T1 T2 T2 T2
T2

T1 has been reclaimed

Keep Lambdas Alive - Experiment

83

Lambda4

T=60s

T1 T1 T1 T4 T4 T4 T4

T1 T2 T2 T2 T2 T2 T2

T1 T1 T1 T4 T4 T4 T4

T1 T1 T1 T1 T5 T5 T5

Lambda3

Lambda2

Lambda1

Keep Lambdas Alive - Experiment

84

Lambda4

T=60s

T1 T1 T1 T4 T4 T4 T4

T1 T2 T2 T2 T2 T2 T2

T1 T1 T1 T4 T4 T4 T4

T1 T1 T1 T1 T5 T5 T5

Lambda3

Lambda2

Lambda1

At T4 , 2 out of 4 Lambda
instances have been reclaimed

Keep Lambdas Alive - Result
• The experiment had been carried for 6 months to study policy

changes of AWS Lambda.

85

0 4 8 12 16 20 24
Timeline (Hour)

0

100

200

300

#
)

un
c

re
cl

ai
m

ed 1 min (01/09/20)
1 min (12/26/19)
1 min (11/06/19)
1 min (10/20/19)
1 min (09/15/19)
9 min (08/21/19)

Keep Lambdas Alive - Distribution

86

0 10 20 30 40 50
5eclaiPed functiRn per Pinute

0.0
0.1
0.2
0.3
0.4
0.5
0.6

3r
Rb

ab
ili

ty

1 Pin (01/09/20)
1 Pin (12/26/19)
1 Pin (11/06/19)
1 Pin (10/20/19)
1 Pin (09/15/19)
9 Pin (08/21/19)

Keep Lambdas Alive - Observation
• In Sep 2019, if we invoke Lambda instances every 60s:

• We observed 10+ out of 400 Lambda instances get reclaimed within

one-minute interval for 2 out of 1440 samples (24 hours)

•87% of samples loss no more than 2 instances within one-minute
interval

• Later experiments observed policy changes, but trends hold.

With erasure coding, can we recover data from this loss?

87

Keep Lambdas Alive - Calculation
• Assuming a configuration of erasure coding n = d + p
• If i (i > p) chunks are lost, data are unrecoverable.

• Assuming for N Lambda instances
• r instances are reclaimed within one-minute interval.

• The chance Pi the data are lost because i chunks are lost is:

!" =
$ %, " $((− %, * − ")

$((, *)
• The aggregated chance P(r) the data are lost is:

! % = ,
-./01

2
!" ≅ !4 + 1

88

Keep Lambdas Alive – Calculation cont’d
• The chance P of losing any data within one-minute interval is:

! = #
$%&'(

)
! * +,(*)

! ≅ #
$%&'(

) 0 *, + + 1 0(4 − *, 6 − + − 1)
0(4, 6) +,(*)

While +,(*) is the chance of reclaiming r instances within that on—
miniute interval.

• The result shows P = 0.0039% in September, and at most 0.11% in
later months.

89

Keep Lambdas Alive - Conclusion
• Combine following techniques, we can hold data in Lambdas

instances for sufficient long time:
• Erasure coding

• Invoke instances every fixed interval of 60s (Periodical warm-up)

90

Advanced proxy-lambda interaction

• Very first request

91

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

Proxy Lambda

Advanced proxy-lambda interaction

• Very first request

92

Proxy Lambda

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

Advanced proxy-lambda interaction

• Very first request

93

Proxy Lambda

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

Advanced proxy-lambda interaction

• Very first request

94

Proxy Lambda

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

5

Advanced proxy-lambda interaction

• Very first request

95

Proxy Lambda

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

56

Advanced proxy-lambda interaction

• Very first request

96

Proxy Lambda

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

56

7

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

8

Advanced proxy-lambda interaction

• Second request in the same session

97

Proxy Lambda

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

56

Advanced proxy-lambda interaction

• Second request in the same session

98

Proxy Lambda

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

8

56

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

7

Advanced proxy-lambda interaction

• Second request in the same session

99

Proxy Lambda

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

8

56

13

1112

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

7

9

10

Advanced proxy-lambda interaction

• Second request in the same session

100

Proxy Lambda

Sleeping,
Unvalidated

Sleeping,
Validating

Active,
Unvalidated

Active,
Validating

request||warm-up
ping

Maybe,
Unvalidated

Maybe,
Validating

Maybe,
Validated

Active,
Validated

returned
Λ

returned
reinvoke

request||warm-up
invoke

request||warm-up
ping

timeout
reinvoke

timeout||returned
reinvoke

pong
save connection

send request
ε
Λ

requested
Λ

unexpected pong
replace connection

returned
Λ

returned||bye
Λ

bye
Λ

1

3

4

7

9

10

14

Active,
Idling Sleeping

Active,
Serving

timeout
bye & return

invoke(request)
activate

hold_timer & pong
reclaimed

cold start
& pong

serve request
Λ

done
resume timer

ping
hold timer & pong

requests >= 2
extend timer

invoke(warmup)
activate

pong
2

8

56

13

1112

Storage for Machine Learning Applications

101

…Epoch 1
Batches

Storage

…Epoch 2
Batches

.

.

.
.
.
.

Storage for Machine Learning Applications
• S3 as storage
• Pros: cheap

• Cons: slow

• ElasticCache as storage
• Pros: quick

• Cons: expensive, slow to launch and shutdown.

102

Storage for Machine Learning Applications
• Challenges to use InfiniCache as storage
• Most of ML frameworks are Python based.

• Must load data from S3, and set to the InfiniCache in epoch 1.

Is it worthy?

103

Client in the Lambda, a P2P approach
• In original InfiniCache design, the proxy is co-located with client.
• The expense of the proxy is covered by the client.
• A client must allow inbound connection.

How Lambda functions benefit from the InfiniCache?

104

Client in the Lambda – P2P network

• Lambdas can connect with each other by leverage UDP hole
punching

• https://networkingclients.serverlesstech.net/getting_started.html

105

192.168.1.5 192.168.1.5NAT Gateway
212.172.5.4

NAT Gateway
213.2.7.8

https://networkingclients.serverlesstech.net/getting_started.html

Client in the Lambda – Hole Punching

106

192.168.1.5:16788 192.168.1.5:21989NAT Gateway
212.172.5.4

NAT Gateway
213.2.7.8

Coordinator

1. 192.168.1.5:16788 requests to connect to X

1. 212.172.5.4:16788 requests to connect to X

2. 192.168.1.5:21989 requests to connect to X

2. 213.2.7.8:21989 requests to connect to X

Client in the Lambda – Hole Punching

107

NAT Gateway
212.172.5.4

NAT Gateway
213.2.7.8

Coordinator

3. 213.2.7.8:21989 requests to connect
to 192.168.1.5:16788

3. 213.2.7.8:21989 requests to connect
to 212.172.5.4:16788

3. 212.172.5.4:16788 requests to connect
to 192.168.1.5:21989

3. 212.172.5.4:16788 requests to connect
to 213.2.7.8:21989

192.168.1.5:16788 192.168.1.5:21989

Client in the Lambda – Hole Punching

108

NAT Gateway
212.172.5.4

NAT Gateway
213.2.7.8

Coordinator

4. 192.168.1.5:16788 requests to connect to 213.2.7.8:21989

192.168.1.5:16788 192.168.1.5:21989

4.1. 212.172.5.4:16788 requests to connect to 213.2.7.8:21989
4.2. Waiting for acknowledgement from 213.2.7.8:21989

4.3. Deny! No inbound connection allowed

Client in the Lambda – Hole Punching

109

NAT Gateway
212.172.5.4

NAT Gateway
213.2.7.8

Coordinator

4.4. 192.168.1.5:21989 requests to connect to 212.172.5.4:16788

192.168.1.5:16788 192.168.1.5:21989

4.5. 213.2.7.8:21989 requests to connect to 212.172.5.4:16788
4.6. Waiting for acknowledgement from 212.172.5.4:16788

4.7. Received acknowledgement from 213.2.7.8:21989. Pass!

4.8. Received acknowledgement from 213.2.7.8:21989. Connection Established

Client in the Lambda
• Idea
• Using coordinator as the proxy

• Challenge?
• Now the coordinator is another service, is the idea still cost effective?
• How the proxy owning global meta information, so the proxy can

schedule and balance the workload, given a client can connect to
Lambda instances of the InfiniCache directly?

110

Client in the Lambda

• Possible solution
• Clients make request to the proxy (control path), and accept data from

Lambda instances of the InfiniCache directly (data path).

• Since the proxy is not on data path, cheaper ec2 can be used to provide
coordination, hence may justify the cost effectiveness.

111

Backup

112

Evaluation – Production Workloads

113

0 10 20 30 40 50
TLmelLne (hRur)

(a) All REjeFts

0

200

400

600

CR
un

t

0 10 20 30 40 50
TLmelLne (hRur)

(E) /arge REj Rnly

0

200

400

600

0 10 20 30 40 50
TLmelLne (hRur)

(F) /arge REj Rnly w/R EaFkup

0

200

400

600
5eFRvery
5(6(T
)unFtLRn reFlaLmLng

All objects Large objects only Large objects only w/o backup

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

(a) Total cost

101

102

Co
st

 ($
)

$518.40

$20.52 $16.51

$5.41

(lastLCache
IC (all oEjects)
IC (large only)
IC (large no Eackup)

0 10 20 30 40 50
TLmelLne (hour)

(E) $ll oEjects

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(c) /arge oEj only

0.0

0.1

0.2

0 10 20 30 40 50
TLmelLne (hour)

(G) /arge oEj only w/o Eackup

0.0

0.1

0.2

3UT/G(T
Backup
Warm-up

• Fault tolerance activities

• Recovery: erasure-coding recovery

• RESET: GET miss

• Function reclaiming

Evaluation

114

• Scalability

