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Today’s outline

1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)
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A distributed edit-compile workflow
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Physical time à



A distributed edit-compile workflow
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• 2143 < 2144 è make doesn’t call compiler

Physical time à

Lack of time synchronization result – a 
possible object file mismatch 



What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature, age, 
vibration, radiation
• Accuracy ~one part per million

• (one second of clock drift over 12 days)

2. The internet is:
• Asynchronous: arbitrary message delays

• Best-effort: messages don’t always arrive
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Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)
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Just use Coordinated Universal Time?
• UTC is broadcast from radio stations on land 

and satellite (e.g., the Global Positioning System)
• Computers with receivers can synchronize their 

clocks with these timing signals

• Signals from land-based stations are accurate to 
about 0.1−10 milliseconds

• Signals from GPS are accurate to about one 
microsecond
• Why can’t we put GPS receivers on all our 

computers?
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Synchronization to a time server

• Suppose a server with an accurate clock (e.g., 
GPS-receiver)

• Could simply issue an RPC to obtain the time:
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Client Server
Time of day?

Time ↓

2:50 PM



Synchronization to a time server

• Suppose a server with an accurate clock (e.g., 
GPS-receiver)

• Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency
• Message delays will have outdated server’s answer
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Client Server
Time of day?

Time ↓

2:50 PM



Cristian’s algorithm: Outline
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1. Client sends a request packet, 
timestamped with its local clock T1

Client Server

Time ↓

T1 T1

request:



Cristian’s algorithm: Outline
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1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

Client Server

Time ↓

T1

T2

T1

request:



Cristian’s algorithm: Outline
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1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

3. Server sends a response packet 
with its local clock T3 and T2

Client Server

Time ↓

T1

T2

T1

request:

T3

T2,T3

response:



Cristian’s algorithm: Outline
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1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

3. Server sends a response packet 
with its local clock T3 and T2

4. Client locally timestamps its 
receipt of the server’s response T4

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:



Cristian’s algorithm: Outline
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1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

3. Server sends a response packet 
with its local clock T3 and T2

4. Client locally timestamps its 
receipt of the server’s response T4

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

How can the client use these timestamps to synchronize 
its local clock to the server’s local clock?



Cristian’s algorithm: Offset sample 
calculation
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• Client samples round trip time != 
!req + !resp = (T4 − T1) − (T3 − T2)

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp

Goal: Client sets clock ßT3 + !resp
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• Client samples round trip time != 
!req + !resp = (T4 − T1) − (T3 − T2)

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp

Goal: Client sets clock ßT3 + !resp



Cristian’s algorithm: Offset sample 
calculation

Y. Cheng GMU CS675 Spring 2020 18

• Client samples round trip time != 
!req + !resp = (T4 − T1) − (T3 − T2)

• But client knows !, not !resp

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp

Goal: Client sets clock ßT3 + !resp



Cristian’s algorithm: Offset sample 
calculation
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• Client samples round trip time != 
!req + !resp = (T4 − T1) − (T3 − T2)

• But client knows !, not !resp

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp
Assume: !req ≈ !resp

Goal: Client sets clock ßT3 + !resp



Cristian’s algorithm: Offset sample 
calculation
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• Client samples round trip time != 
!req + !resp = (T4 − T1) − (T3 − T2)

• But client knows !, not !resp

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp
Assume: !req ≈ !resp

Goal: Client sets clock ßT3 + !resp

Client sets clock ßT3 + ½!



Clock synchronization: Takeaway points

• Clocks on different systems will always behave 
differently
• Disagreement between machines can result in undesirable 

behavior
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Clock synchronization: Takeaway points

• Clocks on different systems will always behave 
differently
• Disagreement between machines can result in undesirable 

behavior

• NTP clock synchronization
• Rely on timestamps to estimate network delays
• 100s !s−ms accuracy
• Clocks never exactly synchronized
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Clock synchronization: Takeaway points

• Clocks on different systems will always behave 
differently
• Disagreement between machines can result in undesirable 

behavior

• NTP clock synchronization
• Rely on timestamps to estimate network delays
• 100s !s−ms accuracy
• Clocks never exactly synchronized

• Often inadequate for distributed systems
• Often need to reason about the order of events
• Might need precision on the order of ns
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Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)
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Motivation: Multi-site database 
replication
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• A New York-based bank wants to make its transaction 
ledger database resilient to whole-site failures

New York



Motivation: Multi-site database 
replication
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• A New York-based bank wants to make its transaction 
ledger database resilient to whole-site failures

• Replicate the database, keep one copy in SF, one in 
NYC

New York
San 
Francisco



The consequences of concurrent updates
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• Replicate the database, keep one copy in SF, one in 
NYC

• Client sends reads to the nearest copy
• Client sends update to both copies

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed 
in the same order at each copy



Idea: Logical clocks
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• Landmark 1978 paper by Leslie Lamport



Idea: Logical clocks
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• Landmark 1978 paper by Leslie Lamport

• Insights: only the events themselves matter

Idea: Disregard the precise clock time
Instead, capture just a “happens before” relationship 
between a pair of events



Defining “happens-before” (à) 
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• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a à b)

Physical time ↓

P1 P2
P3



Defining “happens-before” (à) 
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• Can observe event order at a single process

Physical time ↓

P1 P2
P3

a

b



Defining “happens-before” (à) 
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1. If same process and a occurs before b, then a à b

Physical time ↓

P1 P2
P3

a

b



Defining “happens-before” (à) 
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1. If same process and a occurs before b, then a à b

2. Can observe ordering when processes communicate

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (à) 
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1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (à) 
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1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. Can observe ordering transitively

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (à) 
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1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. If a à b and b à c, then a à c

Physical time ↓

P1 P2
P3

a

b
c



Defining “happens-before” (à) 
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Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by à

d



Defining “happens-before” (à) 
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Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by à

2. a, d not related by à so concurrent, written as a || d

d



Lamport clocks: Objective

• We seek a clock time C(a) for every event a

• Clock condition: If a à b, then C(a) < C(b)
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Plan: Tag events with clock times; use clock 
times to make distributed system correct



The Lamport Clock algorithm
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Physical time ↓

P1
C1=0

P2
C2=0 P3

C3=0a

b
c

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci ß Ci + 1:



The Lamport Clock algorithm
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Physical time ↓

P1
C1=1

P2
C2=0 P3

C3=0a

b
c

1. Before executing an event a, Ci ß Ci + 1:

• Set event time C(a) ß Ci

C(a) = 1



The Lamport Clock algorithm
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Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0a

b
c

1. Before executing an event b, Ci ß Ci + 1:

• Set event time C(b) ß Ci

C(b) = 2

C(a) = 1



The Lamport Clock algorithm
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Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0a

b
c

1. Before executing an event b, Ci ß Ci + 1

2. Send the local clock in the message m

C(b) = 2

C(a) = 1

C(m) = 2



The Lamport Clock algorithm
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Physical time ↓

P1
C1=2

P2
C2=3 P3

C3=0a

b
c

3. On process Pj receiving a message m:

• Set Cj and receive event time C(c) ß1 + max{ Cj, C(m) }

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3



Lamport Timestamps: Ordering all events

• Break ties by appending the process number to 
each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or 
C(b) < C(a)
• This is called a total ordering of events
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Order all these events
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P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C3=0

d

e

f

g

h

i



Totally-Ordered Multicast
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• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

Goal: All sites apply updates in (same) Lamport clock order



Totally-Ordered Multicast
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• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

P1

%
1.2

$
1.1Example: P1’s

local queue:

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps



Totally-Ordered Multicast (Almost correct)

1. On receiving an update from client, broadcast to 
others (including yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every 

replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has 
ack’ed from head of queue
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Totally-Ordered Multicast (Almost correct)
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• P1 queues $, P2 queues %

• P1 queues and ack’s %
• P1 marks % fully ack’ed

• P2 marks % fully ack’ed

P1
P2

$
1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

(Ack’s to self not shown here)

✘ P2 processes %



Totally-Ordered Multicast (Correct version)

1. On receiving an update from client, broadcast to 
others (including yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update
b) Broadcast an acknowledgement message to every 

replica (including yourself) only from head of queue

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has 
ack’ed from head of queue
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Totally-Ordered Multicast (Correct version)
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P1
P2

$
1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

(Ack’sto self not shown here)

$
1.1



So, are we done?
• Does totally-ordered multicast solve the problem 

of multi-site replication in general?
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So, are we done?
• Does totally-ordered multicast solve the problem 

of multi-site replication in general?

• Not by a long shot!  

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption
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So, are we done?
• Does totally-ordered multicast solve the problem 

of multi-site replication in general?

• Not by a long shot!  

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All-to-all communication does not scale
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So, are we done?
• Does totally-ordered multicast solve the problem 

of multi-site replication in general?

• Not by a long shot!  

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All-to-all communication does not scale
3. Waits forever for message delays 

(performance?)
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Lamport Clocks: Takeaway points
• Can totally-order events in a distributed system: 

that’s useful!
• We saw an application of Lamport clocks for totally-

ordered multicast
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Lamport Clocks: Takeaway points
• Can totally-order events in a distributed system: 

that’s useful!
• We saw an application of Lamport clocks for totally-

ordered multicast

• But: while by construction, a à b implies C(a) < 
C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)
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Lamport Clocks: Takeaway points
• Can totally-order events in a distributed system: 

that’s useful!
• We saw an application of Lamport clocks for totally-

ordered multicast

• But: while by construction, a à b implies C(a) < 
C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)
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Can’t use Lamport timestamps to infer causal 
relationships between events



Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)
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Lamport Clocks and causality

• Lamport clock timestamps do not capture 
causality

• Given two timestamps C(a) and C(z), want to 
know whether there’s a chain of events linking 
them:

a à b à ... à y à z
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Vector clock: Introduction

• One integer can’t order events in more than one 
process

• So, a Vector Clock (VC) is a vector of integers, 
one entry for each process in the entire 
distributed system

• Label event e with VC(e) = [c1, c2 …, cn]
• Each entry ck is a count of events in process k that causally 

precede e
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Vector clock: Update rules
• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment 
local entry ci
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Vector clock: Update rules
• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment 
local entry ci

2. If process j receives message with vector [d1, 
d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj
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Vector clock: Example
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• All processes’ VCs start at [0, 0, 0] P1

a

b
c

P2 P3

Physical time ↓

d

e

f



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b
c

P2 P3

Physical time ↓

d

e

f



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,0,0] [2,1,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,0,0] [2,1,0]

[2,2,0]



Vector clock: Example
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• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]



Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency: 

• V(a) || V(b) if ai < bi and aj > bj, some i, j
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Vector clocks capture causality
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• V(w) < V(z) then there is a chain of events linked by 
Happens-Before (à) between a and z

x

y

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

w

z

P1 P2 P3



Vector clocks capture causality
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• V(w) < V(z) then there is a chain of events linked by 
Happens-Before (à) between a and z

• V(a) || V(w) then there is no such chain of events between 
a and w

x

y

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[0,0,1]a



Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k
• They are the same event

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)
• a à b

• Concurrency: 

• V(a) || V(b) if ai < bi and aj > bj, some i, j
• a || b
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Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., either a à z or a || z

Vector clocks: V(a) < V(z)
Conclusion: a à z
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Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., either a à z or a || z

Vector clocks: V(a) < V(z)
Conclusion: a à z

Vector clock timestamps precisely capture 
happens-before relation (potential causality)



Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)
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Limited fault tolerance in Totally-
Ordered Multicast
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• Stateful server replication for fault tolerance…

P1 P2
$

%



Limited fault tolerance in Totally-
Ordered Multicast
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• Stateful server replication for fault tolerance…

• But no story for server replacement upon a 
server failure à no replication

P1 P2
$

%



Limited fault tolerance in Totally-
Ordered Multicast
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• Stateful server replication for fault tolerance…

• But no story for server replacement upon a 
server failure à no replication

P1 P2
$

%

Goal: Make stateful servers fault-tolerant?



Primary-Backup: Goals

• Mechanism: Replicate and separate servers
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Primary-Backup: Goals

• Mechanism: Replicate and separate servers

• Goal #1: Provide a highly reliable service
• Despite some server and network failures
• Continue operation after failure
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Primary-Backup: Goals

• Mechanism: Replicate and separate servers

• Goal #1: Provide a highly reliable service
• Despite some server and network failures
• Continue operation after failure

• Goal #2: Servers should behave just like a 
single, more reliable server
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State machine replication

• Any server is essentially a state machine
• Set of (key, value) pairs is state
• Operations transition between states

• Need an op to be executed on all replicas, or none 
at all
• i.e., we need distributed all-or-nothing atomicity
• If op is deterministic, replicas will end in same 

state

• Key assumption: Operations are deterministic
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Primary-Backup (P-B) approach

• Nominate one server the primary, call the other the 
backup
• Clients send all operations (get, put) to current 

primary

• The primary orders clients’ operations

• Should be only one primary at a time
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Need to keep clients, primary, and backup in 
sync: who is primary and who is backup



Primary-Backup replication
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2. Primary orders ops into log
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Primary P
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5. Backup exec’s ops or writes to log

Asynchronous Replication
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Why does this work? Synchronous 
replication
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add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Primary

Clients

shl

Servers

Backup

• Replicated log => replicated state machine

– All servers execute same commands in same order
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Need determinism? Make it so!

• Operations are deterministic

• No events with ordering based on local clock

• Convert timer, network, user into logged events

• Nothing using random inputs

• Execution order of ops is identical

• Most RSMs are single threaded
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Primary-Backup: Summary

• First step in our goal of making stateful replicas 
fault-tolerant

• Allows replicas to provide continuous service 
despite persistent net and machine failures

• Finds repeated application in practical systems 
(next lecture)
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