
Time & Clocks,
Primary-Backup

CS 675: Distributed Systems (Spring 2020)
Lecture 4

Yue Cheng

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
• Utah CS6450 by Ryan Stutsman.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Today’s outline

1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)

Y. Cheng GMU CS675 Spring 2020 2

A distributed edit-compile workflow

Y. Cheng GMU CS675 Spring 2020 3

Physical time à

A distributed edit-compile workflow

Y. Cheng GMU CS675 Spring 2020 4

• 2143 < 2144 è make doesn’t call compiler

Physical time à

A distributed edit-compile workflow

Y. Cheng GMU CS675 Spring 2020 5

• 2143 < 2144 è make doesn’t call compiler

Physical time à

Lack of time synchronization result – a
possible object file mismatch

What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature, age,
vibration, radiation
• Accuracy ~one part per million

• (one second of clock drift over 12 days)

2. The internet is:
• Asynchronous: arbitrary message delays

• Best-effort: messages don’t always arrive

Y. Cheng GMU CS675 Spring 2020 6

Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)

Y. Cheng GMU CS675 Spring 2020 7

Just use Coordinated Universal Time?
• UTC is broadcast from radio stations on land

and satellite (e.g., the Global Positioning System)
• Computers with receivers can synchronize their

clocks with these timing signals

• Signals from land-based stations are accurate to
about 0.1−10 milliseconds

• Signals from GPS are accurate to about one
microsecond
• Why can’t we put GPS receivers on all our

computers?

Y. Cheng GMU CS675 Spring 2020 8

Synchronization to a time server

• Suppose a server with an accurate clock (e.g.,
GPS-receiver)

• Could simply issue an RPC to obtain the time:

Y. Cheng GMU CS675 Spring 2020 9

Client Server
Time of day?

Time ↓

2:50 PM

Synchronization to a time server

• Suppose a server with an accurate clock (e.g.,
GPS-receiver)

• Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency
• Message delays will have outdated server’s answer

Y. Cheng GMU CS675 Spring 2020 10

Client Server
Time of day?

Time ↓

2:50 PM

Cristian’s algorithm: Outline

Y. Cheng GMU CS675 Spring 2020 11

1. Client sends a request packet,
timestamped with its local clock T1

Client Server

Time ↓

T1 T1

request:

Cristian’s algorithm: Outline

Y. Cheng GMU CS675 Spring 2020 12

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

Client Server

Time ↓

T1

T2

T1

request:

Cristian’s algorithm: Outline

Y. Cheng GMU CS675 Spring 2020 13

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

Client Server

Time ↓

T1

T2

T1

request:

T3

T2,T3

response:

Cristian’s algorithm: Outline

Y. Cheng GMU CS675 Spring 2020 14

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

4. Client locally timestamps its
receipt of the server’s response T4

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

Cristian’s algorithm: Outline

Y. Cheng GMU CS675 Spring 2020 15

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

4. Client locally timestamps its
receipt of the server’s response T4

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

How can the client use these timestamps to synchronize
its local clock to the server’s local clock?

Cristian’s algorithm: Offset sample
calculation

Y. Cheng GMU CS675 Spring 2020 16

• Client samples round trip time !=
!req + !resp = (T4 − T1) − (T3 − T2)

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp

Goal: Client sets clock ßT3 + !resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng GMU CS675 Spring 2020 17

• Client samples round trip time !=
!req + !resp = (T4 − T1) − (T3 − T2)

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp

Goal: Client sets clock ßT3 + !resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng GMU CS675 Spring 2020 18

• Client samples round trip time !=
!req + !resp = (T4 − T1) − (T3 − T2)

• But client knows !, not !resp

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp

Goal: Client sets clock ßT3 + !resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng GMU CS675 Spring 2020 19

• Client samples round trip time !=
!req + !resp = (T4 − T1) − (T3 − T2)

• But client knows !, not !resp

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp
Assume: !req ≈ !resp

Goal: Client sets clock ßT3 + !resp

Cristian’s algorithm: Offset sample
calculation

Y. Cheng GMU CS675 Spring 2020 20

• Client samples round trip time !=
!req + !resp = (T4 − T1) − (T3 − T2)

• But client knows !, not !resp

Client Server

Time ↓

T1

T2

T4

T1

request:

T3

T2,T3

response:

!req

!resp
Assume: !req ≈ !resp

Goal: Client sets clock ßT3 + !resp

Client sets clock ßT3 + ½!

Clock synchronization: Takeaway points

• Clocks on different systems will always behave
differently
• Disagreement between machines can result in undesirable

behavior

Y. Cheng GMU CS675 Spring 2020 21

Clock synchronization: Takeaway points

• Clocks on different systems will always behave
differently
• Disagreement between machines can result in undesirable

behavior

• NTP clock synchronization
• Rely on timestamps to estimate network delays
• 100s !s−ms accuracy
• Clocks never exactly synchronized

Y. Cheng GMU CS675 Spring 2020 22

Clock synchronization: Takeaway points

• Clocks on different systems will always behave
differently
• Disagreement between machines can result in undesirable

behavior

• NTP clock synchronization
• Rely on timestamps to estimate network delays
• 100s !s−ms accuracy
• Clocks never exactly synchronized

• Often inadequate for distributed systems
• Often need to reason about the order of events
• Might need precision on the order of ns

Y. Cheng GMU CS675 Spring 2020 23

Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)

Y. Cheng GMU CS675 Spring 2020 24

Motivation: Multi-site database
replication

Y. Cheng GMU CS675 Spring 2020 25

• A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

New York

Motivation: Multi-site database
replication

Y. Cheng GMU CS675 Spring 2020 26

• A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

• Replicate the database, keep one copy in SF, one in
NYC

New York
San
Francisco

The consequences of concurrent updates

Y. Cheng GMU CS675 Spring 2020 27

• Replicate the database, keep one copy in SF, one in
NYC

• Client sends reads to the nearest copy
• Client sends update to both copies

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed
in the same order at each copy

Idea: Logical clocks

Y. Cheng GMU CS675 Spring 2020 28

• Landmark 1978 paper by Leslie Lamport

Idea: Logical clocks

Y. Cheng GMU CS675 Spring 2020 29

• Landmark 1978 paper by Leslie Lamport

• Insights: only the events themselves matter

Idea: Disregard the precise clock time
Instead, capture just a “happens before” relationship
between a pair of events

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 30

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a à b)

Physical time ↓

P1 P2
P3

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 31

• Can observe event order at a single process

Physical time ↓

P1 P2
P3

a

b

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 32

1. If same process and a occurs before b, then a à b

Physical time ↓

P1 P2
P3

a

b

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 33

1. If same process and a occurs before b, then a à b

2. Can observe ordering when processes communicate

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 34

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 35

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. Can observe ordering transitively

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 36

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. If a à b and b à c, then a à c

Physical time ↓

P1 P2
P3

a

b
c

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 37

Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by à

d

Defining “happens-before” (à)

Y. Cheng GMU CS675 Spring 2020 38

Physical time ↓

P1 P2
P3

a

b
c

1. Not all events are related by à

2. a, d not related by à so concurrent, written as a || d

d

Lamport clocks: Objective

• We seek a clock time C(a) for every event a

• Clock condition: If a à b, then C(a) < C(b)

Y. Cheng GMU CS675 Spring 2020 39

Plan: Tag events with clock times; use clock
times to make distributed system correct

The Lamport Clock algorithm

Y. Cheng GMU CS675 Spring 2020 40

Physical time ↓

P1
C1=0

P2
C2=0 P3

C3=0a

b
c

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci ß Ci + 1:

The Lamport Clock algorithm

Y. Cheng GMU CS675 Spring 2020 41

Physical time ↓

P1
C1=1

P2
C2=0 P3

C3=0a

b
c

1. Before executing an event a, Ci ß Ci + 1:

• Set event time C(a) ß Ci

C(a) = 1

The Lamport Clock algorithm

Y. Cheng GMU CS675 Spring 2020 42

Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0a

b
c

1. Before executing an event b, Ci ß Ci + 1:

• Set event time C(b) ß Ci

C(b) = 2

C(a) = 1

The Lamport Clock algorithm

Y. Cheng GMU CS675 Spring 2020 43

Physical time ↓

P1
C1=2

P2
C2=0 P3

C3=0a

b
c

1. Before executing an event b, Ci ß Ci + 1

2. Send the local clock in the message m

C(b) = 2

C(a) = 1

C(m) = 2

The Lamport Clock algorithm

Y. Cheng GMU CS675 Spring 2020 44

Physical time ↓

P1
C1=2

P2
C2=3 P3

C3=0a

b
c

3. On process Pj receiving a message m:

• Set Cj and receive event time C(c) ß1 + max{ Cj, C(m) }

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

Lamport Timestamps: Ordering all events

• Break ties by appending the process number to
each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or
C(b) < C(a)
• This is called a total ordering of events

Y. Cheng GMU CS675 Spring 2020 45

Order all these events

Y. Cheng GMU CS675 Spring 2020 46

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C3=0

d

e

f

g

h

i

Totally-Ordered Multicast

Y. Cheng GMU CS675 Spring 2020 47

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

Goal: All sites apply updates in (same) Lamport clock order

Totally-Ordered Multicast

Y. Cheng GMU CS675 Spring 2020 48

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

P1

%
1.2

$
1.1Example: P1’s

local queue:

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps

Totally-Ordered Multicast (Almost correct)

1. On receiving an update from client, broadcast to
others (including yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every

replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has
ack’ed from head of queue

Y. Cheng GMU CS675 Spring 2020 49

Totally-Ordered Multicast (Almost correct)

Y. Cheng GMU CS675 Spring 2020 50

• P1 queues $, P2 queues %

• P1 queues and ack’s %
• P1 marks % fully ack’ed

• P2 marks % fully ack’ed

P1
P2

$
1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

(Ack’s to self not shown here)

✘ P2 processes %

Totally-Ordered Multicast (Correct version)

1. On receiving an update from client, broadcast to
others (including yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update
b) Broadcast an acknowledgement message to every

replica (including yourself) only from head of queue

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has
ack’ed from head of queue

Y. Cheng GMU CS675 Spring 2020 51

Totally-Ordered Multicast (Correct version)

Y. Cheng GMU CS675 Spring 2020 52

P1
P2

$
1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

(Ack’sto self not shown here)

$
1.1

So, are we done?
• Does totally-ordered multicast solve the problem

of multi-site replication in general?

Y. Cheng GMU CS675 Spring 2020 53

So, are we done?
• Does totally-ordered multicast solve the problem

of multi-site replication in general?

• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

Y. Cheng GMU CS675 Spring 2020 54

So, are we done?
• Does totally-ordered multicast solve the problem

of multi-site replication in general?

• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All-to-all communication does not scale

Y. Cheng GMU CS675 Spring 2020 55

So, are we done?
• Does totally-ordered multicast solve the problem

of multi-site replication in general?

• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All-to-all communication does not scale
3. Waits forever for message delays

(performance?)
Y. Cheng GMU CS675 Spring 2020 56

Lamport Clocks: Takeaway points
• Can totally-order events in a distributed system:

that’s useful!
• We saw an application of Lamport clocks for totally-

ordered multicast

Y. Cheng GMU CS675 Spring 2020 57

Lamport Clocks: Takeaway points
• Can totally-order events in a distributed system:

that’s useful!
• We saw an application of Lamport clocks for totally-

ordered multicast

• But: while by construction, a à b implies C(a) <
C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)

Y. Cheng GMU CS675 Spring 2020 58

Lamport Clocks: Takeaway points
• Can totally-order events in a distributed system:

that’s useful!
• We saw an application of Lamport clocks for totally-

ordered multicast

• But: while by construction, a à b implies C(a) <
C(b),
• The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)

Y. Cheng GMU CS675 Spring 2020 59

Can’t use Lamport timestamps to infer causal
relationships between events

Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)

Y. Cheng GMU CS675 Spring 2020 60

Lamport Clocks and causality

• Lamport clock timestamps do not capture
causality

• Given two timestamps C(a) and C(z), want to
know whether there’s a chain of events linking
them:

a à b à ... à y à z

Y. Cheng GMU CS675 Spring 2020 61

Vector clock: Introduction

• One integer can’t order events in more than one
process

• So, a Vector Clock (VC) is a vector of integers,
one entry for each process in the entire
distributed system

• Label event e with VC(e) = [c1, c2 …, cn]
• Each entry ck is a count of events in process k that causally

precede e

Y. Cheng GMU CS675 Spring 2020 62

Vector clock: Update rules
• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment
local entry ci

Y. Cheng GMU CS675 Spring 2020 63

Vector clock: Update rules
• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment
local entry ci

2. If process j receives message with vector [d1,
d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj

Y. Cheng GMU CS675 Spring 2020 64

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 65

• All processes’ VCs start at [0, 0, 0] P1

a

b
c

P2 P3

Physical time ↓

d

e

f

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 66

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 67

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 68

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 69

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 70

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,0,0] [2,1,0]

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 71

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[1,0,0]

[2,0,0]

[2,0,0] [2,1,0]

[2,2,0]

Vector clock: Example

Y. Cheng GMU CS675 Spring 2020 72

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks

on inter-process messages

P1

a

b
c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]

Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency:

• V(a) || V(b) if ai < bi and aj > bj, some i, j

Y. Cheng GMU CS675 Spring 2020 73

Vector clocks capture causality

Y. Cheng GMU CS675 Spring 2020 74

• V(w) < V(z) then there is a chain of events linked by
Happens-Before (à) between a and z

x

y

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

w

z

P1 P2 P3

Vector clocks capture causality

Y. Cheng GMU CS675 Spring 2020 75

• V(w) < V(z) then there is a chain of events linked by
Happens-Before (à) between a and z

• V(a) || V(w) then there is no such chain of events between
a and w

x

y

[1,0,0]

[2,0,0]
[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[0,0,1]a

Comparing vector timestamps

• Rule for comparing vector timestamps:

• V(a) = V(b) when ak = bk for all k
• They are the same event

• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)
• a à b

• Concurrency:

• V(a) || V(b) if ai < bi and aj > bj, some i, j
• a || b

Y. Cheng GMU CS675 Spring 2020 76

Y. Cheng GMU CS675 Spring 2020 77

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., either a à z or a || z

Vector clocks: V(a) < V(z)
Conclusion: a à z

Y. Cheng GMU CS675 Spring 2020 78

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z -/-> a, i.e., either a à z or a || z

Vector clocks: V(a) < V(z)
Conclusion: a à z

Vector clock timestamps precisely capture
happens-before relation (potential causality)

Today’s outline
1. Time and clocks

• The need for time synchronization

• “Wall clock time” synchronization
• Cristian’s algorithm, NTP

• Logical Time: Lamport Clocks

• Vector clocks

2. Primary-Back (P-B)

Y. Cheng GMU CS675 Spring 2020 79

Limited fault tolerance in Totally-
Ordered Multicast

Y. Cheng GMU CS675 Spring 2020 80

• Stateful server replication for fault tolerance…

P1 P2
$

%

Limited fault tolerance in Totally-
Ordered Multicast

Y. Cheng GMU CS675 Spring 2020 81

• Stateful server replication for fault tolerance…

• But no story for server replacement upon a
server failure à no replication

P1 P2
$

%

Limited fault tolerance in Totally-
Ordered Multicast

Y. Cheng GMU CS675 Spring 2020 82

• Stateful server replication for fault tolerance…

• But no story for server replacement upon a
server failure à no replication

P1 P2
$

%

Goal: Make stateful servers fault-tolerant?

Primary-Backup: Goals

• Mechanism: Replicate and separate servers

Y. Cheng GMU CS675 Spring 2020 83

Primary-Backup: Goals

• Mechanism: Replicate and separate servers

• Goal #1: Provide a highly reliable service
• Despite some server and network failures
• Continue operation after failure

Y. Cheng GMU CS675 Spring 2020 84

Primary-Backup: Goals

• Mechanism: Replicate and separate servers

• Goal #1: Provide a highly reliable service
• Despite some server and network failures
• Continue operation after failure

• Goal #2: Servers should behave just like a
single, more reliable server

Y. Cheng GMU CS675 Spring 2020 85

State machine replication

• Any server is essentially a state machine
• Set of (key, value) pairs is state
• Operations transition between states

• Need an op to be executed on all replicas, or none
at all
• i.e., we need distributed all-or-nothing atomicity
• If op is deterministic, replicas will end in same

state

• Key assumption: Operations are deterministic

Y. Cheng GMU CS675 Spring 2020 86

Primary-Backup (P-B) approach

• Nominate one server the primary, call the other the
backup
• Clients send all operations (get, put) to current

primary

• The primary orders clients’ operations

• Should be only one primary at a time

Y. Cheng GMU CS675 Spring 2020 87

Primary-Backup (P-B) approach

• Nominate one server the primary, call the other the
backup
• Clients send all operations (get, put) to current

primary

• The primary orders clients’ operations

• Should be only one primary at a time

Y. Cheng GMU CS675 Spring 2020 88

Need to keep clients, primary, and backup in
sync: who is primary and who is backup

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 89

Client C

Backup B

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s ops or writes to log

put(x,1)

put(x,1)

Primary P

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 90

Client C

Backup B

put(x,1)

Primary P

1. Primary gets operations

2. Primary exec’s ops

3. Primary orders ops into log

4. Replicates log of ops to backup

5. Backup exec’s ops or writes to log

Asynchronous Replication

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 91

Client C

Backup B

put(x,1)

Primary P

1. Primary gets operations

2. Primary exec’s ops

3. Primary orders ops into log

4. Replicates log of ops to backup

5. Backup exec’s ops or writes to log

Asynchronous Replication

ack

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 92

Client C

Backup B

put(x,1)

put(x,1)

Primary P

1. Primary gets operations

2. Primary exec’s ops

3. Primary orders ops into log

4. Replicates log of ops to backup

5. Backup exec’s ops or writes to log

Asynchronous Replication

ack

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 93

Client C

Backup B

put(x,1)

Primary P

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s op or writes to log

5. Primary gets ack, execs ops

Synchronous Replication

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 94

Client C

Backup B

put(x,1)

put(x,1)

Primary P

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s op or writes to log

5. Primary gets ack, execs ops

Synchronous Replication

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 95

Client C

Backup B

put(x,1)

put(x,1)

Primary P

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s op or writes to log

5. Primary gets ack, execs ops

Synchronous Replication

ack

Primary-Backup replication

Y. Cheng GMU CS675 Spring 2020 96

Client C

Backup B

put(x,1)

put(x,1)

Primary P

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s op or writes to log

5. Primary gets ack, execs ops

Synchronous Replication

ack

ack

Why does this work? Synchronous
replication

Y. Cheng GMU CS675 Spring 2020 97

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Primary

Clients

shl

Servers

Backup

• Replicated log => replicated state machine

– All servers execute same commands in same order

Why does this work? Synchronous
replication

Y. Cheng GMU CS675 Spring 2020 98

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Primary

Clients

shl

Servers

BackupBackup

• Replicated log => replicated state machine

– All servers execute same commands in same order

Need determinism? Make it so!

• Operations are deterministic

• No events with ordering based on local clock

• Convert timer, network, user into logged events

• Nothing using random inputs

• Execution order of ops is identical

• Most RSMs are single threaded

Y. Cheng GMU CS675 Spring 2020 99

Primary-Backup: Summary

• First step in our goal of making stateful replicas
fault-tolerant

• Allows replicas to provide continuous service
despite persistent net and machine failures

• Finds repeated application in practical systems
(next lecture)

Y. Cheng GMU CS675 Spring 2020 100

Y. Cheng GMU CS675 Spring 2020 101

