

CS675: Distributed Systems (Spring 2020)

Lecture 11

Yue Cheng

Some material taken/derived from:

- Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
- MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
 Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

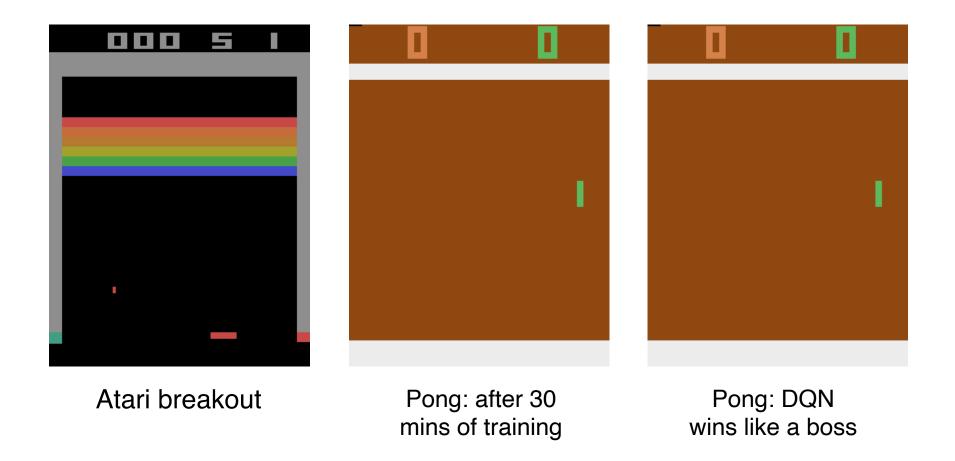
Supervised Learning → Reinforcement Learning (RL)

One prediction ———— • Sequences of actions

Static environment — Dynamic environments

Immediate feedback → • Delayed rewards

Reinforcement learning



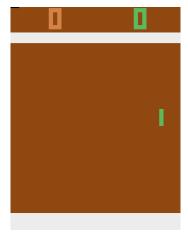
^{*:} Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602

RL application pattern

Process inputs from different sensors in parallel
 & real-time

 Execute large number of simulations, e.g., up to 100s of millions





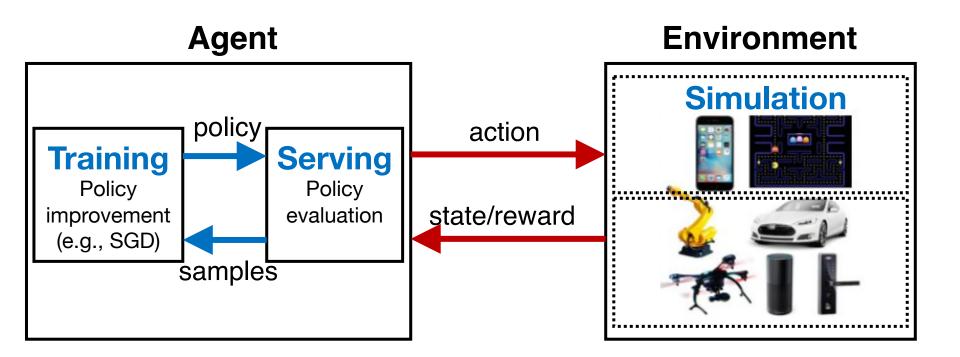
RL setup

Agent

Policy: state → action

Environment

RL setup in more detail



RL application pattern

- Process inputs from different sensors in parallel & real-time
- Execute large number of simulations, e.g., up to 100s of millions
- Rollouts outcomes are used to update policy (e.g., SGD)

RL application requirements

- Need to handle dynamic task graphs, where tasks have
 - Heterogeneous durations
 - Heterogenous computations

Schedule millions of tasks / sec

 Make it easy to parallelize ML algorithms (often written in Python)

The ML/Al ecosystems today

Distributed systems

Distributed training

TensorFlow, PyTorch, MXNet

Distributed systems

Model serving

Clipper, TensorFlow serving

Distributed systems

Data processing

Spark, Hadoop, Dask

Distributed systems

Simulation

MPI, simulators, custom tools

Distributed systems

Data streaming

Flink, many others

Emerging AI applications require **stitching** together **multiple** disparate systems

Ad hoc integrations are difficult to manage and program!

Ray API

Tasks

```
futures = f.remote(args)
```

Actors

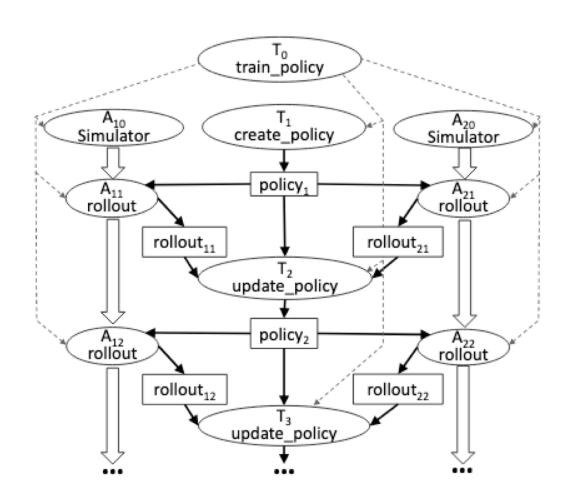
```
actor = Class.remote(args)
futures = actor.method.remote(args)
```

```
objects = ray.get(futures)
ready_futures = ray.wait(futures, k, timeout)
```

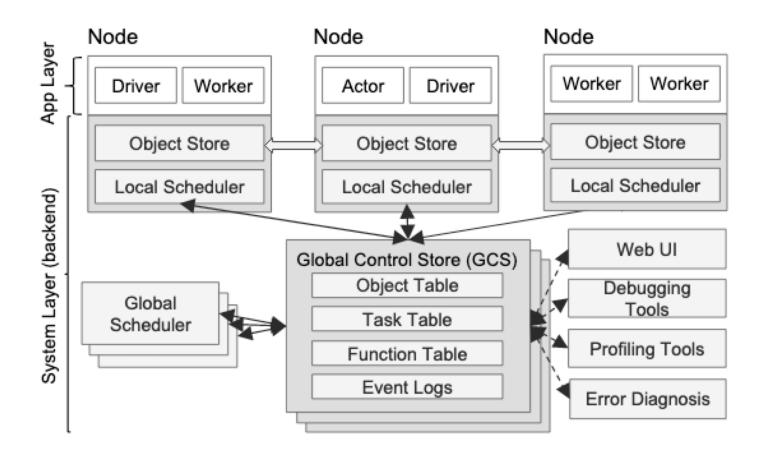
Ray API examples

See separate notes

Computation model



Ray architecture



Global control store (GCS)

Object table

Task table

Function table

Ray scheduler

Fault tolerance

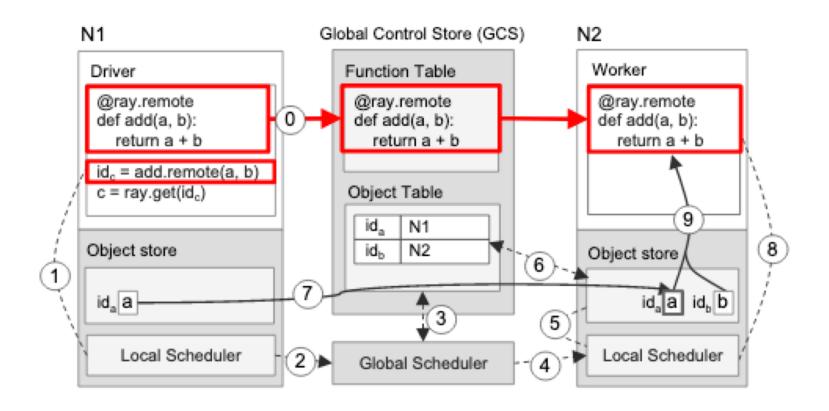
Tasks

Actors

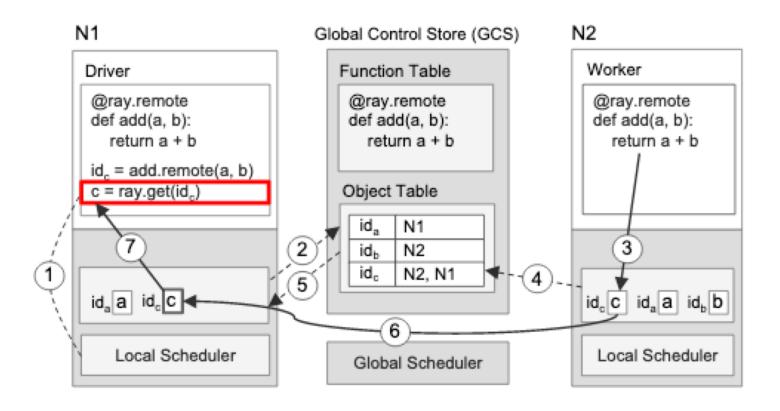
• GCS

Scheduler

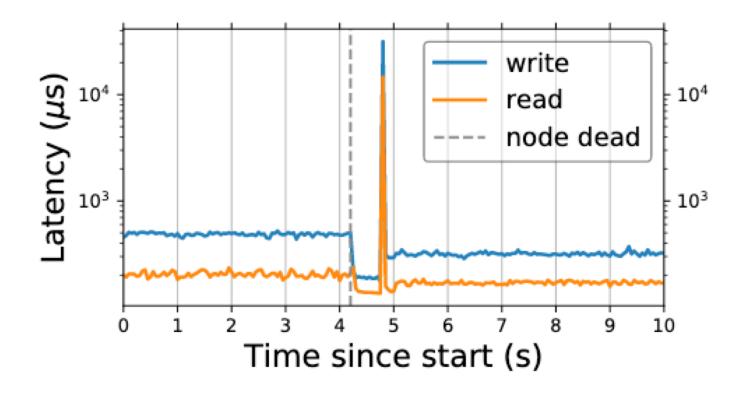
Executing a task remotely



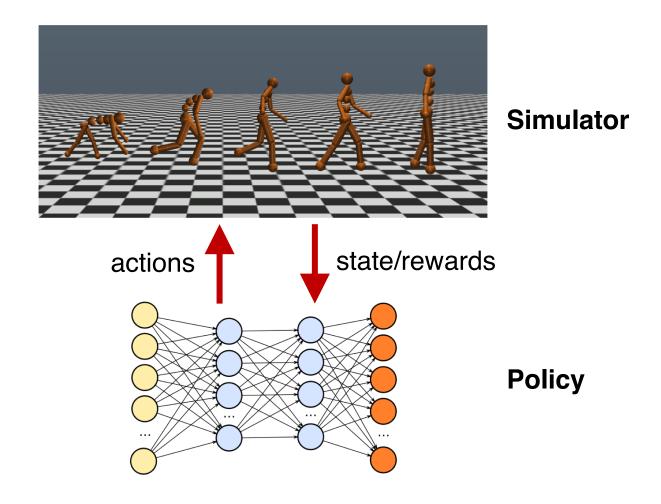
Returning the results of a remote task



GCS fault tolerance



Evolution strategies (ES)



Try lots of different policies and see which one works best!

Pseudocode

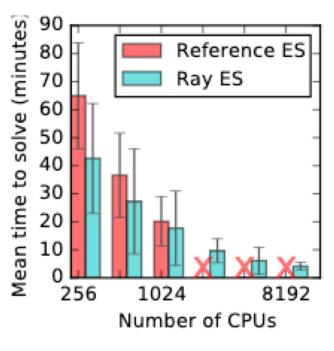
```
class Worker(object):
  def do_simulation(policy, seed):
    # perform simulation and return reward
workers = [Worker() for i in range(20)]
policy = initial policy()
for i in range(200):
  seeds = generate seeds(i)
  rewards = [workers[j].do_simulation(policy, seeds[j])
              for j in range(20)]
  policy = compute update(policy, rewards, seeds)
```

Pseudocode

```
@ray.remote
class Worker(object):
  def do_simulation(policy, seed):
    # perform simulation and return reward
workers = [Worker.remote() for i in range(20)]
policy = initial policy()
for i in range(200):
  seeds = generate seeds(i)
  rewards = [workers[j].do_simulation.remote(policy, seeds[j])
              for j in range(20)]
  policy = compute update(policy, ray.get(rewards), seeds)
```

Performance of RL applications

500



Mean time to solve (minutes Ray PPO 400 300 200 100 8x1 64x8 512x64 CPUs x GPUs

MPI PPO

(a) Evolution Strategies

(b) PPO