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Some material taken/derived from: 
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Ray: 
A Unified Distributed 

Framework for Emerging AI 
Applications



Supervised Learning

• One prediction

• Static environment

• Immediate feedback
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Supervised Learning à Reinforcement Learning (RL)

• One prediction

• Static environment

• Immediate feedback
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• Sequences of actions

• Dynamic environments

• Delayed rewards



Reinforcement learning
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Atari breakout Pong: after 30 
mins of training

Pong: DQN 
wins like a boss

*: Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602

https://arxiv.org/abs/1312.5602


RL application pattern

• Process inputs from different sensors in parallel 
& real-time

• Execute large number of simulations, e.g., up to 
100s of millions
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RL setup
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Policy:
state à action

Agent Environment

action

state/reward



RL setup in more detail

Y. Cheng GMU CS675 Spring 2020 7

Agent Environment

action

state/reward

Training
Policy 

improvement 
(e.g., SGD)

Serving
Policy 

evaluation

policy

samples

Simulation



RL application pattern
• Process inputs from different sensors in parallel & 

real-time

• Execute large number of simulations, e.g., up to 
100s of millions

• Rollouts outcomes are used to update policy (e.g., 
SGD)
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RL application requirements

• Need to handle dynamic task graphs, where 
tasks have
• Heterogeneous durations
• Heterogenous computations

• Schedule millions of tasks / sec

• Make it easy to parallelize ML algorithms (often 
written in Python)
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The ML/AI ecosystems today
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Distributed training

Distributed systems

TensorFlow, 
PyTorch, MXNet

Model serving

Distributed systems

Clipper, TensorFlow 
serving

Data streaming

Distributed systems

Flink, many others

Simulation

Distributed systems

MPI, simulators, 
custom tools

Data processing

Distributed systems

Spark, Hadoop, 
Dask



Ad hoc integrations are difficult to manage and program!
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Emerging AI applications require stitching
together multiple disparate systems



Ray API
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futures = f.remote(args)

actor = Class.remote(args)
futures = actor.method.remote(args)

Tasks

Actors

objects = ray.get(futures)
ready_futures = ray.wait(futures, k, timeout)



Ray API examples

• See separate notes
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Computation model
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Ray architecture
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Global control store (GCS)

• Object table

• Task table

• Function table
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Ray scheduler
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Fault tolerance
• Tasks

• Actors

• GCS

• Scheduler
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Executing a task remotely
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Returning the results of a remote task

Y. Cheng GMU CS675 Spring 2020 20



GCS fault tolerance
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Evolution strategies (ES)
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state/rewardsactions

Simulator

Policy

Try lots of different policies and see which one works best! 



Pseudocode
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class Worker(object):
def do_simulation(policy, seed):
# perform simulation and return reward

workers = [Worker() for i in range(20)]
policy = initial_policy()

for i in range(200):
seeds = generate_seeds(i)
rewards = [workers[j].do_simulation(policy, seeds[j])

for j in range(20)]
policy = compute_update(policy, rewards, seeds)



Pseudocode
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class Worker(object):
def do_simulation(policy, seed):
# perform simulation and return reward

workers = [Worker.remote() for i in range(20)]
policy = initial_policy()

for i in range(200):
seeds = generate_seeds(i)
rewards = [workers[j].do_simulation.remote(policy, seeds[j])

for j in range(20)]
policy = compute_update(policy, ray.get(rewards), seeds)

@ray.remote



Performance of RL applications
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Further discussion

• What part of the Ray paper excites you and 
disappoints you the most?
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