
CS675: Distributed Systems (Spring 2020)
Lecture 11

Yue Cheng

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Ray:
A Unified Distributed

Framework for Emerging AI
Applications

Supervised Learning

• One prediction

• Static environment

• Immediate feedback

Y. Cheng GMU CS675 Spring 2020 2

Supervised Learning à Reinforcement Learning (RL)

• One prediction

• Static environment

• Immediate feedback

Y. Cheng GMU CS675 Spring 2020 3

• Sequences of actions

• Dynamic environments

• Delayed rewards

Reinforcement learning

Y. Cheng GMU CS675 Spring 2020 4

Atari breakout Pong: after 30
mins of training

Pong: DQN
wins like a boss

*: Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602

https://arxiv.org/abs/1312.5602

RL application pattern

• Process inputs from different sensors in parallel
& real-time

• Execute large number of simulations, e.g., up to
100s of millions

Y. Cheng GMU CS675 Spring 2020 5

RL setup

Y. Cheng GMU CS675 Spring 2020 6

Policy:
state à action

Agent Environment

action

state/reward

RL setup in more detail

Y. Cheng GMU CS675 Spring 2020 7

Agent Environment

action

state/reward

Training
Policy

improvement
(e.g., SGD)

Serving
Policy

evaluation

policy

samples

Simulation

RL application pattern
• Process inputs from different sensors in parallel &

real-time

• Execute large number of simulations, e.g., up to
100s of millions

• Rollouts outcomes are used to update policy (e.g.,
SGD)

Y. Cheng GMU CS675 Spring 2020 8

RL application requirements

• Need to handle dynamic task graphs, where
tasks have
• Heterogeneous durations
• Heterogenous computations

• Schedule millions of tasks / sec

• Make it easy to parallelize ML algorithms (often
written in Python)

Y. Cheng GMU CS675 Spring 2020 9

The ML/AI ecosystems today

Y. Cheng GMU CS675 Spring 2020 10

Distributed training

Distributed systems

TensorFlow,
PyTorch, MXNet

Model serving

Distributed systems

Clipper, TensorFlow
serving

Data streaming

Distributed systems

Flink, many others

Simulation

Distributed systems

MPI, simulators,
custom tools

Data processing

Distributed systems

Spark, Hadoop,
Dask

Ad hoc integrations are difficult to manage and program!

Y. Cheng GMU CS675 Spring 2020 11

Emerging AI applications require stitching
together multiple disparate systems

Ray API

Y. Cheng GMU CS675 Spring 2020 12

futures = f.remote(args)

actor = Class.remote(args)
futures = actor.method.remote(args)

Tasks

Actors

objects = ray.get(futures)
ready_futures = ray.wait(futures, k, timeout)

Ray API examples

• See separate notes

Y. Cheng GMU CS675 Spring 2020 13

Computation model

Y. Cheng GMU CS675 Spring 2020 14

Ray architecture

Y. Cheng GMU CS675 Spring 2020 15

Global control store (GCS)

• Object table

• Task table

• Function table

Y. Cheng GMU CS675 Spring 2020 16

Ray scheduler

Y. Cheng GMU CS675 Spring 2020 17

Fault tolerance
• Tasks

• Actors

• GCS

• Scheduler
Y. Cheng GMU CS675 Spring 2020 18

Executing a task remotely

Y. Cheng GMU CS675 Spring 2020 19

Returning the results of a remote task

Y. Cheng GMU CS675 Spring 2020 20

GCS fault tolerance

Y. Cheng GMU CS675 Spring 2020 21

Evolution strategies (ES)

Y. Cheng GMU CS675 Spring 2020 22

state/rewardsactions

Simulator

Policy

Try lots of different policies and see which one works best!

Pseudocode

Y. Cheng GMU CS675 Spring 2020 23

class Worker(object):
def do_simulation(policy, seed):
perform simulation and return reward

workers = [Worker() for i in range(20)]
policy = initial_policy()

for i in range(200):
seeds = generate_seeds(i)
rewards = [workers[j].do_simulation(policy, seeds[j])

for j in range(20)]
policy = compute_update(policy, rewards, seeds)

Pseudocode

Y. Cheng GMU CS675 Spring 2020 24

class Worker(object):
def do_simulation(policy, seed):
perform simulation and return reward

workers = [Worker.remote() for i in range(20)]
policy = initial_policy()

for i in range(200):
seeds = generate_seeds(i)
rewards = [workers[j].do_simulation.remote(policy, seeds[j])

for j in range(20)]
policy = compute_update(policy, ray.get(rewards), seeds)

@ray.remote

Performance of RL applications

Y. Cheng GMU CS675 Spring 2020 25

Further discussion

• What part of the Ray paper excites you and
disappoints you the most?

Y. Cheng GMU CS675 Spring 2020 26

