A Unified Distributed Framework for Emerging Al Applications

CS675: Distributed Systems (Spring 2020) Lecture 11

Yue Cheng

Some material taken/derived from:

Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.

• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Supervised Learning

- One prediction
- Static environment
- Immediate feedback

Supervised Learning \rightarrow Reinforcement Learning (RL)

- Static environment ----- Dynamic environments
- Immediate feedback \rightarrow Delayed rewards

Reinforcement learning

Pong: after 30 mins of training

Pong: DQN wins like a boss

*: Playing Atari with Deep Reinforcement Learning: https://arxiv.org/abs/1312.5602

GMU CS675 Spring 2020

RL application pattern

- Process inputs from different sensors in parallel & real-time
- Execute large number of simulations, e.g., up to 100s of millions

RL application pattern

- Process inputs from different sensors in parallel & real-time
- Execute large number of simulations, e.g., up to 100s of millions
- Rollouts outcomes are used to update policy (e.g., SGD)

RL application requirements Simulations.

- Need to handle dynamic task graphs, where tasks have
 - Heterogeneous durations
 - utations (poining: outations Compute intensite throughput vequirement • Heterogenous computations
- Schedule millions of tasks / sec
- Make it easy to parallelize ML algorithms (ofter (atency) written in Python)

Ad hoc integrations are **difficult to manage and program!**

Ray API examples

• See separate notes

Fault tolerance

- Tasks Ly Lineage graph (GCS)
- Actors
 User-defined checkpointing

Returning the results of a remote task

Evolution strategies (ES)

Try lots of different policies and see which one works best!

GMU CS675 Spring 2020

Pseudocode

Pseudocode

```
@ray.remote
```

```
class Worker(object):
  def do_simulation(policy, seed):
    # perform simulation and return reward
```

```
workers = [Worker.remote() for i in range(20)]
policy = initial_policy()
```

Performance of RL applications

Further discussion

• What part of the Ray paper excites you and disappoints you the most?