
Persistence: HDDs, SSDs,
and File System Abstraction

CS 571: Operating Systems (Spring 2022)
Lecture 8

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials by Remzi Arpaci-Dusseau + Harvard CS-161 materials by James Mickens.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Hard Disk Drives (HDDs)

GMU CS571 Spring 2022Y. Cheng 2

Basic Interface
• A magnetic disk has a sector-addressable

address space
• You can think of a disk as an array of sectors
• Each sector (logical block) is the smallest unit of

transfer

• Sectors are typically 512 or 4096 bytes

• Main operations
• Read from sectors (blocks)
• Write to sectors (blocks)

GMU CS571 Spring 2022Y. Cheng 3

Disk Structure

• The 1-dimensional array of logical blocks is
mapped into the sectors of the disk sequentially
• Sector 0 is the first sector of the first track on the

outermost cylinder
• Mapping proceeds in order through that track, then

the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermost to
innermost
• Logical to physical address should be easy

• Except for bad sectors

GMU CS571 Spring 2022Y. Cheng 4

Internals of Hard Disk Drive (HDD)

GMU CS571 Spring 2022Y. Cheng 5

Internals of Hard Disk Drive (HDD)

Platter
Covered with a magnetic film

GMU CS571 Spring 2022Y. Cheng 6

Internals of Hard Disk Drive (HDD)

A single track example

GMU CS571 Spring 2022Y. Cheng 7

Internals of Hard Disk Drive (HDD)

Spindle in the center of the
surface

GMU CS571 Spring 2022Y. Cheng 8

Internals of Hard Disk Drive (HDD)

The track is divided into
numbered sectors

GMU CS571 Spring 2022Y. Cheng 9

Internals of Hard Disk Drive (HDD)

A single track + an arm +
a head

GMU CS571 Spring 2022Y. Cheng 10

HDD Mechanism (3D view)
track t

sector s

spindle

cylinder c

platter
arm

read-write
head

arm assembly

rotation

GMU CS571 Spring 2022Y. Cheng 11

Let’s Read Sector 0

GMU CS571 Spring 2022Y. Cheng 12

Let’s Read Sector 0

1. Seek for right track
2. Rotate (sector 9 à 0)
3. Transfer data (sector 0)

GMU CS571 Spring 2022Y. Cheng 13

Don’t Try This at Home!

https://www.youtube.com/watch?v=9eMWG3fwi
EU&feature=youtu.be&t=30s

GMU CS571 Spring 2022Y. Cheng 14

https://www.youtube.com/watch?v=9eMWG3fwiEU&feature=youtu.be&t=30s

Disk Performance

• I/O latency of disks
LI/O = Lseek + Lrotate + Ltransfer

• Disk access latency at millisecond level

GMU CS571 Spring 2022Y. Cheng 15

Seek, Rotate, Transfer

• Seek may take several milliseconds (ms)

• Settling along can take 0.5 - 2ms

• Entire seek often takes 4 - 10ms

GMU CS571 Spring 2022Y. Cheng 16

Seek, Rotate, Transfer

• Rotation per minute (RPM)
• 7200 RPM is common nowadays
• 15000 RPM is high end
• Old computers may have 5400 RPM disks

• 1 / 7200 RPM = 1 minute / 7200 rotations =
1 second / 120 rotations = 8.3 ms / rotation

GMU CS571 Spring 2022Y. Cheng 17

Seek, Rotate, Transfer

• Rotation per minute (RPM)
• 7200 RPM is common nowadays
• 15000 RPM is high end
• Old computers may have 5400 RPM disks

• 1 / 7200 RPM = 1 minute / 7200 rotations =
1 second / 120 rotations = 8.3 ms / rotation

• So it may take 4.2 ms on average to rotate to
target (0.5 * 8.3 ms)

GMU CS571 Spring 2022Y. Cheng 18

Seek, Rotate, Transfer

• Relatively fast
• Depends on RPM and sector density

• 100+ MB/s is typical for SATA I (1.5Gb/s max)
• Up to 600MB/s for SATA III (6.0Gb/s)

• 1s / 100MB = 10ms / MB = 4.9us/sector
• Assuming 512-byte sector

GMU CS571 Spring 2022Y. Cheng 19

Workloads

• Seeks and rotations are slow while transfer is
relatively fast

• What kind of workload is best suited for disks?

GMU CS571 Spring 2022Y. Cheng 20

Workloads

• Seeks and rotations are slow while transfer is
relatively fast

• What kind of workload is best suited for disks?
• Sequential I/O: access sectors in order (transfer

dominated)

• Random workloads access sectors in a random
order (seek+rotation dominated)
• Typically slow on disks
• Never do random I/O unless you must! E.g., Quicksort

is a terrible algorithm for disk!

GMU CS571 Spring 2022Y. Cheng 21

Disk Performance Calculation

• Seagate Enterprise SATA III HDD

• How long does an average 4KB read take?

Metric Perf

RPM 7200

Avg seek 4.16ms

Max transfer 500MB/s

GMU CS571 Spring 2022Y. Cheng 22

Disk Performance Calculation

• Seagate Enterprise SATA III HDD

• How long does an average 4KB read take?
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = ! "#$

%&&'(× 4 𝐾𝐵 ×
!,&&&,&&& *"

! "#$ = 8 𝑢𝑠

Metric Perf

RPM 7200

Avg seek 4.16ms

Max transfer 500MB/s

GMU CS571 Spring 2022Y. Cheng 23

• Seagate Enterprise SATA III HDD

• How long does an average 4KB read take?
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = ! "#$

%&&'(× 4 𝐾𝐵 ×
!,&&&,&&& *"

! "#$ = 8 𝑢𝑠
Latency = 4.16 ms + 4.2 ms + 8 us =
8.368 ms

Disk Performance Calculation

Avg Seek Avg Rotate

Metric Perf

RPM 7200

Avg seek 4.16ms

Max transfer 500MB/s

GMU CS571 Spring 2022Y. Cheng 24

Solid State Drives (SSDs)

GMU CS571 Spring 2022Y. Cheng 25

Disk Recap

• I/O requires: seek, rotate, transfer

• Inherently:
• Not parallel (only one head)
• Slow (mechanical)
• Poor random I/O (locality around disk head)

• Random requests each taking ~10+ ms

GMU CS571 Spring 2022Y. Cheng 26

SSD Overview

• Hold charge in cells. No moving (mechanical)
parts (no seeks)!
• SSDs use transistors (just like DRAM), but SSD data

persists when the power goes out
• NAND-based flash is the most popular technology,

so we’ll focus on it
• SSD is Inherently parallel!

GMU CS571 Spring 2022Y. Cheng 27

SSD Overview

• Hold charge in cells. No moving (mechanical)
parts (no seeks)!
• SSDs use transistors (just like DRAM), but SSD data

persists when the power goes out
• NAND-based flash is the most popular technology,

so we’ll focus on it
• SSD is Inherently parallel!
• High-level takeaways

1. SSDs have a higher $/bit than HDDs, but better
performance

2. SSDs handle writes in a strange way; this has
implications for file system design

GMU CS571 Spring 2022Y. Cheng 28

Storage Hierarchy Overview

GMU CS571 Spring 2022Y. Cheng 29

SSD:
Smaller capacity

Higher $/bit
Faster accesses

HDD:
Larger capacity

Lower $/bit
Way slower accesses

Disk vs. SSD: Performance

• Throughput
• Disk: ~130MB/s (sequential)
• SSD: ~400MB/s

• Latency
• Disk: ~10ms (one op)
• SSD:

• Read: 10-50us
• Program: 200-500us
• Erase: 2ms

GMU CS571 Spring 2022Y. Cheng 30

Disk vs. SSD: Performance

• Throughput
• Disk: ~130MB/s (sequential)
• SSD: ~400MB/s

• Latency
• Disk: ~10ms (one op)
• SSD:

• Read: 10-50us
• Program: 200-500us
• Erase: 2ms
Types of write, more later…

GMU CS571 Spring 2022Y. Cheng 31

Disk vs. SSD: Internal

* https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.htmlY. Cheng 32GMU CS571 Spring 2022

Disk vs. SSD: Capacity & Price
“An obvious question is why are we talking about spinning disks at all,
rather than SSDs, which have higher IOPS and are the “future” of storage.
The root reason is that the cost per GB remains too high, and more
importantly that the growth rates in capacity/$ between disks and SSDs
are relatively close (at least for SSDs that have sufficient numbers of
program-erase cycles to use in data centers), so that cost will not change
enough in the coming decade. We do make extensive use of SSDs, but
primarily for high performance workloads and caching, and this helps
disks by shifting seeks to SSDs.

~ Eric Brewer et al.

Source: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44830.pdf

GMU CS571 Spring 2022Y. Cheng 33

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44830.pdf

Disk vs. SSD: Summary

* https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html

GMU CS571 Spring 2022Y. Cheng 34

https://www.enterprisestorageforum.com/storage-hardware/ssd-vs-hdd.html

SSD Architecture

GMU CS571 Spring 2022Y. Cheng 35

SLC: Single-Level Cell

NAND Cell

ch
ar

ge

GMU CS571 Spring 2022Y. Cheng 36

SLC: Single-Level Cell

NAND Cell

ch
ar

ge 1

GMU CS571 Spring 2022Y. Cheng 37

SLC: Single-Level Cell

NAND Cell

ch
ar

ge 0

GMU CS571 Spring 2022Y. Cheng 38

MLC: Multi-Level Cell

NAND Cell

ch
ar

ge 00

GMU CS571 Spring 2022Y. Cheng 39

MLC: Multi-Level Cell

NAND Cell

ch
ar

ge 01

GMU CS571 Spring 2022Y. Cheng 40

MLC: Multi-Level Cell

NAND Cell

ch
ar

ge 10

GMU CS571 Spring 2022Y. Cheng 41

MLC: Multi-Level Cell

NAND Cell

ch
ar

ge 11

GMU CS571 Spring 2022Y. Cheng 42

Single- vs. Multi-Level Cell

MLC

ch
ar

ge

SLC

ch
ar

ge

GMU CS571 Spring 2022Y. Cheng 43

Single- vs. Multi-Level Cell

MLC

ch
ar

ge

SLC

ch
ar

ge

expensive
robust

1 cell: 1 bit

cheap
sensitive

1 cell: multi-bit

GMU CS571 Spring 2022Y. Cheng 44

Wearout

• Problem: flash cells wear out after being erased
too many times

• MLC: ~10K times
• SLC: ~100K times

• Usage strategy: ???

GMU CS571 Spring 2022Y. Cheng 45

Wearout

• Problem: flash cells wear out after being erased
too many times

• MLC: ~10K times
• SLC: ~100K times

• Usage strategy: wear leveling
• Prevents some cells from being wornout while others

still fresh

GMU CS571 Spring 2022Y. Cheng 46

Banks

• SSD devices are divided into banks (aka. planes)

• Banks can be accessed in parallel

Bank 0 Bank 1 Bank 2 Bank 3

GMU CS571 Spring 2022Y. Cheng 47

Banks

• SSD devices are divided into banks (aka. planes)

• Banks can be accessed in parallel

Bank 0 Bank 1 Bank 2 Bank 3

read read

GMU CS571 Spring 2022Y. Cheng 48

Banks

• SSD devices are divided into banks (aka. planes)

• Banks can be accessed in parallel

Bank 0 Bank 1 Bank 2 Bank 3

data data

GMU CS571 Spring 2022Y. Cheng 49

SSD Writes

• Writing 0’s
• Fast, fine-grained

• Writing 1’s
• Slow, coarse-grained

GMU CS571 Spring 2022Y. Cheng 50

SSD Writes

• Writing 0’s
• Fast, fine-grained
• called “program”

• Writing 1’s
• Slow, coarse-grained
• called “erase”

GMU CS571 Spring 2022Y. Cheng 51

SSD Writes

• Writing 0’s
• Fast, fine-grained [page-level]
• called “program”

• Writing 1’s
• Slow, coarse-grained [block-level]
• called “erase”

GMU CS571 Spring 2022Y. Cheng 52

SSD Writes

• Writing 0’s
• Fast, fine-grained [page-level]
• called “program”

• Writing 1’s
• Slow, coarse-grained [block-level]
• called “erase”

• SSD can only “write” (program) into clean pages
• “clean”: pages containing all 1’s (pages that have

been erased)
• SSD does not support in-place overwrite!

GMU CS571 Spring 2022Y. Cheng 53

Banks and Blocks

Bank 0 Bank 1 Bank 2 Bank 3

GMU CS571 Spring 2022Y. Cheng 54

Banks and Blocks

Bank 0 Bank 2 Bank 3

Each bank contains
many “blocks”

GMU CS571 Spring 2022Y. Cheng 55

Block and Pages

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

One block

GMU CS571 Spring 2022Y. Cheng 56

Block and Pages

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

One page

GMU CS571 Spring 2022Y. Cheng 57

Block and Pages

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

All pages are clean
(“programmable”)

GMU CS571 Spring 2022Y. Cheng 58

Block

1011
1000

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

program

GMU CS571 Spring 2022Y. Cheng 59

Block

1011
1000

1111
1111

1111
1111

1111
1111

1111
1111

0110
1010

1111
1111

1111
1111

program

GMU CS571 Spring 2022Y. Cheng 60

Block

1011
1000

1111
1111

1111
1111

1111
1111

1111
1111

0110
1010

1111
1111

1111
1111

Two pages hold data
(cannot be overwritten)

GMU CS571 Spring 2022Y. Cheng 61

Block

1011
1000

1111
1111

1111
1111

1111
1111

1111
1111

0110
1010

1111
1111

1111
1111

still want to write data into this page???

Two pages hold data
(cannot be overwritten)

GMU CS571 Spring 2022Y. Cheng 62

Block

1011
1000

1111
1111

1111
1111

1111
1111

1111
1111

0110
1010

1111
1111

1111
1111

erase

GMU CS571 Spring 2022Y. Cheng 63

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

erase
(the whole block)

GMU CS571 Spring 2022Y. Cheng 64

Block

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

After erase, again, free state
(can write new data in any page)

GMU CS571 Spring 2022Y. Cheng 65

Block

1011
0001

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

1111
1111

This dark blue page holds data

GMU CS571 Spring 2022Y. Cheng 66

SSD vs. Disk: APIs

disk flash
re

ad
w

rit
e

GMU CS571 Spring 2022Y. Cheng 67

SSD vs. Disk: APIs

disk flash
re

ad
w

rit
e

read sector read page

GMU CS571 Spring 2022Y. Cheng 68

SSD vs. Disk: APIs

disk flash
re

ad
w

rit
e

read sector read page

write sector
program page

(0’s)
erase block

(1’s)

GMU CS571 Spring 2022Y. Cheng 69

SSD Architecture

• Bank/plane: 1024 to 4096 blocks
• Banks accessed in parallel

• Block: 64 to 256 pages
• Unit of erase

• Page: 2 to 8 KB
• Unit of read and program

GMU CS571 Spring 2022Y. Cheng 70

Disk vs. SSD: Performance

• Throughput
• Disk: ~130MB/s (sequential)
• Flash: ~400MB/s

• Latency
• Disk: ~10ms (one op)
• Flash:

• Read: 10-50us
• Program: 200-500us
• Erase: 2ms

GMU CS571 Spring 2022Y. Cheng 71

Working with File System

GMU CS571 Spring 2022Y. Cheng 72

Traditional File Systems

File System

Storage Device

Traditional API:
• read sector
• write sector

GMU CS571 Spring 2022Y. Cheng 73

Traditional File Systems

File System

Storage Device

Traditional API:
• read sector
• write sector

Mismatch with SSD!

GMU CS571 Spring 2022Y. Cheng 74

Traditional APIs wrapping around
SSD APIs
read(addr):

return ssd_read(addr)

write(addr, data):
block_copy = ssd_read(all pages of block)
modify block_copy with data
ssd_erase(block of addr)
ssd_program(all pages of block_copy)

GMU CS571 Spring 2022Y. Cheng 75

Awkward SSD Write

Memory

SSD

00
00

00
11

01
10

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2
GMU CS571 Spring 2022Y. Cheng 76

Awkward SSD Write

Memory

SSD

00
00

00
11

01
10

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

File system wants
to write 0001

GMU CS571 Spring 2022Y. Cheng 77

Awkward SSD Write

Memory

SSD

00
00

00
11

01
10

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2
GMU CS571 Spring 2022Y. Cheng 78

Awkward SSD Write

Memory

SSD

00
00

00
11

01
10

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

Read all pages in block

00
00

00
11

01
10

11
11

GMU CS571 Spring 2022Y. Cheng 79

Awkward SSD Write

Memory

SSD

00
00

00
11

01
10

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

00
00

00
11

01
10

11
11

GMU CS571 Spring 2022Y. Cheng 80

Awkward SSD Write

Memory

SSD

00
00

00
11

01
10

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

00
01

00
11

01
10

11
11

Modify target page
in memory

GMU CS571 Spring 2022Y. Cheng 81

Awkward SSD Write

Memory

SSD

00
00

00
11

01
10

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

00
01

00
11

01
10

11
11

GMU CS571 Spring 2022Y. Cheng 82

Awkward SSD Write

Memory

SSD

11
11

11
11

11
11

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

00
01

00
11

01
10

11
11

Erase whole block

GMU CS571 Spring 2022Y. Cheng 83

Awkward SSD Write

Memory

SSD

11
11

11
11

11
11

11
11

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

00
01

00
11

01
10

11
11

GMU CS571 Spring 2022Y. Cheng 84

Awkward SSD Write

Memory

SSD

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

00
01

00
11

01
10

11
11

Program all pages
in block 00

01
00
11

01
10

11
11

GMU CS571 Spring 2022Y. Cheng 85

Awkward SSD Write

Memory

SSD

block 0

11
01

11
11

11
10

11
11

block 1

00
01

11
11

11
11

10
11

block 2

00
01

00
11

01
10

11
11

GMU CS571 Spring 2022Y. Cheng 86

Issue: Write Amplification

• Random writes are expensive for flash!

• Writing one 4KB page may cause:
• read, erase, and program of the whole 256KB

block

GMU CS571 Spring 2022Y. Cheng 87

Flash Translation Layer
(FTL)

GMU CS571 Spring 2022Y. Cheng 88

Flash Translation Layer (FTL)

• Add an address translation layer between upper-
level file system and lower-level flash
• Translate logical device addresses to physical

addresses
• Convert in-place write into append-write (log-

structured)
• Essentially, a virtualization & optimization layer

GMU CS571 Spring 2022Y. Cheng 89

Flash Translation Layer (FTL)

• Usually implemented in SSD device’s firmware
(hardware)
• But is also implemented in software for some SSDs

• Where to store mapping?
• SRAM

• Physical pages can be in three states
• uninitialized, valid, invalid

GMU CS571 Spring 2022Y. Cheng 90

SSD Architecture with FTL

FTL SRAM:
Mapping table

SSD provides disk-like interface

GMU CS571 Spring 2022Y. Cheng 91

. .
.Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

Uninitialized

Valid

Log head

Logical-to-physical map

GMU CS571 Spring 2022Y. Cheng 92

. .
.Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w0) Logical-to-physical map
92 --> 0

Uninitialized

Valid

Log head

erase(block0)

logHead++
program(page0, w0)

1* 1* 1*1*w0

Log head

GMU CS571 Spring 2022Y. Cheng 93

. .
.Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w0) Logical-to-physical map
92 --> 0
17 --> 1

Uninitialized

Valid

erase(block0)

logHead++
program(page0, w0)

1* 1* 1*w0

Log head

write(page=17, data=w1)
program(page1, w1)
logHead++

w1

Log head

GMU CS571 Spring 2022Y. Cheng 94

. .
.Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w0) Logical-to-physical map
92 --> 0
17 --> 1

Uninitialized

Valid

erase(block0)

logHead++
program(page0, w0)

1* 1*w0

write(page=17, data=w1)
program(page1, w1)
logHead++

w1

Log head

Advantages w.r.t. direct
mapping
• Avoids expensive read-modify-

write behavior
• Better wear levelling: writes get

spread across pages, even if
there is spatial locality in writes
at logical level

GMU CS571 Spring 2022Y. Cheng 95

. .
.Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w4) Logical-to-physical map
92 --> 0
17 --> 1
33 --> 2
68 --> 3

Uninitialized

Valid

erase(block1)

logHead++
program(page4, w4)

w2 w3w0 w1

Log head

1* 1* 1*1*

Log head

w4

92 --> 4

Garbage version of
logical block 92!

GMU CS571 Spring 2022Y. Cheng 96

. .
.Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

Logical-to-physical map
92 --> 0
17 --> 1
33 --> 2
68 --> 3

Uninitialized

Valid w2 w3w0 w1 1* 1* 1*

Log head

w4

92 --> 4

Garbage version of
logical block 92!

At some point, FTL must:
• Read all pages in physical block 0
• Write out the second, third, and

fourth pages to the end of the log
• Update logical-to-physical map

GMU CS571 Spring 2022Y. Cheng 97

Trash Day is the Worst Day

• Garbage collection requires extra read+write
traffic
• Overprovisioning makes GC less painful
• SSD exposes a logical page space that is smaller

than the physical page space
• By keeping extra, “hidden” pages around, the SSD

tries to defer GC to a background task (thus
removing GC from critical path of a write)

• SSD will occasionally shuffle live (i.e., non-
garbage) blocks that never get overwritten
• Enforces wear leveling

Y. Cheng GMU CS571 Spring 2022 98

File System Abstraction

99Y. Cheng GMU CS571 Spring 2022

What is a File?

• File: Array of bytes
• Ranges of bytes can be read/written

• File system (FS) consists of many files

• Files need names so programs can choose the
right one

100Y. Cheng GMU CS571 Spring 2022

File Names

• Three types of names (abstractions)
• inode (low-level names)
• path (human readable)
• file descriptor (runtime state)

101Y. Cheng GMU CS571 Spring 2022

Inodes

• Each file has exactly one inode number

• Inodes are unique (at a given time) within a FS

• Numbers may be recycled after deletes

102Y. Cheng GMU CS571 Spring 2022

Inodes

• Each file has exactly one inode number

• Inodes are unique (at a given time) within a FS

• Numbers may be recycled after deletes

• Show inodes via stat
• $ stat <file or dir>

103Y. Cheng GMU CS571 Spring 2022

‘stat’ Example
PROMPT>: stat test.dat

File: ‘test.dat’ Size: 5 Blocks: 8 IO Block: 4096 regular
file

Device: 803h/2051d Inode: 119341128 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1001/ yue) Gid: (1001/ yue)

Context: unconfined_u:object_r:user_home_t:s0

Access: 2015-12-17 04:12:47.935716294 -0500

Modify: 2014-12-12 19:25:32.669625220 -0500

Change: 2014-12-12 19:25:32.669625220 -0500

Birth: -

104Y. Cheng GMU CS571 Spring 2022

Path (multiple directories)

105

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

Y. Cheng GMU CS571 Spring 2022

Path (multiple directories)

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

106Y. Cheng GMU CS571 Spring 2022

Path (multiple directories)

107

<“bar”, “12”><“foo”, “10”>

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

Y. Cheng GMU CS571 Spring 2022

Path (multiple directories)

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

• Directory tree: reads for
getting final inode called
traversal

108

[traverse /bar/foo/bar.txt]

Y. Cheng GMU CS571 Spring 2022

File Naming

• Directories and files can
have the same name as
long as they are in
different locations of the
file-system tree

• .txt, .c, etc.
• Naming convention
• In UNIX-like OS, no

enforcement for extension
name

109Y. Cheng GMU CS571 Spring 2022

Special Directory Entries
prompt> ls –al

total 216

drwxr-xr-x 19 yue staff 646 Nov 23 16:28 .

drwxr-xr-x+ 40 yue staff 1360 Nov 15 01:41 ..

-rw-r--r--@ 1 yue staff 1064 Aug 29 21:48 common.h

-rwxr-xr-x 1 yue staff 9356 Aug 30 14:03 cpu

-rw-r--r--@ 1 yue staff 258 Aug 29 21:48 cpu.c

-rwxr-xr-x 1 yue staff 9348 Sep 6 12:12 cpu_bound

-rw-r--r-- 1 yue staff 245 Sep 5 13:10 cpu_bound.c

…

110Y. Cheng GMU CS571 Spring 2022

File System Interfaces

111Y. Cheng GMU CS571 Spring 2022

Creating Files

• UNIX system call: open()

int fd = open(char *path, int flag, mode_t mode);

-OR-

int fd = open(char *path, int flag);

112Y. Cheng GMU CS571 Spring 2022

File Descriptor (fd)

• open() returns a file descriptor (fd)
• A fd is an integer
• Private per process

• An opaque handle that gives caller the power to
perform certain operations

• Think of a fd as a pointer to an object of the file
• By owning such an object, you can call other

“methods” to access the file

113Y. Cheng GMU CS571 Spring 2022

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 5

114Y. Cheng GMU CS571 Spring 2022

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2); // return 4

115

offset = 0
inode = …

fd

location = …
size = …

inode

fd table

0
1
2
3
4
5

Y. Cheng GMU CS571 Spring 2022

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2); // return 4

116

offset = 8
inode = …

fd

location = …
size = …

inode

fd table

0
1
2
3
4
5

Y. Cheng GMU CS571 Spring 2022

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 4

117

offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

fd table

0
1
2
3
4
5

Y. Cheng GMU CS571 Spring 2022

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 5

118

fd table

0
1
2
3
4

offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

5

Y. Cheng GMU CS571 Spring 2022

UNIX File Read and Write APIs
int fd = open(char *path, int flag, mode_t mode);

-OR-

int fd = open(char *path, int flag);

ssize_t sz = read(int fd, void *buf, size_t count);

ssize_t sz = write(int fd, void *buf, size_t count);

int ret = close(int fd);

119Y. Cheng GMU CS571 Spring 2022

Reading and Writing Files
prompt> echo hello > file.txt

prompt> cat file.txt

hello

prompt>

120Y. Cheng GMU CS571 Spring 2022

Reading and Writing Files

121Y. Cheng GMU CS571 Spring 2022

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

122

Open the file with read
only mode

Y. Cheng GMU CS571 Spring 2022

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

123

Open the file with read
only mode

Read content from file

Y. Cheng GMU CS571 Spring 2022

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

124

Open the file with read
only mode

Read content from file

Write string to std
output fd 1

Y. Cheng GMU CS571 Spring 2022

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

125

cat tries to read more
but reaches EOF

Write string to std
output fd 1

Open the file with read
only mode

Read content from file

Y. Cheng GMU CS571 Spring 2022

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

126

cat done with file ops
and closes the file

cat tries to read more
but reaches EOF

Write string to std
output fd 1

Open the file with read
only mode

Read content from file

Y. Cheng GMU CS571 Spring 2022

Non-Sequential File Operations

127

off_t offset = lseek(int fd, off_t offset, int whence);

Y. Cheng GMU CS571 Spring 2022

Non-Sequential File Operations

128

off_t offset = lseek(int fd, off_t offset, int whence);

whence:
• If whence is SEEK_SET, the offset is set to offset bytes
• If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes
• If whence is SEEK_END, the offset is set to the size of the

file plus offset bytes

Y. Cheng GMU CS571 Spring 2022

Non-Sequential File Operations

129

off_t offset = lseek(int fd, off_t offset, int whence);

whence:
• If whence is SEEK_SET, the offset is set to offset bytes
• If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes
• If whence is SEEK_END, the offset is set to the size of the

file plus offset bytes

Note: Calling lseek() does not perform a disk seek!

Y. Cheng GMU CS571 Spring 2022

Writing Immediately with fsync()
int fd = fsync(int fd);

• fsync(fd) forces buffers to flush to disk, and (usually)
tells the disk to flush its write cache too
• To make the data durable and persistent

• Write buffering improves performance

130Y. Cheng GMU CS571 Spring 2022

Renaming Files

131

prompt> mv file.txt new_name.txt

Y. Cheng GMU CS571 Spring 2022

Renaming Files

132

prompt> strace mv file.txt new_name.txt

...

rename("file.txt", "new_name.txt") = 0

...

prompt>

Y. Cheng GMU CS571 Spring 2022

Renaming Files

133

prompt> strace mv file.txt new_name.txt

...

rename("file.txt", "new_name.txt") = 0

...

prompt>

System call rename()
atomically renames a

file

Y. Cheng GMU CS571 Spring 2022

File Renaming Example

134

prompt> vim file.txt

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

Y. Cheng GMU CS571 Spring 2022

File Renaming Example

135

prompt> vim file.txt

… vim editing session …

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file (editing…)

Y. Cheng GMU CS571 Spring 2022

File Renaming Example

136

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file
fsync(fd); // make data durable
close(fd); // close tmp file
rename(“.file.txt.swp”, “file.txt”);// change name and replacing old file

Using vim to edit a file and then save it

prompt> vim file.txt

… vim editing session …

prompt> :wq

Y. Cheng GMU CS571 Spring 2022

Deleting Files

137

prompt> rm file.txt

Y. Cheng GMU CS571 Spring 2022

Deleting Files

138

prompt> strace rm file.txt

...

unlink("file.txt") = 0

...

prompt>

Y. Cheng GMU CS571 Spring 2022

Deleting Files

139

prompt> strace rm file.txt

...

unlink("file.txt") = 0

...

prompt>

System call unlink() is
called to delete a file

Y. Cheng GMU CS571 Spring 2022

Deleting Files

140

prompt> strace rm file.txt

...

unlink("file.txt") = 0

...

prompt>

System call unlink() is
called to delete a file

Directories are deleted when unlink() is called

Q: File descriptors are deleted when ???

Y. Cheng GMU CS571 Spring 2022

