
Concurrency: Condition
Variables, PCP, 5DP

CS 571: Operating Systems (Spring 2022)
Lecture 7

Yue Cheng
Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Condition Variables

2Y. Cheng GMU CS571 Spring 2022

Condition Variables (CV)

• Definition:
• An explicit queue that threads can put themselves

when some condition is not as desired (by waiting on
the condition)

• Other thread can wake one of those waiting threads
to allow them to continue (by signaling on the
condition)

• Pthread CV

3Y. Cheng GMU CS571 Spring 2022

4

CV-based Approach

??

??

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 1

5Y. Cheng GMU CS571 Spring 2022

Broken Implementation 1

6Y. Cheng GMU CS571 Spring 2022

If parent comes after child, parent
sleeps forever

Broken Implementation 1

7Y. Cheng GMU CS571 Spring 2022

Broken Implementation 1

8

Parent: x y z

Child: a b c

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 1

9

Parent: x y z

Child: a b c
GOOD!

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 1

10Y. Cheng GMU CS571 Spring 2022

Broken Implementation 1

11

Parent: x y

Child: a b c

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 1

12

Parent: x y … sleeeeeeeeeep forever …

Child: a b c

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 2

13Y. Cheng GMU CS571 Spring 2022

Broken Implementation 2

14Y. Cheng GMU CS571 Spring 2022

No mutual exclusion, hence child
may signal before parent calls
cond_wait(). In this case, parent
sleeps forever!

Broken Implementation 2

15Y. Cheng GMU CS571 Spring 2022

Broken Implementation 2

16

Parent: w x y

Child: a b

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 2

17

Parent: w x y … sleeeeeeeeep forever …

Child: a b

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 2

18

Parent: w x y … sleeeeeeeeep forever …

Child: a b

How to fix?

Y. Cheng GMU CS571 Spring 2022

Broken Implementation 2

19

Parent: w x y … sleeeeeeeeep forever …

Child: a b

Mutex
_lock

(&m);

Mutex_unlock(&m);

while

Y. Cheng GMU CS571 Spring 2022

Trap 1 When Using CV

20

Condition Variable
thread

wait

thread
wait

Y. Cheng GMU CS571 Spring 2022

Trap 1 When Using CV

21

Condition Variable
thread

wait

thread
waitthread

signal

Y. Cheng GMU CS571 Spring 2022

Trap 1 When Using CV

22

Condition Variable thread
wait

Y. Cheng GMU CS571 Spring 2022

Trap 1 When Using CV

23

Condition Variable thread
wait

Only one thread gets a signal

Y. Cheng GMU CS571 Spring 2022

Trap 2 When Using CV

24

Condition Variable

Y. Cheng GMU CS571 Spring 2022

Trap 2 When Using CV

25

Condition Variablethread
signal

Y. Cheng GMU CS571 Spring 2022

Trap 2 When Using CV

26

Condition Variable

Y. Cheng GMU CS571 Spring 2022

Trap 2 When Using CV

27

Condition Variable
thread

wait

Y. Cheng GMU CS571 Spring 2022

Trap 2 When Using CV

28

Condition Variable
thread

wait

waits forever…

Y. Cheng GMU CS571 Spring 2022

Trap 2 When Using CV

29

Condition Variable
thread

wait

waits forever…

Signal lost if nobody waiting at that time

Y. Cheng GMU CS571 Spring 2022

Guarantee

30

Condition Variable
thread

wait

thread
wait

Upon signal, there has to be at least one thread waiting;
If there are threads waiting, at least one thread will wake

thread
signal

Y. Cheng GMU CS571 Spring 2022

31Y. Cheng GMU CS571 Spring 2022

CV-based Parent-wait-for-child
Approach

32Y. Cheng GMU CS571 Spring 2022

Rule of using CVs
Always do 1. wait and 2. signal while holding the lock

Why: To prevent lost signal

CV-based Parent-wait-for-child
Approach

33

• Producer-consumer problem
• Semaphore version
• CV-based version

• Readers-writers problem

• Dining-philosophers problem

Classical Problems of Synchronization

Y. Cheng GMU CS571 Spring 2022

34Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

Single CV and if statement

Put and Get routines
Single buffer

35Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

Single CV and if statement

Put and Get routines
Single buffer

What’s the problem of this
approach?

CV-based Producer-Consumer Implementation 1

36

C1 running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

37

P running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

38

P running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

39

P running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

40

P running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

41

P running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

42

C1 runnable

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

43

C2 running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

44

C2 running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

45

C2 running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

46

C2 running

Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 1

47

C1 running

Y. Cheng GMU CS571 Spring 2022

48Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 2

Single CV and while

49Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 2

Single CV and while

What’s the problem of this
approach?

50

C1 running

Y. Cheng GMU CS571 Spring 2022

51

C2 running

Y. Cheng GMU CS571 Spring 2022

52

P running

Y. Cheng GMU CS571 Spring 2022

53

P running

Y. Cheng GMU CS571 Spring 2022

54

P sleeping

Y. Cheng GMU CS571 Spring 2022

55

C1 running

Y. Cheng GMU CS571 Spring 2022

56

C1 running

Y. Cheng GMU CS571 Spring 2022

57

C1 running

Y. Cheng GMU CS571 Spring 2022

58

C1 sleeping

Y. Cheng GMU CS571 Spring 2022

59Y. Cheng GMU CS571 Spring 2022

C2 running

Y. Cheng GMU CS571 Spring 2022 60

C2 sleeping

61Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 3

Two CVs and while

62Y. Cheng GMU CS571 Spring 2022

CV-based Producer-Consumer Implementation 3

Two CVs and while

Using two CVs to distinguish two
types of threads; in order to properly
signal which thread should wake up

• Producer waits on empty
• Consumer waits on fill

Dining-Philosophers Problem

63Y. Cheng GMU CS571 Spring 2022

64Y. Cheng GMU CS571 Spring 2022

Shared data
sem_t forks[5];

Initially all semaphore values are 1

• 5 philosophers share a common circular
table. There are 5 forks (or chopsticks)
and food (in the middle). When a
philosopher gets hungry, he tries to pick
up the closest forks

• A philosopher may pick up only one fork
at a time, and cannot pick up a fork
already in use. When done, he puts
down both of his forks, one after the
other

Dining-Philosophers Problem

Dining-Philosophers Problem

• The basic loop of a philosopher

65

Critical section
??

??

Y. Cheng GMU CS571 Spring 2022

The Helper Functions

sem_t forks[5]
• Each fork initialized to 1

66

Is this solution correct?

Y. Cheng GMU CS571 Spring 2022

Simplest Example of A Deadlock

67

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

Y. Cheng GMU CS571 Spring 2022

W/ only two philosophers and two forks

Simplest Example of A Deadlock

68

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

Y. Cheng GMU CS571 Spring 2022

W/ only two philosophers and two forks

Simplest Example of A Deadlock

69

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

Y. Cheng GMU CS571 Spring 2022

W/ only two philosophers and two forks

Simplest Example of A Deadlock

70

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])

Y. Cheng GMU CS571 Spring 2022

W/ only two philosophers and two forks

Simplest Example of A Deadlock

71

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])

Y. Cheng GMU CS571 Spring 2022

W/ only two philosophers and two forks

Simplest Example of A Deadlock

72

Thread 0 Thread 1Interleaving

sem_wait(fork[0])
sem_wait(fork[1])
sem_signal(fork[0])
sem_signal(fork[1])

sem_wait(fork[1])
sem_wait(fork[0])
sem_signal(fork[1])
sem_signal(fork[0])

sem_wait(fork[0])

sem_wait(fork[1])

sem_wait(fork[0])
wait…

sem_wait(fork[1])
wait…

Y. Cheng GMU CS571 Spring 2022

W/ only two philosophers and two forks

Review: Conditions for Deadlocks

• Mutually exclusive access of shared resources
• Binary semaphore fork[0] and fork[1]

• Circular waiting
• Thread 0 waits for Thread 1 to signal(fork[1]) and
• Thread 1 waits for Thread 0 to signal(fork[0])

• Hold and wait
• Holding either fork[0] or fork[1] while waiting on

the other
• No preemption

• Neither fork[0] and fork[1] can be removed from
their respective holding threads

73Y. Cheng GMU CS571 Spring 2022

Why 5DP is Interesting?

• How to eat with your fellows without causing
deadlocks

• Circular arguments (the circular wait condition)
• Not giving up on firmly held things (no preemption)
• Infinite patience with half-baked schemes (hold some

& wait for more)

74Y. Cheng GMU CS571 Spring 2022

Why 5DP is Interesting?

• How to eat with your fellows without causing
deadlocks

• Circular arguments (the circular wait condition)
• Not giving up on firmly held things (no preemption)
• Infinite patience with half-baked schemes (hold some

& wait for more)

75

How to mess with your fellows!

Y. Cheng GMU CS571 Spring 2022

Dijkstra’s Solution:
Break the Circular Wait Condition
• Change how forks are acquired by at least one

of the philosophers
• Assume P0 – P4, 4 is the highest number

76Y. Cheng GMU CS571 Spring 2022

