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Today’s outline

1. Mechanisms

2. Polices
1. FIFO
2. Random
3. LRU
4. MIN: Belady’s optimal
5. ARC

3. Misc. (TLB caching)
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Beyond Physical Memory: 
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How to Know Where a Page Lives?
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Present Bit

• With each PTE a present is associated 
• 1 è in-memory, 0 è out in disk

• During address translation, if present bit in PTE is 0 
è page fault

15

An 32-bit X86 page table entry (PTE)

Present bit
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Present Bit

16

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

A page tableY. Cheng



Present Bit

17
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Present Bit

19
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What if NO Memory is Left?
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23
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Present Bit

24
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called “swapping out” 
or “paging out”
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Present Bit

27
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Why not Leave Page on Disk?

Y. Cheng GMU CS571 Spring 2022



Why not Leave Page on Disk?

• Performance: Memory vs. Disk

• How long does it take to access a 4-byte int
from main memory vs. disk?
• DRAM: ~100ns
• Disk: ~10ms
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Beyond the Physical Memory

• Idea: use the disk space as an extension of main 
memory

• Two ways of interaction b/w memory and disk
• Demand paging
• Swapping
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Demand Paging

• Bring a page into memory only when it is needed 
(demanded)
• Less I/O needed
• Less memory needed 
• Faster response
• Support more processes/users

• Page is needed Þ use the reference to page
• If not in memory Þ must bring from the disk
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Swapping

• Swapping allows OS to support the illusion of a 
large virtual memory for multiprogramming
• Multiple programs can run “at once”
• Better utilization
• Ease of use

• Demand paging vs. swapping
• On demand vs. page replacement under memory 

pressure 

32Y. Cheng GMU CS571 Spring 2022



Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry
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Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

• Q: Which steps are expensive??
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Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
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if (!valid): exception [segfault]
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(cheap)

(expensive)

(cheap)

(cheap)

(cheap)

(expensive)
(expensive)
(expensive)
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Page Fault

• The act of accessing a page that is not in 
physical memory is called a page fault

• OS is invoked to service the page fault
• Page fault handler

• In a canonical example, we assume that PTE
contains the page address on disk
• To avoid getting too deep into the page fault handling 

process
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Simplified: Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction
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Simplified: Page-Fault Handler (OS)
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Simplified: Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?
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Simplified: Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction
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(expensive)

(cheap)

(cheap)

(cheap)

(cheap)

(cheap)

What to evict?
What to read?
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Major Steps of A Page Fault
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Reality: The Page Fault Handler

Y. Cheng GMU CS571 Spring 2022 42

Complex logic: 
Easier to read 
code than read a 
book!



Impact of Page Faults

• Each page fault affects the system performance 
negatively
• The process experiencing the page fault will not be able 

to continue until the missing page is brought to the main 
memory
• The process will be blocked (moved to the waiting state)
• Dealing with the page fault involves disk I/O 

• Increased demand to the disk drive 
• Increased waiting time for process experiencing page fault
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Memory as a Cache

• As we increase the degree of multiprogramming, 
over-allocation of memory becomes a problem

• What if we are unable to find a free frame at the 
time of the page fault? 

• OS chooses to page out one or more pages to 
make room for new page(s) OS is about to bring 
in
• The process to replace page(s) is called page 

replacement policy
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Memory as a Cache

• OS keeps a small portion of memory free 
proactively
• High watermark (HW) and low watermark (LW)

• When OS notices free memory is below LW (i.e., 
memory pressure)
• A background thread (i.e., swap/page daemon) starts 

running to free memory
• It evicts pages until there are HW pages available
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Beyond Physical Memory: 
Policies – What to Evict?
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Page Replacement
• Page replacement completes the separation 

between the logical memory and the physical 
memory 
• Large virtual memory can be provided on a smaller 

physical memory

• Impact on performance
• If there are no free frames, two page transfers needed at 

each page fault!

• We can use a modify (dirty) bit to reduce overhead 
of page transfers – only modified pages are written 
back to disk
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Page Replacement Policy

• Formalizing the problem
• Cache management: Physical memory is a cache for 

virtual memory pages in the system
• Primary objective:

• High performance
• High efficiency
• Low cost

• Goal: Minimize cache misses
• To minimize # times OS has to fetch a page from disk 
• -OR- maximize cache hits 
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Average Memory Access Time

• Average (or effective) memory access time (AMAT) is 
the metric to calculate the effective memory 
performance

• TM: Cost of accessing memory
• TD: Cost of accessing disk
• PHit: Probability of finding data in cache (hit)
• Hit rate

• PMiss: Probability of not finding data in cache (miss)
• Miss rate
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An Example

• Assuming 
• TM is 100 nanoseconds (ns), TD is 10 milliseconds 

(ms)
• PHit is 0.9, and PMiss is 0.1

• AMAT = 0.9*100ns + 0.1*10ms = 90ns + 1ms = 
1.00009ms

• Or around 1 millisecond
• What if the hit rate is 99.9%?
• Result changes to 10.1 microseconds (or µs)
• Roughly 100 times faster!
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First-In First-Out (FIFO)
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First-in First-out (FIFO)

• Simplest page replacement algorithm 

• Idea: items are evicted in the order they are 
inserted

• Implementation: FIFO queue holds identifiers of 
all the pages in memory
• We replace the page at the head of the queue
• When a page is brought into memory, it is inserted at 

the tail of the queue
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3
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FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Issue: the “oldest” page may contain a heavily 
used data
• Will need to bring back that page in near future
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FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
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FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
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FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 1,2,3,4
1 yes 1,2,3,4
2 yes 1,2,3,4
5 no 2,3,4,5
1 no 3,4,5,1
2 no 4,5,1,2
3 no 5,1,2,3
4 no 1,2,3,4
5 no 2,3,4,5



Belady’s Anomaly
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Size-3 (3-frames) case results in 9 page faults
• Size-4 (4-frames) case results in 10 page faults

• Program runs potentially slower w/ more memory!

• Belady’s anomaly
• More frames è more page faults for some access pattern
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Random
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Random Policy
• Idea: picks a random page to replace

• Simple to implement like FIFO

• No intelligence of preserving locality
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Random Policy
• Idea: picks a random page to replace
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3
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How Random Policy Performs?

• Depends entirely on how lucky you are
• Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 
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Random performance over 10000 trials
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How Random Policy Performs?

• Depends entirely on how lucky you are
• Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

70

Same as 
optimal

Extremely 
bad result!

Random performance over 10000 trials
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Least-Recently-Used (LRU)

Y. Cheng GMU CS571 Spring 2022



Least-Recently-Used Policy (LRU)
• Use the recent pass as an approximation of the 

near future (using history)
• Idea: evict the page that has not been used for the 

longest period of time
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the 

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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LRU Stack Implementation

• Stack implementation: keep a stack of page 
numbers in a doubly linked list form
• Page referenced, move it to the top
• Requires quite a few pointers to be changed
• No search required for replacement operation!
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Using a Stack to Approximate LRU
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Most recently used

Least recently used
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Using a Stack to Approximate LRU
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Most recently used

Least recently used

7 moved to MRU 
position
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Belady’s Optimal
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MIN: The Optimal Replacement Policy

• Many years ago Belady demonstrated that there is 
a simple policy (MIN or OPT) which always leads to 
fewest number of misses
• Idea: evict the page that will be accessed furthest 

in the future
• Assumption: we know about the future
• Impossible to implement MIN in practice!

• But it is extremely useful as a practical best-case 
baseline for comparison purpose
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Proof of Optimality for Belady’s MIN
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3

What to evict??
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3

What to evict??
Page 2 happens to 
be the one that will 

be accessed 
furthest in future!
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3

What to evict??
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3

What to evict??

Page 1 will be 
accessed right 
after page 2. 

Hence 1 is safe!
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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MIN the Optimal
• Idea: evict the page that will be accessed furthest 

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1 
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assume 
cache size 3

The optimal number of cache hits is 6 for this workload!Y. Cheng
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ARC: Adaptive Replacement Cache
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Adaptive Replacement Cache

• ARC policy
• Developed and patented by IBM
• (…Dissuaded its adoption in open-source projects??)
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Why ARC?

• Offline optimal (MIN): Replaces the page that has 
the greatest forward distance
• Requires knowledge of future
• Provides an upper-bound

• Recency (LRU)
• Most commonly used policy

• Frequency (LFU)
• Optimal under independent reference model (IRM)
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Mechanisms

• Maintains two LRU lists
• Pages that have been referenced only once (L1)
• Pages that have been referenced at least twice (L2)

• Each list has the same length c as cache
• Cache contains tops of both lists: T1 and T2
• Bottoms B1 and B2 are not in cache 
• Ghost cache
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Mechanisms (cont.)
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L1 L2

T1
T2

B1
B2

|T1|+|T2|=c

Ghost cache 
(pages not in memory)

MRU

LRU

MRU

LRU



Policy

• ARC attempts to maintain a target size 
target_T1 for list T1 (parameter p) 
• ARC continually and dynamically revises target_T1

• When cache is full, ARC evicts:
• The LRU page from T1 if: 

|T1| >= target_T1
• The LRU page from T2 otherwise
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Policy (cont.)

• If the missing page was in bottom B1 of L1:
• ARC increases target_T1
target_T1=min(target_T1+max(|B2|/|B1|,1),c)

• If the missing page was in bottom B2 of L2:
• ARC decreases target_T1
target_T1=max(target_T1-max(|B1|/|B2|,1),0)
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Policy (cont.)

• Intuition
• Two heuristics compete with each other
• Each heuristic gets rewarded any time it can show that 

adding more pages to its top list would have avoided a 
cache miss

• ARC chooses whether it should care more about 
recency or frequency of access in eviction decisions

• Note that ARC has no tunable parameter 
(parameter-less)
• Cannot get it wrong!
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Policy (cont.)

• ARC generally performs much better than LRU
• Can achieve greater hit rates than LRU w/ the same 

cache size 
• Or, can achieve same hit rates as LRU w/ a much 

smaller cache
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Mini Exam 1

• 30 minutes next Wednesday, 03/09 
• 7:20 pm – 7:50 pm
• Worksheet practices available on BB (course content)

• Open book, open note

• CPU scheduling
• FIFO, SJF, RR, STCF

• Paging
• VA à PA translation, PT
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Miscellaneous: TLB Caching
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TLB Replacement Policy

• Cache: When we want to add a new entry to a full
TLB, an old entry must be evicted and replaced

• LRU policy
• Intuition: A page entry that has not recently been used 

implies it won’t likely to be used in the near future

• Random policy
• Evicts an entry at random
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TLB Workloads

• Sequential array accesses can almost always hit 
in the TLB, and hence are very fast

• What pattern would be slow?
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TLB Workloads

• Sequential array accesses can almost always hit 
in the TLB, and hence are very fast

• What pattern would be slow?
• Highly random, with no repeat accesses
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Workload Characteristics

115

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<512; i++) {

sum += a[rand() % N];
}
srand(1234); // same seed
for (i=0; i<512; i++) {

sum += a[rand() % N];
}

Workload A Workload B

Y. Cheng GMU CS571 Spring 2022



Access Patterns
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …
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Access Patterns
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Spatial Locality Temporal Locality
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Workload Locality

• Spatial locality: 
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data
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Workload Locality

• Spatial locality: 
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What TLB characteristics are best for each 
type?
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Workload Locality

• Spatial locality: 
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What TLB characteristics are best for each 
type?
• One TLB entry holds the translation for one memory 

page: all accesses to that particular page benefit from 
this single TLB entry (spatial locality)
• TLB is a small cache (if supporting LRU): memory 

accesses with temporal locality benefit
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TLB Replacement Policy

• Cache: When we want to add a new entry to a full
TLB, an old entry must be evicted and replaced

• Least-recently-used (LRU) policy
• Intuition: A page entry that has not recently been used 

implies it won’t likely to be used in the near future

• Random policy
• Evicts an entry at random
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache

4
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4

TLB miss
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4

TLB miss
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4

TLB miss
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Y. Cheng GMU CS571 Spring 2022



LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Now, 0 is the least-recently used item in TLB
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Replace 0 with 4
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

Replace 0 with 4
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Accessing 0 again, which was unfortunately just evicted…
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LRU Trouble
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Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 0 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss
Accessing 0 again, which was unfortunately just evicted…
Replace 1 (which is the least-recently used item at this 
point) with 0… 
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Takeaway

• LRU

• Random

• When is each better?
• Sometimes random is better than a “smart” policy!
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