
Memory
Virtualization:

Beyond Physical Memory
CS 571: Operating Systems (Spring 2022)

Lecture 5

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Today’s outline

1. Mechanisms

2. Polices
1. FIFO
2. Random
3. LRU
4. MIN: Belady’s optimal
5. ARC

3. Misc. (TLB caching)

2Y. Cheng GMU CS571 Spring 2022

3

Beyond Physical Memory:
Mechanisms

Y. Cheng GMU CS571 Spring 2022

4

Virtual memory

Program

code
data

Disk

Y. Cheng GMU CS571 Spring 2022

5

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1

Y. Cheng GMU CS571 Spring 2022

6

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1

What’s in code?

Y. Cheng GMU CS571 Spring 2022

7

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

Many large libraries, some of which are rarely/never used

LibA LibB

LibC Prog

LibA LibB

LibC Prog

What’s in code?

Y. Cheng GMU CS571 Spring 2022

8

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

How to avoid wasting physical pages to
back rarely used virtual pages?

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Y. Cheng GMU CS571 Spring 2022

9

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog

Y. Cheng

10

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog

Y. Cheng

11

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgProcess 1 accesses LibB

Y. Cheng

12

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgOS copies LibB to mem
LibB

Y. Cheng

13

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Progcalled “paging in”
LibB

Y. Cheng

14

How to Know Where a Page Lives?

Y. Cheng GMU CS571 Spring 2022

Present Bit

• With each PTE a present is associated
• 1 è in-memory, 0 è out in disk

• During address translation, if present bit in PTE is 0
è page fault

15

An 32-bit X86 page table entry (PTE)

Present bit

Y. Cheng GMU CS571 Spring 2022

Present Bit

16

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

A page tableY. Cheng

Present Bit

17

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

Y. Cheng GMU CS571 Spring 2022

Present Bit

18

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Y. Cheng GMU CS571 Spring 2022

Present Bit

19

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

8 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Y. Cheng GMU CS571 Spring 2022

20

What if NO Memory is Left?

Y. Cheng GMU CS571 Spring 2022

Present Bit

21

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

FULL

Y. Cheng GMU CS571 Spring 2022

Present Bit

22

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL

Y. Cheng GMU CS571 Spring 2022

Present Bit

23

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL

evict

Y. Cheng GMU CS571 Spring 2022

Present Bit

24

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict

Y. Cheng GMU CS571 Spring 2022

25

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict

called “swapping out”
or “paging out”

Y. Cheng GMU CS571 Spring 2022

Present Bit

Present Bit

26

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Y. Cheng GMU CS571 Spring 2022

Present Bit

27

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

5 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

again, another “swapping in”
or “paging in” GMU CS571 Spring 2022

28

Why not Leave Page on Disk?

Y. Cheng GMU CS571 Spring 2022

Why not Leave Page on Disk?

• Performance: Memory vs. Disk

• How long does it take to access a 4-byte int
from main memory vs. disk?
• DRAM: ~100ns
• Disk: ~10ms

29Y. Cheng GMU CS571 Spring 2022

Beyond the Physical Memory

• Idea: use the disk space as an extension of main
memory

• Two ways of interaction b/w memory and disk
• Demand paging
• Swapping

30Y. Cheng GMU CS571 Spring 2022

Demand Paging

• Bring a page into memory only when it is needed
(demanded)
• Less I/O needed
• Less memory needed
• Faster response
• Support more processes/users

• Page is needed Þ use the reference to page
• If not in memory Þ must bring from the disk

31Y. Cheng GMU CS571 Spring 2022

Swapping

• Swapping allows OS to support the illusion of a
large virtual memory for multiprogramming
• Multiple programs can run “at once”
• Better utilization
• Ease of use

• Demand paging vs. swapping
• On demand vs. page replacement under memory

pressure

32Y. Cheng GMU CS571 Spring 2022

Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit:

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

33Y. Cheng GMU CS571 Spring 2022

Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit:

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

• Q: Which steps are expensive??

34Y. Cheng GMU CS571 Spring 2022

Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit:

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

• Q: Which steps are expensive??

35

(cheap)

(expensive)

(cheap)

(cheap)

(cheap)

(expensive)
(expensive)
(expensive)

Y. Cheng GMU CS571 Spring 2022

Page Fault

• The act of accessing a page that is not in
physical memory is called a page fault

• OS is invoked to service the page fault
• Page fault handler

• In a canonical example, we assume that PTE
contains the page address on disk
• To avoid getting too deep into the page fault handling

process

36Y. Cheng GMU CS571 Spring 2022

Simplified: Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

37Y. Cheng GMU CS571 Spring 2022

Simplified: Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?

38Y. Cheng GMU CS571 Spring 2022

Simplified: Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?

39

(expensive)

(cheap)

(cheap)

(depends)

(cheap)

(cheap)

(cheap)

Y. Cheng GMU CS571 Spring 2022

Simplified: Page-Fault Handler (OS)

PFN = FindFreePage()
if (PFN == -1)

PFN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

40

(expensive)

(cheap)

(cheap)

(cheap)

(cheap)

(cheap)

What to evict?
What to read?

Y. Cheng GMU CS571 Spring 2022

(depends)

Major Steps of A Page Fault

41Y. Cheng GMU CS571 Spring 2022

Reality: The Page Fault Handler

Y. Cheng GMU CS571 Spring 2022 42

Complex logic:
Easier to read
code than read a
book!

Impact of Page Faults

• Each page fault affects the system performance
negatively
• The process experiencing the page fault will not be able

to continue until the missing page is brought to the main
memory
• The process will be blocked (moved to the waiting state)
• Dealing with the page fault involves disk I/O

• Increased demand to the disk drive
• Increased waiting time for process experiencing page fault

43Y. Cheng GMU CS571 Spring 2022

Memory as a Cache

• As we increase the degree of multiprogramming,
over-allocation of memory becomes a problem

• What if we are unable to find a free frame at the
time of the page fault?

• OS chooses to page out one or more pages to
make room for new page(s) OS is about to bring
in
• The process to replace page(s) is called page

replacement policy
44Y. Cheng GMU CS571 Spring 2022

Memory as a Cache

• OS keeps a small portion of memory free
proactively
• High watermark (HW) and low watermark (LW)

• When OS notices free memory is below LW (i.e.,
memory pressure)
• A background thread (i.e., swap/page daemon) starts

running to free memory
• It evicts pages until there are HW pages available

45Y. Cheng GMU CS571 Spring 2022

46

Beyond Physical Memory:
Policies – What to Evict?

Y. Cheng GMU CS571 Spring 2022

Page Replacement
• Page replacement completes the separation

between the logical memory and the physical
memory
• Large virtual memory can be provided on a smaller

physical memory

• Impact on performance
• If there are no free frames, two page transfers needed at

each page fault!

• We can use a modify (dirty) bit to reduce overhead
of page transfers – only modified pages are written
back to disk

47Y. Cheng GMU CS571 Spring 2022

Page Replacement Policy

• Formalizing the problem
• Cache management: Physical memory is a cache for

virtual memory pages in the system
• Primary objective:

• High performance
• High efficiency
• Low cost

• Goal: Minimize cache misses
• To minimize # times OS has to fetch a page from disk
• -OR- maximize cache hits

48Y. Cheng GMU CS571 Spring 2022

Average Memory Access Time

• Average (or effective) memory access time (AMAT) is
the metric to calculate the effective memory
performance

• TM: Cost of accessing memory
• TD: Cost of accessing disk
• PHit: Probability of finding data in cache (hit)
• Hit rate

• PMiss: Probability of not finding data in cache (miss)
• Miss rate

49Y. Cheng GMU CS571 Spring 2022

An Example

• Assuming
• TM is 100 nanoseconds (ns), TD is 10 milliseconds

(ms)
• PHit is 0.9, and PMiss is 0.1

• AMAT = 0.9*100ns + 0.1*10ms = 90ns + 1ms =
1.00009ms

• Or around 1 millisecond
• What if the hit rate is 99.9%?
• Result changes to 10.1 microseconds (or µs)
• Roughly 100 times faster!

50Y. Cheng GMU CS571 Spring 2022

51

First-In First-Out (FIFO)

Y. Cheng GMU CS571 Spring 2022

First-in First-out (FIFO)

• Simplest page replacement algorithm

• Idea: items are evicted in the order they are
inserted

• Implementation: FIFO queue holds identifiers of
all the pages in memory
• We replace the page at the head of the queue
• When a page is brought into memory, it is inserted at

the tail of the queue

52Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

53Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

54

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

55

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

56

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

57

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

58

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

59

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

60

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• Idea: items are evicted in the order they are

inserted

• Issue: the “oldest” page may contain a heavily
used data
• Will need to bring back that page in near future

61Y. Cheng GMU CS571 Spring 2022

FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

62

Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

63

Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

64

Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 1,2,3,4
1 yes 1,2,3,4
2 yes 1,2,3,4
5 no 2,3,4,5
1 no 3,4,5,1
2 no 4,5,1,2
3 no 5,1,2,3
4 no 1,2,3,4
5 no 2,3,4,5

Belady’s Anomaly
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Size-3 (3-frames) case results in 9 page faults
• Size-4 (4-frames) case results in 10 page faults

• Program runs potentially slower w/ more memory!

• Belady’s anomaly
• More frames è more page faults for some access pattern

65Y. Cheng GMU CS571 Spring 2022

66

Random

Y. Cheng GMU CS571 Spring 2022

Random Policy
• Idea: picks a random page to replace

• Simple to implement like FIFO

• No intelligence of preserving locality

67Y. Cheng GMU CS571 Spring 2022

Random Policy
• Idea: picks a random page to replace
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

68

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

How Random Policy Performs?

• Depends entirely on how lucky you are
• Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

69

Random performance over 10000 trials

Y. Cheng GMU CS571 Spring 2022

How Random Policy Performs?

• Depends entirely on how lucky you are
• Example workload: 0 1 2 0 1 3 0 3 0 1 2 1

70

Same as
optimal

Extremely
bad result!

Random performance over 10000 trials

Y. Cheng GMU CS571 Spring 2022

71

Least-Recently-Used (LRU)

Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Use the recent pass as an approximation of the

near future (using history)
• Idea: evict the page that has not been used for the

longest period of time

72Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

73Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

74Y. Cheng GMU CS571 Spring 2022

Cache size of 3

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

75Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

76Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

77Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

78Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

79Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

80Y. Cheng GMU CS571 Spring 2022

Least-Recently-Used Policy (LRU)
• Idea: evict the page that has not been used for the

longest period of time
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

81Y. Cheng GMU CS571 Spring 2022

LRU Stack Implementation

• Stack implementation: keep a stack of page
numbers in a doubly linked list form
• Page referenced, move it to the top
• Requires quite a few pointers to be changed
• No search required for replacement operation!

82Y. Cheng GMU CS571 Spring 2022

Using a Stack to Approximate LRU

83

Most recently used

Least recently used

Y. Cheng GMU CS571 Spring 2022

Using a Stack to Approximate LRU

84

Most recently used

Least recently used

7 moved to MRU
position

Y. Cheng GMU CS571 Spring 2022

85

Belady’s Optimal

Y. Cheng GMU CS571 Spring 2022

MIN: The Optimal Replacement Policy

• Many years ago Belady demonstrated that there is
a simple policy (MIN or OPT) which always leads to
fewest number of misses
• Idea: evict the page that will be accessed furthest

in the future
• Assumption: we know about the future
• Impossible to implement MIN in practice!

• But it is extremely useful as a practical best-case
baseline for comparison purpose

86Y. Cheng GMU CS571 Spring 2022

Proof of Optimality for Belady’s MIN
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

87Y. Cheng GMU CS571 Spring 2022

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

88Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

89

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

90

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

91

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

92

assume
cache size 3

What to evict??

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

93

assume
cache size 3

What to evict??
Page 2 happens to
be the one that will

be accessed
furthest in future!

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

94

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

95

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

96

assume
cache size 3

What to evict??

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

97

assume
cache size 3

What to evict??

Page 1 will be
accessed right
after page 2.

Hence 1 is safe!

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

98

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

99

assume
cache size 3

Y. Cheng GMU CS571 Spring 2022

MIN the Optimal
• Idea: evict the page that will be accessed furthest

in the future
• Example workload: 0 1 2 0 1 3 0 3 1 2 1

100

assume
cache size 3

The optimal number of cache hits is 6 for this workload!Y. Cheng

101

ARC: Adaptive Replacement Cache

Y. Cheng GMU CS571 Spring 2022

Adaptive Replacement Cache

• ARC policy
• Developed and patented by IBM
• (…Dissuaded its adoption in open-source projects??)

Y. Cheng GMU CS571 Spring 2022 102

Why ARC?

• Offline optimal (MIN): Replaces the page that has
the greatest forward distance
• Requires knowledge of future
• Provides an upper-bound

• Recency (LRU)
• Most commonly used policy

• Frequency (LFU)
• Optimal under independent reference model (IRM)

Y. Cheng GMU CS571 Spring 2022 103

Mechanisms

• Maintains two LRU lists
• Pages that have been referenced only once (L1)
• Pages that have been referenced at least twice (L2)

• Each list has the same length c as cache
• Cache contains tops of both lists: T1 and T2
• Bottoms B1 and B2 are not in cache
• Ghost cache

Y. Cheng GMU CS571 Spring 2022 104

Mechanisms (cont.)

Y. Cheng GMU CS571 Spring 2022 105

L1 L2

T1
T2

B1
B2

|T1|+|T2|=c

Ghost cache
(pages not in memory)

MRU

LRU

MRU

LRU

Policy

• ARC attempts to maintain a target size
target_T1 for list T1 (parameter p)
• ARC continually and dynamically revises target_T1

• When cache is full, ARC evicts:
• The LRU page from T1 if:

|T1| >= target_T1
• The LRU page from T2 otherwise

Y. Cheng GMU CS571 Spring 2022 106

Policy (cont.)

• If the missing page was in bottom B1 of L1:
• ARC increases target_T1
target_T1=min(target_T1+max(|B2|/|B1|,1),c)

• If the missing page was in bottom B2 of L2:
• ARC decreases target_T1
target_T1=max(target_T1-max(|B1|/|B2|,1),0)

Y. Cheng GMU CS571 Spring 2022 107

Policy (cont.)

• Intuition
• Two heuristics compete with each other
• Each heuristic gets rewarded any time it can show that

adding more pages to its top list would have avoided a
cache miss

• ARC chooses whether it should care more about
recency or frequency of access in eviction decisions

• Note that ARC has no tunable parameter
(parameter-less)
• Cannot get it wrong!

Y. Cheng GMU CS571 Spring 2022 108

Policy (cont.)

• ARC generally performs much better than LRU
• Can achieve greater hit rates than LRU w/ the same

cache size
• Or, can achieve same hit rates as LRU w/ a much

smaller cache

Y. Cheng GMU CS571 Spring 2022 109

Mini Exam 1

• 30 minutes next Wednesday, 03/09
• 7:20 pm – 7:50 pm
• Worksheet practices available on BB (course content)

• Open book, open note

• CPU scheduling
• FIFO, SJF, RR, STCF

• Paging
• VA à PA translation, PT

Y. Cheng GMU CS571 Spring 2022 110

111

Miscellaneous: TLB Caching

Y. Cheng GMU CS571 Spring 2022

TLB Replacement Policy

• Cache: When we want to add a new entry to a full
TLB, an old entry must be evicted and replaced

• LRU policy
• Intuition: A page entry that has not recently been used

implies it won’t likely to be used in the near future

• Random policy
• Evicts an entry at random

112Y. Cheng GMU CS571 Spring 2022

TLB Workloads

• Sequential array accesses can almost always hit
in the TLB, and hence are very fast

• What pattern would be slow?

113Y. Cheng GMU CS571 Spring 2022

TLB Workloads

• Sequential array accesses can almost always hit
in the TLB, and hence are very fast

• What pattern would be slow?
• Highly random, with no repeat accesses

114Y. Cheng GMU CS571 Spring 2022

Workload Characteristics

115

int sum = 0;
for (i=0; i<1024; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<512; i++) {

sum += a[rand() % N];
}
srand(1234); // same seed
for (i=0; i<512; i++) {

sum += a[rand() % N];
}

Workload A Workload B

Y. Cheng GMU CS571 Spring 2022

Access Patterns

116

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Y. Cheng GMU CS571 Spring 2022

Access Patterns

117

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Spatial Locality Temporal Locality
Y. Cheng GMU CS571 Spring 2022

Workload Locality

• Spatial locality:
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

118Y. Cheng GMU CS571 Spring 2022

Workload Locality

• Spatial locality:
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What TLB characteristics are best for each
type?

119Y. Cheng GMU CS571 Spring 2022

Workload Locality

• Spatial locality:
• Future access will be to nearby addresses

• Temporal locality:
• Future access will be repeated to the same data

• Q: What TLB characteristics are best for each
type?
• One TLB entry holds the translation for one memory

page: all accesses to that particular page benefit from
this single TLB entry (spatial locality)
• TLB is a small cache (if supporting LRU): memory

accesses with temporal locality benefit
120Y. Cheng GMU CS571 Spring 2022

TLB Replacement Policy

• Cache: When we want to add a new entry to a full
TLB, an old entry must be evicted and replaced

• Least-recently-used (LRU) policy
• Intuition: A page entry that has not recently been used

implies it won’t likely to be used in the near future

• Random policy
• Evicts an entry at random

121Y. Cheng GMU CS571 Spring 2022

LRU Trouble

122

Virt addr
0
1
2
3

Valid Virt Phys

0

0

0

0

CPU’s TLB cache

4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

123

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

124

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

0

0

0

CPU’s TLB cache

4

TLB miss

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

125

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

126

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

0

0

CPU’s TLB cache

4

TLB miss

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

127

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

128

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

0

CPU’s TLB cache

4

TLB miss

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

129

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

130

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

131

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

132

Virt addr
0
1
2
3

Valid Virt Phys

1 0 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Now, 0 is the least-recently used item in TLB

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

133

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Replace 0 with 4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

134

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss

Replace 0 with 4

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

135

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 1 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

Accessing 0 again, which was unfortunately just evicted…

Y. Cheng GMU CS571 Spring 2022

LRU Trouble

136

Virt addr
0
1
2
3

Valid Virt Phys

1 4 ?

1 0 ?

1 2 ?

1 3 ?

CPU’s TLB cache

4

TLB miss
Accessing 0 again, which was unfortunately just evicted…
Replace 1 (which is the least-recently used item at this
point) with 0…

Y. Cheng GMU CS571 Spring 2022

Takeaway

• LRU

• Random

• When is each better?
• Sometimes random is better than a “smart” policy!

137Y. Cheng GMU CS571 Spring 2022

