
Distributed Systems I:
MapReduce,

Google File System
CS 571: Operating Systems (Spring 2022)

Lecture 11
Yue Cheng

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Announcement

• Grade of mini exam 2 released on BB

• Project presentation video due in two weeks
• Make sure your video is ready by Monday, May 2

• If you prefer to do an online demo (Friday, May
6), let me know
• We can only schedule 4-5 teams in the online

session, so FCFS; rest of 9-10 teams will do the in-
classroom demo on Wednesday

Y. Cheng GMU CS571 Spring 2022 2

What is a distributed system?

• Multiple computers
• Connected by a network
• Doing something together

• A distributed system is many cooperating
computers that appear to users as a single service

3Y. Cheng GMU CS571 Spring 2022

Y. Cheng GMU CS571 Spring 2022 4

Today’s outline
How can large computing jobs be parallelized?

1. MapReduce

2. Google File System

Y. Cheng GMU CS571 Spring 2022 5

Today’s outline
How can large computing jobs be parallelized?

1. MapReduce

2. Google File System

Y. Cheng GMU CS571 Spring 2022 6

Applications
Web
apps

Data
processing

Data
storage

Emerging
apps?

Resource management
Compute
resources

Memory
resources

Storage
resources

Network
resources

Datacenter H/W infrastructure

Y. Cheng GMU CS571 Spring 2022 7

Applications
Web
apps

Data
processing

Data
storage

Emerging
apps?

Resource management
Compute
resources

Memory
resources

Storage
resources

Network
resources

Datacenter H/W infrastructure

Question: How to program these many computers?

Review: Shared memory

Y. Cheng GMU CS571 Spring 2022 8

• Shared memory: multiple
processes to share data via
memory

• Applications must locate and
and map shared memory
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory

Review:
Shared memory vs. Message passing

Y. Cheng GMU CS571 Spring 2022 9

• Message passing: exchange
data explicitly via IPC

• Application developers define
protocol and exchanging
format, number of participants,
and each exchange

Client

send(msg)

MSG

Client

recv(msg)

MSG

MSG IPC

• Shared memory: multiple
processes to share data via
memory

• Applications must locate and
and map shared memory
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory

Review:
Shared memory vs. Message passing
• Easy to program; just

like a single multi-
threaded machines

• Hard to write high
perf. apps:
• Cannot control which

data is local or remote
(remote mem. access
much slower)

• Hard to mask failures

Y. Cheng GMU CS571 Spring 2022 10

• Message passing: can
write very high perf.
apps

• Hard to write apps:
• Need to manually

decompose the app,
and move data

• Need to manually
handle failures

Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of the
library

• Common in UNIX (e.g., Linux) OSes

Y. Cheng GMU CS571 Spring 2022 11

Shared memory: Pthread

Y. Cheng GMU CS571 Spring 2022 12

void *myThreadFun(void *vargp) {
sleep(1);
printf(“Hello world!\n”);
return NULL;

}

int main() {
pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}

Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors,

implementers, and parallel programmers
• Used to create parallel programs based on message

passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and

Fortran
• De facto standard for the HPC & parallel computing

community

Y. Cheng GMU CS571 Spring 2022 13

Message passing: MPI

Y. Cheng GMU CS571 Spring 2022 14

int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

Message passing: MPI

Y. Cheng GMU CS571 Spring 2022 15

int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

mpirun –n 4 –f host_file ./mpi_hello_world

MapReduce

16Y. Cheng GMU CS571 Spring 2022

The big picture (motivation)
• Datasets are too big to process using a single

computer

Y. Cheng GMU CS571 Spring 2022 17

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

Y. Cheng GMU CS571 Spring 2022 18

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures

Y. Cheng GMU CS571 Spring 2022 19

Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write
distributed programs to process them
• Scale so large jobs can complete before failures

Y. Cheng GMU CS571 Spring 2022 20

Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be
imbued with the ability to write parallel, scalable,
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts

which problems it works for

Y. Cheng GMU CS571 Spring 2022 21

What MapReduce is good at?

Y. Cheng GMU CS571 Spring 2022 22

Super-step

Map

…

Super-step

Reduce

…

DataData Shuffle Data

Super-step

Shuffle

What MapReduce is not good at?

Yue Cheng 23

SVD1 SVD2 TSQR

GEMM

Tree reduction

Application: Word Count

Y. Cheng GMU CS571 Spring 2022 24

cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word

Deal with multiple files?

1. Compute word counts from individual files

Y. Cheng GMU CS571 Spring 2022 25

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

Y. Cheng GMU CS571 Spring 2022 26

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

Y. Cheng GMU CS571 Spring 2022 27

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

Y. Cheng GMU CS571 Spring 2022 28

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

Y. Cheng GMU CS571 Spring 2022 29

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

Y. Cheng GMU CS571 Spring 2022 30

MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results

Y. Cheng GMU CS571 Spring 2022 31

MapReduce: Word Count

Y. Cheng GMU CS571 Spring 2022 32

map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

results += ParseInt(v);
Emit(AsString(result));

Word Count execution

Y. Cheng GMU CS571 Spring 2022 33

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce

Word Count execution

Y. Cheng GMU CS571 Spring 2022 34

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

quick, 1

ate, 1
mouse, 1

cow, 1

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1

fox, 1

the, 1

the, 1

Word Count execution

Y. Cheng GMU CS571 Spring 2022 35

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1
the, 1 fox, 1

the, 1

quick, 1

ate, 1
mouse, 1

cow, 1

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce data flows

Y. Cheng GMU CS571 Spring 2022 36

MapReduce processes
• Map workers write intermediate output

to local disk, separated by partitioning.
Once completed, tell master node

• Reduce worker told of location of map
task outputs, pulls their partition’s data
from each mapper, execute function
across data

• Note:
• “All-to-all” shuffle b/w mappers and

reducers
• Written to disk (“materialized”) b/w each

state
Y. Cheng GMU CS571 Spring 2022 37

Map

Map

Map

Map

Reduce

Reduce

Reduce
Shuffle
& Sort

Apache Hadoop

• An open-source implementation of Google’s
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File

System (HDFS)

Y. Cheng GMU CS571 Spring 2022 38

Y. Cheng GMU CS571 Spring 2022 39

Stragglers

Y. Cheng GMU CS571 Spring 2022 40

Map task completion time distribution

ta

sk
s

Stragglers

• Tail latency means some workers (always) finish
late

• Q: How can MR work around this?
• Hint: its approach to fault-tolerance provides the right

tool

Y. Cheng GMU CS571 Spring 2022 41

Map task completion time distribution

ta

sk
s

Resilience against stragglers

• If a task is going slowly (i.e., straggler):
• Launch second copy of task on another node
• Take the output of whichever finishes first

Y. Cheng GMU CS571 Spring 2022 42

More design

• Master failure

• Locality

• Task granularity

Y. Cheng GMU CS571 Spring 2022 43

MapReduce usage statistics over time

Y. Cheng GMU CS571 Spring 2022 44

* Jeff Dean, LADIS 2009

GFS usage at Google

• 200+ clusters
• Many clusters of 1000s of machines
• Pools of 1000s of clients
• 4+ PB filesystems
• 40 GB/s read/write load
• In the presence of frequent hardware failures

Y. Cheng GMU CS571 Spring 2022 45

* Jeff Dean, LADIS 2009

MapReduce discussion

• What will likely serve as a performance
bottleneck for Google’s MapReduce used back
in 2004 (or even earlier)? CPU? Memory? Disk?
Network? Anything else?

Y. Cheng GMU CS571 Spring 2022 46

MapReduce discussion

• What will likely serve as a performance
bottleneck for Google’s MapReduce used back
in 2004 (or even earlier)? CPU? Memory? Disk?
Network? Anything else?

• How does MapReduce reduce the effect of slow
network?

Y. Cheng GMU CS571 Spring 2022 47

MapReduce discussion

• How does MapReduce jobs get good load
balance across worker machines?

Y. Cheng GMU CS571 Spring 2022 48

MapReduce discussion
• Consider the indexing pipeline where you start with

HTML documents. You want to index the documents
after removing the most commonly occurring words:

1. Compute the most common words;
2. Remove them and build the index

What are the main shortcomings of using MapReduce to
support such pipeline-like applications?

Y. Cheng GMU CS571 Spring 2022 49

MapReduce discussion

Y. Cheng GMU CS571 Spring 2022 50

Y. Cheng GMU CS571 Spring 2022 51

Today’s outline
How can large computing jobs be parallelized?

1. MapReduce

2. Google File System

Review: MapReduce assumptions

• Commodity hardware
• Economies of scale!
• Commodity networking with less bisection bandwidth
• Commodity storage (hard disks) is cheap

• Failures are common

• Replicated, distributed file system for data
storage

Y. Cheng GMU CS571 Spring 2022 52

Review: Fault tolerance

• If a task crashes:
• Retry on another node

• Why is this okay?
• If the same task repeatedly fails, end the job

Y. Cheng GMU CS571 Spring 2022 53

Review: Fault tolerance

• If a task crashes:
• Retry on another node

• Why is this okay?
• If the same task repeatedly fails, end the job

• If a node crashes:
• Relaunch its current tasks on another node

• What about task inputs?

Y. Cheng GMU CS571 Spring 2022 54

Google file system (GFS)

• Goal: a global (distributed) file system that stores
data across many machines
• Need to handle 100’s TBs

• Google published details in 2003

• Open source implementation:
• Hadoop Distributed File System (HDFS)

Y. Cheng GMU CS571 Spring 2022 55

Workload-driven design

• MapReduce workload characteristics
• Huge files (GBs)
• Almost all writes are appends
• Concurrent appends common
• High throughput is valuable
• Low latency is not

Y. Cheng GMU CS571 Spring 2022 56

Example workloads:
Bulk Synchronous Processing (BSP)

Y. Cheng GMU CS571 Spring 2022 57

Super-step

Processors
…

Super-step

Processors

…

DataData Shuffle Data

Super-step

Shuffle

*Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990

MapReduce as a BSP system

• Read entire dataset, do computation over it
• Batch processing

• Producer/consumer: many producers append work to
file concurrently; one consumer reads and does work

Y. Cheng GMU CS571 Spring 2022 58

Super-step

Map

…

Super-step

Reduce

…

DataData Shuffle Data

Super-step

Shuffle

Workload-driven design

• Build a global (distributed) file system that
incorporates all these application properties

• Only supports features required by applications

• Avoid difficult local file system features, e.g.:
• links

Y. Cheng GMU CS571 Spring 2022 59

Replication

Y. Cheng GMU CS571 Spring 2022 60

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A A

Replication

Y. Cheng GMU CS571 Spring 2022 61

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C

Resilience against failures

Y. Cheng GMU CS571 Spring 2022 62

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C

Resilience against failures

Y. Cheng GMU CS571 Spring 2022 63

GFS Server 1 GFS Server 2 ??? GFS Server 4

A B BC C AC

Data recovery

64

GFS Server 1 GFS Server 2 ??? GFS Server 4

A B BC C A

Replicating A to maintain a replication factor of 2

AC

Y. Cheng GMU CS571 Spring 2022

Data recovery

65

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Replicating C to maintain a replication factor of 3

Y. Cheng GMU CS571 Spring 2022

Data recovery

66

GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back

Y. Cheng GMU CS571 Spring 2022

Data recovery

67

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back

Y. Cheng GMU CS571 Spring 2022

Data recovery

68

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C

Y. Cheng GMU CS571 Spring 2022

Data recovery

69

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C

Data Rebalancing
Deleting one A to maintain a replication factor of 2

Y. Cheng GMU CS571 Spring 2022

Data recovery

70

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C

Y. Cheng GMU CS571 Spring 2022

Data recovery

71

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Data Rebalancing
Deleting one C to maintain a replication factor of 3

Y. Cheng GMU CS571 Spring 2022

Data recovery

72

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Question: how to maintain a global view of all data
distributed across machines?

Y. Cheng GMU CS571 Spring 2022

GFS architecture: logical view

73

Master

Clients GFS Servers

RPC RPC

RPC

Y. Cheng GMU CS571 Spring 2022

GFS architecture: logical view

74

Master
[metadata]

Clients GFS Servers
[data]

RPC RPC

RPC
many many

one

Y. Cheng GMU CS571 Spring 2022

BTW, what is RPC?

• RPC = Remote procedure call

Y. Cheng GMU CS571 Spring 2022 75

Motivation: Why RPC?

• The typical programmer is trained to write single-
threaded code that runs in one place

• Goal: Easy-to-program network communication
that makes client-server communication
transparent

• Retains the “feel” of writing centralized code
• Programmer needn’t think about the network
• Avoid tedious socket programming

Y. Cheng GMU CS571 Spring 2022 76

What’s the goal of RPC?

• Within a single program, running in a single
process, recall the well-known notion of a
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

Y. Cheng GMU CS571 Spring 2022 77

What’s the goal of RPC?

• Within a single program, running in a single
process, recall the well-known notion of a
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

Y. Cheng GMU CS571 Spring 2022 78

RPC’s Goal: make communication appear like a local
procedure call: transparency for procedure calls – way
less painful than sockets…

A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)

Y. Cheng GMU CS571 Spring 2022 79

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)

2. Stub marshals parameters to a network message

Y. Cheng GMU CS571 Spring 2022 80

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 81

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

Server machine

Server OS

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS
proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 82

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 83

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 84

5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 85

6. Server function runs, returns a value

7. Server stub marshals the return value, sends message

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 86

7. Server stub marshals the return value, sends message

8. Server OS sends the reply back across the network

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 87

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2022 88

9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

Then, get back to GFS

Y. Cheng GMU CS571 Spring 2022 89

GFS architecture: physical view

90

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Master
[metadata]

Client 1 Client 2 Client 3

Y. Cheng GMU CS571 Spring 2022

Data chunks

• Break large GFS files into coarse-grained data
chunks (e.g., 64MB)

• GFS servers store physical data chunks in local
Linux file system

• Centralized master keeps track of mapping
between logical and physical chunks

91Y. Cheng GMU CS571 Spring 2022

Chunk map

92

Master

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

Y. Cheng GMU CS571 Spring 2022

GFS server s2

93

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Master

Y. Cheng GMU CS571 Spring 2022

Client reads a chunk

94

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

lookup 924

Master

Y. Cheng GMU CS571 Spring 2022

Client reads a chunk

95

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

s2,s5,s7

Master

Y. Cheng GMU CS571 Spring 2022

Client reads a chunk

96

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

ClientMaster

Y. Cheng GMU CS571 Spring 2022

Client reads a chunk

97

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=0
size=1MB

Master

Y. Cheng GMU CS571 Spring 2022

Client reads a chunk

98

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master

Y. Cheng GMU CS571 Spring 2022

Client reads a chunk

99

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=1MB
size=1MB

Master

Y. Cheng GMU CS571 Spring 2022

Client reads a chunk

100

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master

Y. Cheng GMU CS571 Spring 2022

File namespace

101

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

path names mapped to logical names

file namespace:
/foo/bar => 924,813
/var/log => 123,999

Master

Y. Cheng GMU CS571 Spring 2022

GFS architecture (original paper)

Y. Cheng GMU CS571 Spring 2022 102

MapReduce+GFS: Put everything together

Y. Cheng GMU CS571 Spring 2022 103

Master

Worker Worker Worker

Master node

Worker node 1 Worker node 2 Worker node N

Chunks

Client

Chunks Chunks

GFS layer (managing data chunks)

