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Announcement

• Grade of mini exam 2 released on BB

• Project presentation video due in two weeks
• Make sure your video is ready by Monday, May 2

• If you prefer to do an online demo (Friday, May 
6), let me know 
• We can only schedule 4-5 teams in the online 

session, so FCFS; rest of 9-10 teams will do the in-
classroom demo on Wednesday
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What is a distributed system?

• Multiple computers
• Connected by a network
• Doing something together

• A distributed system is many cooperating 
computers that appear to users as a single service
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Today’s outline
How can large computing jobs be parallelized?

1. MapReduce

2. Google File System
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Question: How to program these many computers?



Review: Shared memory
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• Shared memory: multiple 
processes to share data via 
memory

• Applications must locate and 
and map shared memory 
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory



Review: 
Shared memory vs. Message passing
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• Message passing: exchange 
data explicitly via IPC

• Application developers define 
protocol and exchanging 
format, number of participants, 
and each exchange  

Client

send(msg)

MSG

Client

recv(msg)

MSG

MSG IPC

• Shared memory: multiple 
processes to share data via 
memory

• Applications must locate and 
and map shared memory 
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory



Review: 
Shared memory vs. Message passing
• Easy to program; just 

like a single multi-
threaded machines

• Hard to write high 
perf. apps:
• Cannot control which 

data is local or remote 
(remote mem. access 
much slower)

• Hard to mask failures
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• Message passing: can 
write very high perf. 
apps

• Hard to write apps:
• Need to manually 

decompose the app, 
and move data

• Need to manually 
handle failures



Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of the 
library

• Common in UNIX (e.g., Linux) OSes
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Shared memory: Pthread
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void *myThreadFun(void *vargp) {
sleep(1);
printf(“Hello world!\n”);
return NULL;

}

int main() {
pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}



Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors, 

implementers, and parallel programmers 
• Used to create parallel programs based on message 

passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and 

Fortran
• De facto standard for the HPC & parallel computing 

community
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Message passing: MPI
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int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}



Message passing: MPI
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int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

mpirun –n 4 –f host_file ./mpi_hello_world



MapReduce
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The big picture (motivation)
• Datasets are too big to process using a single 

computer
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The big picture (motivation)
• Datasets are too big to process using a single 

computer

• Good parallel processing engines are rare (back 
then in the late 90s)
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The big picture (motivation)
• Datasets are too big to process using a single 

computer

• Good parallel processing engines are rare (back 
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle 

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures
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Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write 
distributed programs to process them
• Scale so large jobs can complete before failures
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Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed 

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be 
imbued with the ability to write parallel, scalable, 
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts 

which problems it works for
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What MapReduce is good at?
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Super-step

Map

…

Super-step

Reduce

…

DataData Shuffle Data

Super-step

Shuffle



What MapReduce is not good at?
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SVD1 SVD2 TSQR

GEMM

Tree reduction



Application: Word Count
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cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word



Deal with multiple files?

1. Compute word counts from individual files
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

Y. Cheng GMU CS571 Spring 2022 26



Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates
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MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of 

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results
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MapReduce: Word Count
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map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

results += ParseInt(v);
Emit(AsString(result));



Word Count execution
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the quick 
brown fox

the fox 
ate the 
mouse

how now 
brown 
cow

Input Map

Map
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OutputReduce



Word Count execution
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Word Count execution
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MapReduce data flows
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MapReduce processes
• Map workers write intermediate output 

to local disk, separated by partitioning. 
Once completed, tell master node

• Reduce worker told of location of map 
task outputs, pulls their partition’s data 
from each mapper, execute function 
across data

• Note: 
• “All-to-all” shuffle b/w mappers and 

reducers
• Written to disk (“materialized”) b/w each 

state
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Apache Hadoop 

• An open-source implementation of Google’s 
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File 

System (HDFS)
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Stragglers
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Map task completion time distribution

# 
ta

sk
s



Stragglers

• Tail latency means some workers (always) finish 
late

• Q: How can MR work around this?
• Hint: its approach to fault-tolerance provides the right 

tool
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Map task completion time distribution

# 
ta

sk
s



Resilience against stragglers

• If a task is going slowly (i.e., straggler):
• Launch second copy of task on another node
• Take the output of whichever finishes first
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More design

• Master failure

• Locality

• Task granularity
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MapReduce usage statistics over time
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* Jeff Dean, LADIS 2009



GFS usage at Google

• 200+ clusters
• Many clusters of 1000s of machines
• Pools of 1000s of clients
• 4+ PB filesystems
• 40 GB/s read/write load
• In the presence of frequent hardware failures

Y. Cheng GMU CS571 Spring 2022 45
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MapReduce discussion

• What will likely serve as a performance 
bottleneck for Google’s MapReduce used back 
in 2004 (or even earlier)? CPU? Memory? Disk? 
Network? Anything else?
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MapReduce discussion

• What will likely serve as a performance 
bottleneck for Google’s MapReduce used back 
in 2004 (or even earlier)? CPU? Memory? Disk? 
Network? Anything else?

• How does MapReduce reduce the effect of slow 
network?
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MapReduce discussion

• How does MapReduce jobs get good load 
balance across worker machines?
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MapReduce discussion
• Consider the indexing pipeline where you start with 

HTML documents. You want to index the documents 
after removing the most commonly occurring words:

1. Compute the most common words;
2. Remove them and build the index

What are the main shortcomings of using MapReduce to 
support such pipeline-like applications?
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MapReduce discussion
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Today’s outline
How can large computing jobs be parallelized?

1. MapReduce

2. Google File System



Review: MapReduce assumptions

• Commodity hardware
• Economies of scale!
• Commodity networking with less bisection bandwidth
• Commodity storage (hard disks) is cheap

• Failures are common

• Replicated, distributed file system for data 
storage
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Review: Fault tolerance

• If a task crashes:
• Retry on another node 

• Why is this okay?
• If the same task repeatedly fails, end the job
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Review: Fault tolerance

• If a task crashes:
• Retry on another node 

• Why is this okay?
• If the same task repeatedly fails, end the job

• If a node crashes:
• Relaunch its current tasks on another node

• What about task inputs? 
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Google file system (GFS)

• Goal: a global (distributed) file system that stores 
data across many machines
• Need to handle 100’s TBs

• Google published details in 2003

• Open source implementation: 
• Hadoop Distributed File System (HDFS)
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Workload-driven design

• MapReduce workload characteristics
• Huge files (GBs)
• Almost all writes are appends
• Concurrent appends common
• High throughput is valuable
• Low latency is not
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Example workloads: 
Bulk Synchronous Processing (BSP)
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Super-step

Processors
…

Super-step

Processors

…

DataData Shuffle Data

Super-step

Shuffle

*Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990



MapReduce as a BSP system

• Read entire dataset, do computation over it
• Batch processing

• Producer/consumer: many producers append work to 
file concurrently; one consumer reads and does work

Y. Cheng GMU CS571 Spring 2022 58

Super-step

Map

…

Super-step

Reduce

…

DataData Shuffle Data

Super-step

Shuffle



Workload-driven design

• Build a global (distributed) file system that 
incorporates all these application properties

• Only supports features required by applications

• Avoid difficult local file system features, e.g.:
• links
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Replication
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A A



Replication
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C



Resilience against failures
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C C



Resilience against failures
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GFS Server 1 GFS Server 2 ??? GFS Server 4

A B BC C AC



Data recovery
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GFS Server 1 GFS Server 2 ??? GFS Server 4

A B BC C A

Replicating A to maintain a replication factor of 2

AC
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Data recovery
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GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Replicating C to maintain a replication factor of 3
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Data recovery
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GFS Server 1 GFS Server 2 ??? GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back
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Data recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C

Machine may be dead forever, or it may come back
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Data recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

A AB BC C CA C
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Data recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C

Data Rebalancing
Deleting one A to maintain a replication factor of 2
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Data recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA C
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Data recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Data Rebalancing
Deleting one C to maintain a replication factor of 3
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Data recovery
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GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Question: how to maintain a global view of all data
distributed across machines?
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GFS architecture: logical view
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Master

Clients GFS Servers

RPC RPC

RPC
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GFS architecture: logical view
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Master
[metadata]

Clients GFS Servers
[data]

RPC RPC

RPC
many many

one
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BTW, what is RPC?

• RPC = Remote procedure call
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Motivation: Why RPC?

• The typical programmer is trained to write single-
threaded code that runs in one place

• Goal: Easy-to-program network communication 
that makes client-server communication 
transparent

• Retains the “feel” of writing centralized code
• Programmer needn’t think about the network
• Avoid tedious socket programming
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What’s the goal of RPC?

• Within a single program, running in a single 
process, recall the well-known notion of a 
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller
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What’s the goal of RPC?

• Within a single program, running in a single 
process, recall the well-known notion of a 
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller
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RPC’s Goal: make communication appear like a local 
procedure call: transparency for procedure calls – way 
less painful than sockets…



A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)
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Client machine

Client process
k = add(3, 5)

Client stub (RPC library)



A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)

2. Stub marshals parameters to a network message
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Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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2. Stub marshals parameters to a network message

3. OS sends a network message to the server

Server machine

Server OS

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS
proc: add | int: 3 | int: 5



A day in the life of an RPC
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3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS



A day in the life of an RPC
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6. Server function runs, returns a value

7. Server stub marshals the return value, sends message

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



A day in the life of an RPC
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7. Server stub marshals the return value, sends message

8. Server OS sends the reply back across the network

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



A day in the life of an RPC
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8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8



A day in the life of an RPC
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9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



Then, get back to GFS
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GFS architecture: physical view

90

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

AB BC C CA

Master
[metadata]

Client 1 Client 2 Client 3
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Data chunks

• Break large GFS files into coarse-grained data 
chunks (e.g., 64MB)

• GFS servers store physical data chunks in local 
Linux file system

• Centralized master keeps track of mapping 
between logical and physical chunks
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Chunk map
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Master

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…
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GFS server s2
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Master
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Client reads a chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

lookup 924

Master
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Client reads a chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

s2,s5,s7

Master
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Client reads a chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

ClientMaster
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Client reads a chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=0
size=1MB

Master
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Client reads a chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master
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Client reads a chunk

99

chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

read 924:
offset=1MB
size=1MB

Master
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Client reads a chunk
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

data

Master
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File namespace
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chunk map
logical phys

924
521
…

s2,s5,s7
s2,s9,s11

…

GFS server s2

Local fs
chunks/924 => data1
chunks/521 => data2
…

Client

path names mapped to logical names

file namespace:
/foo/bar => 924,813
/var/log => 123,999

Master
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GFS architecture (original paper)
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MapReduce+GFS: Put everything together
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Master

Worker Worker Worker

Master node

Worker node 1 Worker node 2 Worker node N

Chunks

Client

Chunks Chunks

GFS layer (managing data chunks)


