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Announcements

* Project 2’s deadline is extended by one week
* Due at 11:59pm, 03/26

* Project 3-5 will be team projects

 Please fill out the Google form about your team
composition:
https://forms.gle/DwWNN1p/ZPn5J6]FASY

» Feel free to post on Piazza to search for teammates!

Y. Cheng GMU CS571 Spring 2021


https://forms.gle/DwNN1pZPn5J6jFAS9

Concurrency

* Threads

» Race Conditions

 The Critical Section Problem
* Locks

* Semaphores

Y. Cheng GMU CS571 Spring 2021



Threads



Why Thread Abstraction?



Process Abstraction: Challenge 1

* Inter-process communication (IPC)



Inter-Process Communication

* Mechanism for processes to communicate and
to synchronize their actions

* Two models
« Communication through a shared memory region
« Communication through message passing



Communication Models

process A M process A
shared
process B M process B

Lt

kernel M kernel

(a) (b)

Message Passing Shared Memory
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Communication through
Message Passing

* Message system — processes communicate with
each other without resorting to shared variables

* A message-passing facility must provide at least two
operations:
* send(message, recipient)
* recelve(message, recipient)

 With indirect communication, the messages are sent
to and received from mailboxes (or, ports)

* send(A, message) /* A is a mailbox */
* receive (A, message)

Y. Cheng GMU CS571 Spring 2021 9



Communication through Message Passing

» Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

 Blocking Send: The sending process is blocked until the
message Is received by the receiving process or by the
Mmaillbox

« Non-blocking Send: The sending process resumes the
operation as soon as the message Is received by the
kernel

 Blocking Receive: The receiver blocks until the message
IS available

« Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default value
(null) to indicate a non-existing message



Communication through Shared Memory

* The memory region to be shared must be explicitly
defined

« System calls (Linux):
 shmget creates a shared memory block

* shmat maps/attaches an existing shared memory
block into a process’s address space

» shmdt removes (“unmaps”) a shared memory block
from the process’s address space

* shmctl IS a general-purpose function allowing various
Beratlons on the shared block (receive information
out the block, set the permissions, lock in memory,

)

* Problems with simultaneous access to the shared
variables

O
d



Process Abstraction: Challenge 1

* Inter-process communication (IPC)
« Cumbersome programming!
« Copying overheads (inefficient communication)
* Expensive context switching (why expensive?)

Y. Cheng GMU CS571 Spring 2021



Process Abstraction: Challenge 2

* Inter-process communication (IPC)

* CPU utilization

Y. Cheng GMU CS571 Spring 2021



-1 [

Disk: JA

(a) Not interleaved
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(a) Not interleaved
Disk:
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(b) Interleaved




Disk:

(a) Not interleaved

>
................................... What if there is On|y one prgcess?
(b) Interleaved
Disk:
>
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Moore’s law: # transistors doubles every ~2 years

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld

in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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Data source: Wikipedia (Mtps.//en wikipedia.org/wiki/Transistor_count)

The data visualization is available at OQurWorldinData.org. There you find more visualizations and research on this topic

Year of introduction

Licensed under CC-BY-SA by the author Max Roser.



Moore’s law: # transistors doubles every ~2 years

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Our World
in Data
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CPU Trends - What Moore’s Law Implies...

* The future
« Same CPU speed
* More cores (to scale-up)

 Faster programs => concurrent execution

» Goal: Write applications that fully utilize many
CPU cores...



Goal

» Write applications that fully utilize many CPUs...



Strategy 1

 Build applications from many communication
Processes

 Like Chrome (process per tab)
« Communicate via pipe () or similar

* Pros/cons”?



Strategy 1

 Build applications from many communication
Processes
 Like Chrome (process per tab)
« Communicate via pipe () or similar

e Pros/cons”? — That we’ve talked about in previous slides
* Pros:
« Don’t need new abstractions!
 Better (fault) isolation?
« Cons:
« Cumbersome programming using IPC
« Copying overheads
* EXxpensive context switching

Y. Cheng GMU CS571 Spring 2021
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Strategy 2

 New abstraction: the thread

Y. Cheng GMU CS571 Spring 2021
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Introducing Thread Abstraction

 New abstraction: the thread

* Threads are just like processes, but threads
share the address space

Y. Cheng GMU CS571 Spring 2021
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Thread

» A process, as defined so far, has only one thread
of execution

* |dea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other

« Each thread may be executing different code at the
same time

Y. Cheng GMU CS571 Spring 2021 25



Process vs. Thread

* Multiple threads within a process will share
* The address space
* Open files (file descriptors)
» Other resources

* Thread

» Efficient and fast resource sharing

o Efficient utilization of many CPU cores with only one
process

* | ess context switching overheads



CPU 1

Running
thread 1

CPU 2

Running
thread 2

Y. Cheng

GMU CS571 Spring 2021
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CPU 1

Running
thread 1

CPU 2

Running
thread 2

Y. Cheng
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CPU 1 CPU 2
Running Running
thread 1 thread 2

Y. Cheng

Virtual mem

GMU CS571 Spring 2021
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CPU 1 CPU 2
Running Running
thread 1 thread 2

Each thread may be executing
different code at the same time

Y. Cheng

Virtual mem

GMU CS571 Spring 2021
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CPU 1 CPU 2
Running Running
thread 1 thread 2

Y. Cheng

Virtual mem
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CPU 1

Running
thread 1

CPU 2

Running
thread 2

Y. Cheng

Virtual mem
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CPU 1

Running
thread 1

CPU 2

Running
thread 2

STACK 1 - STACK 2

Y. Cheng

Virtual mem
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Thread executing different functions need different stacks

CPU 1

Running
thread 1

CPU 2

Running
thread 2

STACK 1 - STACK 2

Y. Cheng

Virtual mem

GMU CS571 Spring 2021
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data

User Address Space

routinel wvarl()
var2()

main()
routinel ()
routine2 ()

*. https://computing.linl.gov/tutorials/pthreads/

Y. Cheng

User Address Space

Thread 2 routine2() wvarl Stack Pointer
stack var2 Prgrm. Counter
var3 Registers

Stack Pointer
Prgm. Counter
Registers

Thread 1 | routinel() varl Stack Pointer
var2 Prgrm. Counter

stack
Registers
Process ID
Group ID main ()
User ID text routinel ()
routine2()
Process ID
User ID
Group ID
data
heap

Linux process Threads within a Linux process

GMU CS571 Spring 2021 35




Single- vs. Multi-threaded Process

Y. Cheng

code

data

files

registers

stack

thread —» ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

:

:

g._

— thread

multithreaded process

GMU CS571 Spring 2021
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Using Threads

» Processes usually start with a single thread

« Usually, library procedures are invoked to manage
threads

» thread_create: typically specifies the name of the
procedure for the new thread to run

e thread exit

* thread_join: blocks the calling thread until another
(specific) thread has exited

* thread_yield: voluntarily gives up the CPU to let another
thread run

Y. Cheng GMU CS571 Spring 2021 37



Pthread

« A POSIX standard (IEEE 1003.1c¢) API for thread
creation and synchronization

» APl specifies behavior of the thread library,
Implementation is up to development of the
library

« Common in UNIX (e.g., Linux) OSes



Pthread APIs

pthread create Create a new thread in the
caller's address space

pthread exit Terminate the calling thread

pthread join Wait for a thread to terminate

pthread mutex init Create a new mutex

pthread mutex destroy Destroy a mutex

pthread mutex lock Lock a mutex

pthread mutex unlock Unlock a mutex

pthread cond_init Create a condition variable

pthread cond destroy Destroy a condition variable

pthread cond wait Wait on a condition variable

pthread cond signal Release one thread waiting on a

condition variable



Pthread APIs

pthread create Create a new thread in the h

caller's address space Thread
pthread exit Terminate the calling thread "~ creation
pthread join Wait for a thread to terminate ]
pthread mutex init Create a new mutex h
pthread mutex destroy Destroy a mutex | Thread
pthread mutex lock Lock a mutex lock
pthread mutex unlock Unlock a mutex B
pthread cond init Create a condition variable )
pthread cond destroy Destroy a condition variable
pthread cond wait Wait on a condition variable i
pthread cond signal Release one thread waiting on a

condition variable _
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Example of Using Pthread

#include <stdio.h>
#include <assert.h>

#include <pthread.h>

void xmythread(void =*arg) {
printf {"¥s\n", {char %) axrg);
return NULL;

int
main (int argc, char xargv[]) {
pthread_t pl, p2;
T 0 SR 5 o4
priptf {™main: begininm);
e =L?thread_create &pl, NULL, mythread, "A");

rc =Jpthread_create]&p2, NULL, mythread, "B");
// join waits for the threads to finish

rc = pthread_join(pl, NULL); assert(rc == 0);
rc = pthread_join(p2, NULL); assert(rxc == 0);

printf ("main: end\n");
return 0;

}

Y. Cheng GMU CS571 Spring 2021
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Example Multithreaded Applications

A multithreaded web server

Web server process

|
:

Dispatcher thread

~ >2? } Worker thread LsEH

> space
I_zi_zl Web page cache

Kernel
Kernel space

Network
connection



Example Multithreaded Applications

A multithreaded web server

Web server process

|
:

Dispatcher thread

~ >2? l Worker thread Usar

space
I_zi_zl Web page cache

Logic that
handles requests
Kernel
Kernel space
Network
connection
Y. Cheng Requests GMU CS571 Spring 2021 43



Code Sketch

while (TRUE) {

get_next_request(&buf);
handoff_work(&buf);

(a) Dispatcher thread

while (TRUE) {

wait for work(&buf);
check_cache(&buf; &page);

if (not_in_cache)
read_from_disk(&buf, &page);
return_page(&page);

(b) Worker thread



Benefits of Multi-threading

* Resource sharing
« Sharing the address space and other resources may
result in high degree of cooperation
* Economy
« Creating/managing processes much more time
consuming than managing threads: e.g., context switch
 Better utilization of multicore architectures
 Threads are doing job concurrently (or in parallel)

* Multithreading an interactive application may allow a
program to continue running even if part of it is blocked
or performing a lengthy operation

Y. Cheng GMU CS571 Spring 2021 45



Real-world Example: Memcached

 Memcached—A high-performance memory-

based caching system

o Written in C (\ /
 https://memcached.org/ ‘o

Memcached

A typical multithreaded server implementation
e Pthread + libevent

A dispatcher thread dispatches newly coming
connections to the worker threads in a round-robin
manner

» Event-driven: Each worker thread is responsible for
serving requests from the established connections

Y. Cheng GMU CS571 Spring 2021
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Multithreading vs. Multi-processes

e Real-world debate
* Multithreading vs. Multi-processes
« Memcached vs. Redis

* Redis—A single-threaded memory-based data

store (written in C)
& redis

 https://redis.io/
Y. Cheng GMU CS571 Spring 2021
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https://redis.io/

Wish List for Redis...

How Twitter Uses Redis To Scale - 105TB
RAM, 39MM QPS, 10,000+ Instances

http://g00.2|/NOUTKD

Yao Yue has worked on Twitter's Cache team since 2010.

@ Scaling Redis at ..

She recently gave a really great talk: Scaling Redis at

Wish List For Redis

m Explicit memory management.

= Deployable (Lua) Scripts. Talked about near the start.

= Multi-threading. Would make cluster management easier. Twitter has a lot of “tall

frience and
boxes,” where a host has 100+ GB of memory and a lot of CPUs. To use the full lorth watchin
capabilities of a server a lot of Redis instances need to be started on a physical o

machine. With multi-threading fewer instances would need to be started which is

much easier to manage.

Y. Cheng GMU CS571 Spring 2021 48
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Concurrency

* Threads

» Race Conditions

* The Critical Section Problem
* Locks

* Semaphores

Y. Cheng GMU CS571 Spring 2021
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#include <stdio.h>
#include "common.h"

static volatile int counter = 0; Th readed Cou nting Example

i/
// mythread()
//
// Simply adds 1 to counter repeatedly, in a loop
// No, this is not how you would add 10,000,000 to
// a counter, but it shows the problem nicely.
//
void xmythread(void *arg)
{

printf("“%s: begin\n", (char %) arg);

inEar

for (i = 0; i < 1e7; i++) {

counter = counter + 1;

}
printf("%s: done\n", (charx) arg);
return NULL; $ git clone https://github.com/tddg/demo-ostep-code
¥ $ cd demo-ostep-code/threads-intro
// $ make
// main() $ ./tl <loop count>
//
// Just launches two threads (pthread_create) .
// and then waits for them (pthread_join) Try |t yOU rself
//
int main(int argc, char xargv[])
{

pthread_t pl, p2;

printf("main: begin (counter = %d)\n", counter);
Pthread_create(&pl, NULL, mythread, "A");
Pthread_create(&p2, NULL, mythread, "B");

// join waits for the threads to finish

Pthread_join(pl, NULL);

Pthread_join(p2, NULL);

printf("main: done with both (counter = %d)\n", counter);

return 0; 5]


https://github.com/tddg/demo-ostep-code

Back-to-Back Runs

Run1...

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done |

main: done with both (counter = 10706438)

Run?2...

main: begin (counter = 0)

A: begin

B: begin

A: done

B: done |

main: done with both (counter = 11852529)



What exactly Happened??



What exactly Happened??

% otool -t -v thread rc
% objdump -d thread rc

0000000
0000000
0000000

00000d52
00000d58

00000d5b  movl %eax, 0x2f8e

movl 0x2f8e %eax
addl $0x1, %eax

Y. Cheng

counter

= counter + 1;

GMU CS571 Spring 2021
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Concurrent Access to the Same

Memory Address
OS Thread 1 Thread 2 Value
:
\ 4
Enter into critical section
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51

Time




Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value
|
|
\ 4
Enter into critical section
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51

Interrupt
Time | Save T1's state
Restore T2’s state

dq———=—=—=—= == ==

movl 0x2f8e, %eax
addl  SOx1, %eax
movl %eax, 0x2f8e




Concurrent Access to the Same

Memory Address
OS Thread 1 Thread 2 Value

Enter into critical section

|
I
|
I
movl 0x2f8e, %eax : 50
addl  SOx1, %eax I 51
Interrupt :
Time | Save T1's state |
Restore T2’s state #
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51
movl %eax, Ox2f8e 51




Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value

I
\/

Enter into critical section

|
I
|
I
movl 0x2f8e, %eax : 50
addl  SOx1, %eax I 51
Interrupt :
Time | Save T1's state |
Restore T2’s state #
movl 0x2f8e, %eax 50
addl  SOx1, %eax 51
movl %eax, Ox2f8e 51

Interrupt
Save T2’s state
Restore T1's state




Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value

I
\/

Enter into critical section

|
I
|
I
movl 0x2f8e, %eax : 50
addl  SOx1, %eax I 51
Interrupt : :
Time | Save T1's state l |
Restore T2’s state : ;
I movl 0x2f8e, %eax 50
: addl  SOx1, %eax 51
l movl %eax, Ox2f8e 51
Interrupt :
Save T2's state |
Restore T1’s state v

movl %eax, 0x2f8e



Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value
I I
I I
\ 4 |
Enter into critical section I
movl 0x2f8e, %eax : 50
addl  SOx1, %eax I 51
Interrupt : :
Time | Save T1's state | |
Restore T2’s state : {
I movl 0x2f8e, %eax 50
: addl  SOx1, %eax 51
I movl %eax, 0x2f8e 51
I
Interrupt I
Save T2’s state I
Restore T1's state v
movl %eax, 0x2f8e 5 1




Concurrent Access to the Same
Memory Address

OS Thread 1 Thread 2 Value
I I
I I
\ 4 |
Enter into critical section I
movl 0x2f8e, %eax : 50
addl  SOx1, %eax I 51
Interrupt : :
Time | Save T1's state | |
Restore T2’s state : {
I movl 0x2f8e, %eax 50
: addl  SOx1, %eax 51
I movl %eax, 0x2f8e 51
I
Interrupt I
Save T2’s state I
Restore T1's state v
movl %eax, 0x2f8e 5 1




Race Conditions

* Observe: In a time-shared system, the exact
iInstruction execution order cannot be predicted

* Deterministic vs. Non-deterministic

* Any possible orders can happen, which result in
different output across runs

Y. Cheng GMU CS571 Spring 2021
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Race Conditions

« Situations like this, where multiple threads are
writing or reading some shared data and the final
result depends on who runs precisely when, are
called race conditions

* A serious problem for any concurrent system using
shared variables

* Programmers must make sure that some high-
level code sections are executed atomically

« Atomic operation: It completes in its entirety without
worrying about interruption by any other potentially
conflict-causing thread

Y. Cheng GMU CS571 Spring 2021 63



The Critical-Section Problem

* N threads all competing to access the shared data

« Each process/thread has a code segment, called
critical section (critical region), in which the shared
data Is accessed

* Problem — ensure that when one thread is executing
IN 1ts critical section, no other thread is allowed to
execute In that critical section

e The execution of the critical sections by the threads
must be mutually exclusive In time



Mutual Exclusion

Process A

Process B

Y. Cheng

/

A enters critical region

/

A leaves critical region

B attempts to B enters

I

I

" I i :
enter critical | critical region

B leaves
critical region

/

Vi,

------------------------------------

GMU CS571 Spring 2021
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Solving Critical-Section Problem

Any solution to the problem must satisfy four conditions!

Mutual Exclusion:
No two threads may be simultaneously inside the same critical
section

Bounded Waiting:
No thread should have to wait forever to enter a critical section

Progress:

No thread executing a code segment unrelated to a given
critical section can block another thread trying to enter the same

critical section

Arbitrary Speed:

No assumption can be made about the relative speed of
different threads (though all threads have a non-zero speed)

Y. Cheng GMU CS571 Spring 2021 66
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Using Lock to Protect Shared Data

« Suppose that two threads A and B have
access to a shared variable “balance”

Thread A: Thread B:

balance = balance + 1 balance = balance + 1

lock_t mutex; // some globally—-allocated lock ’'mutex’

lock (&mutex) ;
balance = balance + 1;
unlock (&mutex) ;



Locks

* A lock is a variable

e TWO states
e Avallable or free
* |L_ocked or held

* lock(): tries to acquire the lock

* unlock(): releases the lock that has been
acquired by caller

Y. Cheng GMU CS571 Spring 2021
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Building a Lock

* Needs help from hardware + OS

* A number of hardware primitives to support a
lock

« Goals of a lock
» Basic task: Mutual exclusion
* Fairness
* Performance

Y. Cheng GMU CS571 Spring 2021
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First Attempt: A Simple Flag

* How about just using loads/stores
instructions?

1 typedef struct . lock € { int flagy; )} loek Et;
2

3 void init (lock_t =mutex) {

4 // 0 —> lock is available, 1 -> held

5 mutex—->flag = 0;

6 }

74

8 void lock (lock_t *mutex) {

9 while (mutex->flag == 1) // TEST the flag
10 ; // spin-wait (do nothing)

11 mutex—->flag = 1; // now SET it!

ped
N

}

_ =
= W

void unlock (lock_t *mutex) {
mutex—->flag = 0;

_
N U1

}

Y. Cheng GMU CS571 Spring 2021 70



First Attempt: A Simple Flag

* How about just using loads/stores

iInstructions”?
1 typedef struct . lock € { int flagy; )} loek Et;
2
3 void init (lock_t xmutex) {
4 // 0 —> lock is available, 1 -> held
5 mutex—->flag = 0;
6 }
74
8 void lock (lock_t *mutex) {
9 while (mutex->flag == 1) // TEST the flag
10 ; // spin-wait (do nothing) »Aspin lock
11 mutex—->flag = 1; // now SET it!

e N
N U1 = LN

Y. Cheng

}

void unlock (lock_t *mutex) {
mutex—->flag = 0;
}

GMU CS571 Spring 2021
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First Attempt: A Simple Flag

* How about just using loads/stores
instructions?

1 cypedef struct .. lock t § int fiagy ) loeck x:
2

3 void init (lock_t xmutex) {

4 // 0 —> lock is available, 1 -> held

5 mutex—->flag = 0;

6 }

74

8 void lock (lock_t *mutex) {

9 while (mutex->flag == 1) // TEST the flag
10 ; // spin-wait (do nothing) }Aspin lock
11 mutex—->flag = 1; // now SET it!

ped
N

}

_
= W

void unlock (lock_t *mutex) {
mutex—->flag = 0;

_
N U1

Y. Cheng GMU CS571 Spring 2021
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First Attempt: A Simple Flag
Flag is O initially

Thread 1 Thread 2

call lock ()
while (flag == 1)
interrupt: switch to Thread 2

Y. Cheng GMU CS571 Spring 2021
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First Attempt: A Simple Flag

Flag is O initially
Thread 1 Thread 2
call 1ock ()
while (flag == 1)
interrupt: switch to Thread 2 Checking that Flag is 0, again...

call lock ()
while (flag == 1)
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First Attempt: A Simple Flag
Flag is setto 1 by T2

Thread 1 Thread 2

call 1ock ()
while (flag == 1)
interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag =1,
interrupt: switch to Thread 1

Y. Cheng GMU CS571 Spring 2021



First Attempt: A Simple Flag

Flag is set to 1 again! Two threads both in Critical Section

Thread 1

Thread 2

call 1lock ()
while (flag == 1)

interrupt: switch to Thread 2

call lock ()

while (flag == 1)

flag = 1;

interrupt: switch to Thread 1

flag =1; // set flag to 1 (too!)

Y. Cheng

GMU CS571 Spring 2021
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First Attempt: A Simple Flag

Flag is set to 1 again! Two threads both in Critical Section

Thread 1 Thread 2

call 1ock ()
while (flag == 1)
interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1
flag =1, // set flag to 1 (too!)

Culprit:
Lock operation is not atomic!
Therefore, no mutual exclusion!

Y. Cheng GMU CS571 Spring 2021
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Getting Help from the Hardware

* One solution supported by hardware may be to use
iInterrupt capabllity

do { 1 void lock() {
lock () 2 DisableInterrupts () ;
critical section; 3 ]
unlock() 4 void unlock () {
remainder section; 5 EnableInterrupts () ;
} while (1); 6 1}
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Getting Help from the Hardware

* One solution supported by hardware may be to use
iInterrupt capabllity

do { 1 void lock() {
lock () 2 DisableInterrupts () ;
critical section; 3 ]
unlock() 4 void unlock () {
remainder section; 5 EnableInterrupts () ;
} while (1); 6 1}

Are we done??
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Synchronization Hardware

* Many machines provide special hardware
iInstructions to help achieve mutual exclusion

* The TestAndSet (TAS) instruction tests and
modifies the content of a memory word atomically

* TAS returns old value pointed to by old ptr and
updates said value to new

int TestAndSet (int *xold_ptr, int new) {

int old = x0ld . ptr; // fetech old Wwallue -at old ptr Operations
: performed
x0ld_ptr = new; // store ’"'new’ into old_ptr :
atomically!
return old; // return the old value
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Mutual Exclusion with TAS

e Initially, lock’s flag set to O

typedef struct __ lock_t {
int f£lag;
} doclk T

waid dndit (lock ‘€ #1lock)y 1
// 0 indicates that lock is available, 1 that it is held
lock->flag = 0;

}

O 00 N N U W N

—_
o

void Jlock (lock © *lock) |
while (TestAndSet (&lock—->flag, 1) == 1)

i // spin-wait (do mothing) ——— A correct spin lock

—_
[

—
N

[
W

}

[ Y
(62" -8

void unlock (lock_t =*xlock) {
lock->flag = 0;

_
N

}
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Busy Waiting and Spin Locks

 This approach is based on busy waiting

* |f the critical section is being used, waiting processes
loop continuously at the entry point

* A binary “lock” variable that uses busy waiting is
called a spin lock
 Processes that find the lock unavailable “spin” at the entry

e |t actually works (mutual exclusion)

 Disadvantages?
e Fairness?
* Performance?
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Busy Waiting and Spin Locks

 This approach is based on busy waiting
* |f the critical section is being used, waiting processes
loop continuously at the entry point
* A binary “lock” variable that uses busy waiting is
called a spin lock
 Processes that find the lock unavailable “spin” at the entry

e |t actually works (mutual exclusion)

 Disadvantages?

* Fairness? (A: No. Heavy contention may cause
starvation)

« Performance” (A: Busy waiting wastes CPU cycles)
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A Simple Approach: Yield!

* When you are going to spin, just give up the
CPU to another process/thread

1 vord anitif) -

2 flag = 0;

3 }

4

5 void loeki) 4

6 while (TestAndSet (&flag, 1) == 1)
7 yield(); // give up the CPU
8 }

[y
o O

void mnlockl) 4
flag = 0;

=
N =

}
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Semaphores

e Introduced by E. W. Dijkstra

* Motivation: Avoid busy waiting by blocking a
process execution until some condition Is
satisfied

« TwO operations are defined on a semaphore
variable s:

sem wait(s) (also called P(s) or down(s))
sem post(s) (alsocalledV(s) orup(s))



Semaphore Operations

» Conceptually, a semaphore has an integer value. This value
IS greater than or equal to O

* sem wait(s): _
s.value-- ; /* Executed atomically */

/* wait/block if s.value < 0 (or negative) */

A process/thread executing the wait operation on a
semaphore with value < 0 being blocked until the
semaphore’s value becomes greater than O

* NO busy waiting

* sem post(s):
s.value++; /* Executed atomically */
/* if one or more process/thread waiting, wake one */
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Semaphore Operations (cont.)

* If multiple processes/threads are blocked on the
same semaphore ‘s’, only one of them will be

awakened when another process performs
POSt(S) operation

* \Who will have higher priority?



Semaphore Operations (cont.)

* If multiple processes/threads are blocked on the
same semaphore ‘s’, only one of them will be

awakened when another process performs
POSt(S) operation

* \Who will have higher priority?
« A: FIFO, or whatever queuing strategy



Attacking Critical Section Problem
with Semaphores

» Declare and define a semaphore:
sem t s;
sem _init(&s, 0, 1); /* initially s =1 */

\ Binary semaphore,

* Routine of Thread 0 & 1: which is a lock

do {
sem _wait(s);
critical section

sem_post(s);
remainder section
} while (1);
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Attacking Critical Section Problem
with Semaphores

» Single thread using a binary semaphore

Value of Semaphore Thread 0 Thread 1

|
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Attacking Critical Section Problem
with Semaphores

» Single thread using a binary semaphore

Value of Semaphore Thread 0 Thread 1
1
1 call sem_wait ()

0 sem_wait () returns
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Attacking Critical Section Problem
with Semaphores

» Single thread using a binary semaphore

Value of Semaphore

Thread 0 Thread 1

Y. Cheng

|

1
0
0
0

call sem_wait ()
sem_wait () returns
(it sect)

call sem_post ()

GMU CS571 Spring 2021



Attacking Critical Section Problem
with Semaphores

» Single thread using a binary semaphore

Value of Semaphore Thread 0 Thread 1
1
1 call sem_wait ()
0 sem_wait () returns
0 (crit sect)
0 call sem_post ()
1 sem_post () returns

Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore
Value | Thread 0 State | Thread 1

State

1| Running |

Y. Cheng GMU CS571 Spring 2021

Ready



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore

Value Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem-wait () returns Running Ready
0 (crit sect: begin) Running Ready

Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore

Value Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem-wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running

Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore

Value | Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem-wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<0) —+sleep  Sleeping
Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore

Value

Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem-wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<0) —+sleep  Sleeping
-1 Running | Switch—T0 Sleeping
Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore

Value | Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem_wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<0) —+sleep  Sleeping
-1 Running | Switch—T0 Sleeping
-1 (crit sect: end) Running Sleeping
-1 call sem_post () Running Sleeping
0 increment sem Running Sleeping
0 wake (T1) Running Ready
0 sem_post () returns Running Ready
Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore

Value | Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem_wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<0) —+sleep  Sleeping
-1 Running | Switch—T0 Sleeping
-1 (crit sect: end) Running Sleeping
-1 call sem_post () Running Sleeping
0 increment sem Running Sleeping
0 wake (T1) Running Ready
0 sem_post () returns Running Ready
0 Interrupt; Switch—T1 Ready Running
Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem

with Semaphores
 Two threads using a binary semaphore

Value | Thread 0 State Thread 1 State
1 Running Ready
1 call sem_wait () Running Ready
0 sem_wait () returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready call sem_wait () Running
-1 Ready decrement sem Running
-1 Ready (sem<0) —+sleep  Sleeping
-1 Running | Switch—T0 Sleeping
-1 (crit sect: end) Running Sleeping
-1 call sem_post () Running Sleeping
0 increment sem Running Sleeping
0 wake (T1) Running Ready
0 sem_post () returns Running Ready
0 Interrupt; Switch—T1 Ready Running
0 Ready semwait () returns  Running
0 Ready (crit seet) Running
0 Ready call sem_post () Running
1 Ready sem_post () returns  Running



Classical Synchronization Problems

* Producer-Consumer Problem
* Semaphore version

Today



Producer-Consumer Problem

* The bounded-buffer producer-consumer problem assumes
that there is a buffer of size N

» The producer process puts items to the buffer area
* The consumer process consumes items from the buffer
* The producer and the consumer execute concurrently

producer consumer



Example: Unix Pipes

* A pipe may have many writers and readers
* Internally, there is a finite-sized buffer

» Writers add data to the buffer

 Readers remove data from the buffer

Y. Cheng GMU CS571 Spring 2021
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Example: Unix Pipes

start

l

T

end



Example: Unix Pipes

Write

start

l

T

end
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Example: Unix Pipes

start

l

T

end
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Example: Unix Pipes

Write

start

|

T

end
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Example: Unix Pipes

start

|

T

end
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Example: Unix Pipes

Read

start

|

T

end
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Example: Unix Pipes

start

|

T

end
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Example: Unix Pipes

Write

start

|

T

end
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Example: Unix Pipes

start

|

T

end
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Example: Unix Pipes

Read

start

l

T

end
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Example: Unix Pipes

Read

start

i

T

end



Example: Unix Pipes

Read
start
|
1
end

Note: reader must wait



Example: Unix Pipes

Write

start

|

T

end
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Example: Unix Pipes

Write

start

l

T

end

Y. Cheng GMU CS571 Spring 2021 118



Example: Unix Pipes

Write
start
)
1
end

Note: writer must wait
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Example: Unix Pipes

* Implementation
« Reads/writes to buffer require locking
* When buffers are full, writers (producers) must wait

* \When buffers are empty, readers (consumers) must
wait
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Linux Pipe Commands

% ps aux | less

T

Pipe

%3 cat file | grep <str>

T

Pipe



Producer-Consumer Model: Parameters

« Shared data:
sem t full, empty;

. Initially:

full = 0 /* The number of full buffers */

empty = MAX /* The number of empty buffers */
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First Attempt: MAX =1

sem_t empty;

1 int buffer[MAX];
SIS SEeiy 2 int fill = 0;
3 int use = 0;
void xproducer (void =*arg) { 4
o Yol B 5 void put (int value) {
for (1 = 0; 4 < Joops; i+b) { 6 buffer[fill] = value;
sem_wait (&empty) ; // line P1 7 £fill = (fill + 1) % MAX;
put(i): // line P2 8 '}
sem_post (&full) ; // line P3 9
} 10 int get () {
} 11 int tmp = buffer[use];
12 use = (use + 1) % MAX;
: : 13 return tmp;
void xconsumer (void xarg) { " )
ant 4, tmp = §; -
while (tmp != -1) { Put and Get routines
sem_wait (&full); // line C1
tmp = get(); £/ line €2
sem_post (&empty) ; // line C3
printE("Id n™, sip);
}
}
int main(int' arge; ‘char xargvll) |
i i
sem_init (&empty, 0, MAX); // MAX buffers are empty to begin with...
sem_init (&full, 0, 0); // ... and 0 are full
//
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First Attempt: MAX = 107?

sem_t empty;

1 int buffer[MAX];
SIS SEeiy 2 int fill = 0;
3 int use = 0;
void xproducer (void =*arg) { 4
o Yol B 5 void put (int value) {
for (1 = 0; 4 < Joops; i+b) { 6 buffer[fill] = value;
sem_wait (&empty) ; // line P1 7 £fill = (fill + 1) %
put(i): // line P2 8 '}
sem_post (&full) ; // line P3 9
} 10 int get () {
} 11 int tmp = buffer[use];
12 use = (use + 1) % MAX;
: : 13 return tmp;
void *xconsumer (void =xarqg) { " )
ant 4, tmp = §; -
while (tmp != -1) { Put and Get routines
sem_wait (&full); // line C1
tmp = get(); £/ line €2
sem_post (&empty) ; // line C3
printE("Id n™, sip);
}
}
int main(int' arge; ‘char xargvll) |
i i
sem_init (&empty, 0, MAX); // MAX buffers are empty to begin with...
sem_init (&full, 0, 0); // ... and 0 are full
//
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First Attempt: MAX = 107?

fill=0
empty = 10
Producer O: Running Producer 1: Runnable
void xproducer (void xarg) { void xproducer (void *arg) {
isE 3 qTE 3
for (1. =D i < leeps; 2t} 1 for (1. =0 I < loeps; 3tF) {
‘ sem_wait (&empty) ; ‘ sem_wait (&empty) ;
put (1) ; put (1) ;
sem_post (&full); sem_post (&full);
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First Attempt: MAX = 107?

fill=0
empty =9
Producer O: Running Producer 1: Runnable
void xproducer (void xarg) { void xproducer (void *arg) {
isE 3 qTE 3
for (1. =D i < leeps; 2t} 1 for (1. =0 I < loeps; 3tF) {
sem_wait (&empty) ; ‘ sem_wait (&empty) ;
put (1) ; put (1) ;
sem_post (&full); sem_post (&full);

void put(int value) {
buffer[fill] = value;
fill = (£ill + 1) % MAX;
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First Attempt: MAX = 107?

fill=0
empty =9
Producer O: Running Producer 1: Runnable
void xproducer (void xarg) { void xproducer (void *arg) {
isE 3 qTE 3
for (1. =D i < leeps; 2t} 1 for (1. =0 I < loeps; 3tF) {
sem_wait (&empty) ; ‘ sem_wait (&empty) ;
put (1) ; put (1) ;
sem_post (&full); sem_post (&full);

void put(int value) {
buffer[fill] = value;
Interrupted ..
fill = (£ill + 1) % MAX;

N
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First Attempt: MAX = 107?

fill=0
empty =9
Producer O: Sleeping Producer 1: Runnable
void xproducer (void xarg) { void xproducer (void *arg) {
isE 3 qTE 3
for (1. =D i < leeps; 2t} 1 for (1. =0 I < loeps; 3tF) {
sem_wait (&empty) ; ‘ sem_wait (&empty) ;
put (1) ; put (1) ;
sem_post (&full); sem_post (&full);

void put(int value) {
buffer[fill] = value;
Interrupted ..
fill = (£ill + 1) % MAX;

N
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First Attempt: MAX = 107?

fill=0
empty =9
Producer 0: Runnable Producer 1: Running
void xproducer (void xarg) { void xproducer (void *arg) {
isE 3 qTE 3
for (1. =D i < leeps; 2t} 1 for (1. =0 I < loeps; 3tF) {
sem_wait (&empty) ; ‘ sem_wait (&empty) ;
put (1) ; puti{i);
sem_post (&full); sem_post (&full);

void put(int value) {
buffer[fill] = value;
Interrupted ..
fill = (£ill + 1) % MAX;

N
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First Attempt: MAX = 107?

fill=0
Overwrite!
empty =8
Producer 0: Runnable Producer 1: Running
void xproducer (void xarg) { void xproducer (void *arg) {
isE 3 qTE 3
for (1. =D i < leeps; 2t} 1 for (1. =0 I < loeps; 3tF) {
sem_wailt (&empty) ; sem_wailit (&empty) ;
put (1) ; put (1) ;
sem_post (&full); sem_post (&full);
} }
} }
void put(int value) { void put(int value) {
buffer[fill] = value; ‘buffer[fill] = value;
Interrupted . fill = (flll + 1) % MAX;
£i11 = (£ill + 1) % MAX; }
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One More Parameter: Amutex lock

» Shared data:
sem t full, empty;

. Initially:

full = 0; /* The number of full buffers */
empty = MAX; /* The number of empty buffers */

mutex = 1; /* Semaphore controlling the access
to the buffer pool */
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Add “Mutual Exclusion”

sem_t empty;
sem_t full;
sem_t mutex;

void xproducer (void =xarg) {
TRt i

for (1 = 0; i < loops; i++)

sem_wait (&mutex) ;
sem_wait (&empty) ;
put (1) ;

sem_post (&full);
sem_post (&mutex) ;

}

void xconsumer (void xarg) {
) o YEA s

for (i = 0; i < loops; i++)

sem_wait (&mutex) ;
sem_wait (&full);
int tmp = get();
sem_post (&empty) ;
sem_post (&mutex) ;
peincE("sd\n™, top):

}

int main(int argc, char xargv[])

//

sem_init (&empty, 0, MAX);
sem_init (&full, 0, 0);
sem_init (&mutex, 0, 1);

i

//
1
//
/)
//

i
i
g
i/
i

{

line
line
line
line
line

line
line
line
line
line

r0
pl
P2
p3
p4

cO
el
c2
c3
c4d

(NEW LINE)

(NEW LINE)

(NEW LINE)

(NEW LINE)

MAX buffers are empty to begin with...
and 0 are full

mutex=1 because it is a lock

(NEW LINE)
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Add “Mutual Exclusion”

sem_t empty;
sem_t full;
sem_t mutex;

void xproducer (void =*arg) {

TRt i

for (i = 0; 1 < loops;
sem_wait (&mutex) ;
sem_wait (&empty) ;
put (1) ;
sem_post (&full);
sem_post (&mutex) ;

}

void xconsumer (void xarg) {

) o YEA s

for (1 = 0; 1 < loops;
sem_wait (&mutex) ;
sem_wait (&full);
int tmp = get();
sem_post (&empty) ;
sem_post (&mutex) ;
peincE("sd\n™, top):

}

int main(int argc,
ik
sem_init (&empty, 0, MAX);
sem_init (&full, 0, 0);
sem_init (&mutex, 0, 1);

i

i)

it++)

char xargv([])

//
1
//
/)
//

i
i
g
i/
]

{

line
line
line
line
line

line
line
line
line
line

r0
pl
P2
p3
p4

cO
el
c2
c3
c4d

(NEW LINE)

(NEW LINE)

(NEW LINE)

(NEW LINE)

What if consumer
gets to run first??

MAX buffers are empty to begin with...
and 0 are full

mutex=1 because it is a lock

(NEW LINE)
133



Adding “Mutual Exclusion”

mutex =1
full=0
empty = 10
Producer 0: Runnable Consumer 0: Running
void xproducer (void xarg) { Void_*copsumer(void *arg) |
o (3 73 s I TRE 32

for (i = 0; i < loops; i++) { SOE ‘1, = Of i < loops; i++)
‘ sem_wait (&mutex) ; ‘ sem_wailt (&mutex) ;

sem_wait (&empty) ; §em_wait(&full);
put (i) ; int tmp ? get () ;

sem_post (&full); sem_post (&empty) ;

sem_post (&mutex) ; sem_post (&mutex) ;
print T(*¥d\a", Ttmp);
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Adding “Mutual Exclusion”

mutex =0
full=0
empty = 10
Producer 0: Runnable Consumer 0: Running
void xproducer (void *arg) ({ void xconsumer (void xarg) {
o 3 Pl - ing &;
for (1 = 0; i < loops; i++) { for (i = Of i < loops; i++)
‘ sem_wait (&mutex) ; sem_wa%t (&mutex) ;
sem_wait (&empty) ; ‘ sem_wait (&full);

pue (i) ;
sem_post (&full);
sem_post (&mutex) ;

(
int tmp = get();
sem_post (&empty) ;
sem_post (&mutex) ;
DEIRCE(PEa\uT, tmp);

Consumer 0 is waiting for
full to be greater than or
equal to O
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Adding “Mutual Exclusion”

mutex = -1
full =-1
empty = 10
Producer O: Running Consumer 0: Runnable
void xproducer (void *arg) ({ void xconsumer (void xarg) {
o 3 Pl - ing &;
for (1 = 0; i < loops; i++) { for (i = Of i < loops; i++)
‘ sem_wait (&mutex) ; sem_wa%t (¢mutex) ;
sem_wait (&empty) ; ‘ sem_wait (&full);

pue (i) ;
sem_post (&full);
sem_post (&mutex) ;

(
int tmp = get();
sem_post (&empty) ;
sem_post (&mutex) ;
DEIRCE(PEa\uT, tmp);

Consumer 0 is waiting for
full to be greater than or
equal to O
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Adding “Mutual Exclusion”

mutex = -1
Deadlock!! full = -1
empty = 10
Producer O: Running Consumer 0: Runnable
void xproducer (void xarg) { Void.*copsumer(void *arg) |
o (3 73 s I TRE 32

sor 13 =0 3 < logps; 1Y)
sem_wailt (&mutex) ;
sem_wailit (&full);

int tmp = get();
sem_post (&empty) ;
sem_post (&mutex) ;
pPEInCE(®Sd\n", tmp);

for (i = 0; i < loops; i++) {
‘ sem_wait (&mutex) ; '
sem_wait (&empty) ;
pue (i) ;
sem_post (&full);
sem_post (&mutex) ;

Producer O gets stuck at Consumer 0 is waiting for
acquiring mutex which has full to be greater than or
been locked by Consumer 0! equal to 0
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Deadlocks

A set of threads are said to be in a deadlock state
when every thread in the set is waiting for an event
that can be caused only by another thread in the
set

Holds

» |Lock L1

>

A typical deadlock
dependency graph

Wanted by
AQ paiuep

Lock L2| <

Holds
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Conditions for Deadlock

 Mutual exclusion

» Threads claim exclusive control of resources that require
e.g., a thread grabs a lock

* Hold-and-wait

« Threads hold resources allocated to them while waiting for
additional resources

» Resources cannot be forcibly removed from threads that
are holding them

e Circular wait

* There exists a circular chain of threads such that each
holds one or more resources that are being requests by
next thread in chain
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Correct Mutual Exclusion

sem_t empty;
sem_t full;
sem_t mutex;

void xproducer (void xarg) {

ing i

for (i = 0; i < loops; i++) {
sem_wait (&empty) ; // line pl
sem_wait (&mutex) ; // line pl.5 (MOVED MUTEX HERE...
put (i); // line p2
sem_post (&mutex) ; // line p2.5 (... AND HERE)
sem_post (&full) ; // line p3

}

void =*consumer (void xarg) {

int i;

for (1 = 0; i < loops; i++) {
sem_wait (&full); // line cl
sem_wait (&mutex) ; // line cl.5 (MOVED MUTEX HERE...
int tmp = get (); // line c2
sem_post (&mutex) ; // line c2.5 (... AND HERE)
sem_post (&empty) ; /1 line €3

pEiRCE ("kd¥n"; tmp);

}

int main(int argc, char xargv[]) {
&
sem_init (&empty, 0, MAX); // MAX buffers are empty to begin with...
sem_init (&full, 0, 0); // ... and 0 are full
sem_init (&mutex, 0, 1); // mutex=1 because it is a lock
Lo

Mutex wraps
just around
critical section!

Mutex wraps
just around
critical section!
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Producer-Consumer Solution

 Make sure that

1.The producer and the consumer do not access the buffer
area and related variables at the same time

2.No item is made available to the consumer if all the buffer
slots are empty

3.No slot in the buffer is made available to the producer if all
the buffer slots are full



