
Concurrency: Threads, Locks,
and Semaphores

CS 571: Operating Systems (Spring 2021)
Lecture 7

Yue Cheng
Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Announcements

• Project 2’s deadline is extended by one week
• Due at 11:59pm, 03/26

• Project 3-5 will be team projects
• Please fill out the Google form about your team

composition:
https://forms.gle/DwNN1pZPn5J6jFAS9

• Feel free to post on Piazza to search for teammates!

Y. Cheng GMU CS571 Spring 2021 2

https://forms.gle/DwNN1pZPn5J6jFAS9

Concurrency

• Threads

• Race Conditions

• The Critical Section Problem

• Locks

• Semaphores

3Y. Cheng GMU CS571 Spring 2021

Threads

4Y. Cheng GMU CS571 Spring 2021

Why Thread Abstraction?

5Y. Cheng GMU CS571 Spring 2021

Process Abstraction: Challenge 1

• Inter-process communication (IPC)

6Y. Cheng GMU CS571 Spring 2021

Inter-Process Communication

• Mechanism for processes to communicate and
to synchronize their actions

• Two models
• Communication through a shared memory region
• Communication through message passing

7Y. Cheng GMU CS571 Spring 2021

Communication Models

Y. Cheng GMU CS571 Spring 2021 8

Message Passing Shared Memory

9

• Message system – processes communicate with
each other without resorting to shared variables

• A message-passing facility must provide at least two
operations:
• send(message, recipient)
• receive(message, recipient)

• With indirect communication, the messages are sent
to and received from mailboxes (or, ports)
• send(A, message) /* A is a mailbox */
• receive(A, message)

Communication through
Message Passing

Y. Cheng GMU CS571 Spring 2021

Communication through Message Passing

10

• Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

• Blocking Send: The sending process is blocked until the
message is received by the receiving process or by the
mailbox

• Non-blocking Send: The sending process resumes the
operation as soon as the message is received by the
kernel

• Blocking Receive: The receiver blocks until the message
is available

• Non-blocking Receive: “Receive” operation does not
block; it either returns a valid message or a default value
(null) to indicate a non-existing message

Y. Cheng GMU CS571 Spring 2021

11

• The memory region to be shared must be explicitly
defined

• System calls (Linux):
• shmget creates a shared memory block
• shmat maps/attaches an existing shared memory

block into a process’s address space
• shmdt removes (“unmaps”) a shared memory block

from the process’s address space
• shmctl is a general-purpose function allowing various

operations on the shared block (receive information
about the block, set the permissions, lock in memory,
…)

• Problems with simultaneous access to the shared
variables

Communication through Shared Memory

Y. Cheng GMU CS571 Spring 2021

Process Abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)

12Y. Cheng GMU CS571 Spring 2021

Process Abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)

• CPU utilization

13Y. Cheng GMU CS571 Spring 2021

14

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

Y. Cheng GMU CS571 Spring 2021

15

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

BB

Y. Cheng GMU CS571 Spring 2021

16

ACPU:

Disk:

A

A

A

A

B
(a) Not interleaved

ACPU:

Disk:

A

A

A

A

B
(b) Interleaved

B B

What if there is only one process?

Y. Cheng GMU CS571 Spring 2021

17

Moore’s law: # transistors doubles every ~2 years

Y. Cheng GMU CS571 Spring 2021

18Y. Cheng GMU CS571 Spring 2021

Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years

CPU Trends – What Moore’s Law Implies…

• The future
• Same CPU speed
• More cores (to scale-up)

• Faster programs => concurrent execution

• Goal: Write applications that fully utilize many
CPU cores…

19Y. Cheng GMU CS571 Spring 2021

Goal

• Write applications that fully utilize many CPUs…

20Y. Cheng GMU CS571 Spring 2021

Strategy 1

• Build applications from many communication
processes

• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons?

21Y. Cheng GMU CS571 Spring 2021

Strategy 1
• Build applications from many communication

processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides
• Pros:

• Don’t need new abstractions!
• Better (fault) isolation?

• Cons:
• Cumbersome programming using IPC
• Copying overheads
• Expensive context switching

22Y. Cheng GMU CS571 Spring 2021

Strategy 2

• New abstraction: the thread

23Y. Cheng GMU CS571 Spring 2021

Introducing Thread Abstraction

• New abstraction: the thread

• Threads are just like processes, but threads
share the address space

24Y. Cheng GMU CS571 Spring 2021

Thread

• A process, as defined so far, has only one thread
of execution

• Idea: Allow multiple threads of concurrently
running execution within the same process
environment, to a large degree independent of
each other

• Each thread may be executing different code at the
same time

25Y. Cheng GMU CS571 Spring 2021

Process vs. Thread

• Multiple threads within a process will share
• The address space
• Open files (file descriptors)
• Other resources

• Thread
• Efficient and fast resource sharing
• Efficient utilization of many CPU cores with only one

process
• Less context switching overheads

26Y. Cheng GMU CS571 Spring 2021

Y. Cheng GMU CS571 Spring 2021 27

Running
thread 1

CPU 1
Running
thread 2

CPU 2

Y. Cheng GMU CS571 Spring 2021 28

Running
thread 1

CPU 1
Running
thread 2

CPU 2

PC PC

Y. Cheng GMU CS571 Spring 2021 29

Running
thread 1

CPU 1
Running
thread 2

CPU 2

PC PC

Virtual mem

CODE HEAP

Y. Cheng GMU CS571 Spring 2021 30

Running
thread 1

CPU 1
Running
thread 2

CPU 2

PC PC

CODE HEAP

Each thread may be executing
different code at the same time

Virtual mem

Y. Cheng GMU CS571 Spring 2021 31

Running
thread 1

CPU 1
Running
thread 2

CPU 2

PC PC

CODE HEAP

Virtual mem

Y. Cheng GMU CS571 Spring 2021 32

Running
thread 1

CPU 1
Running
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

Virtual mem

Y. Cheng GMU CS571 Spring 2021 33

Running
thread 1

CPU 1
Running
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Virtual mem

Y. Cheng GMU CS571 Spring 2021 34

Running
thread 1

CPU 1
Running
thread 2

CPU 2

PC PC

CODE HEAP

SP SP

STACK 1 STACK 2

Thread executing different functions need different stacks

Virtual mem

Y. Cheng GMU CS571 Spring 2021 35

Linux process Threads within a Linux process

*: https://computing.llnl.gov/tutorials/pthreads/

Single- vs. Multi-threaded Process

Y. Cheng GMU CS571 Spring 2021 36

Using Threads

• Processes usually start with a single thread
• Usually, library procedures are invoked to manage

threads
• thread_create: typically specifies the name of the

procedure for the new thread to run
• thread_exit
• thread_join: blocks the calling thread until another

(specific) thread has exited
• thread_yield: voluntarily gives up the CPU to let another

thread run

37Y. Cheng GMU CS571 Spring 2021

Pthread

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of the
library

• Common in UNIX (e.g., Linux) OSes

38Y. Cheng GMU CS571 Spring 2021

Pthread APIs
Thread Call Description
pthread_create Create a new thread in the

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a
condition variable

Pthread APIs
Thread Call Description
pthread_create Create a new thread in the

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a
condition variable

Thread
creation

Thread
lock

Thread
CV

Example of Using Pthread

41Y. Cheng GMU CS571 Spring 2021

Example Multithreaded Applications

42Y. Cheng GMU CS571 Spring 2021

A multithreaded web server

Example Multithreaded Applications

43
Requests

Logic that
handles requests

A multithreaded web server

Y. Cheng GMU CS571 Spring 2021

Code Sketch

while (TRUE) { while (TRUE) {

get_next_request(&buf); wait_for_work(&buf);
handoff_work(&buf); check_cache(&buf; &page);

} if (not_in_cache)
read_from_disk(&buf, &page);

return_page(&page);

}

(a) Dispatcher thread (b) Worker thread

44Y. Cheng GMU CS571 Spring 2021

45

• Resource sharing
• Sharing the address space and other resources may

result in high degree of cooperation
• Economy

• Creating/managing processes much more time
consuming than managing threads: e.g., context switch

• Better utilization of multicore architectures
• Threads are doing job concurrently (or in parallel)
• Multithreading an interactive application may allow a

program to continue running even if part of it is blocked
or performing a lengthy operation

Benefits of Multi-threading

Y. Cheng GMU CS571 Spring 2021

Real-world Example: Memcached

• Memcached—A high-performance memory-
based caching system

• Written in C
• https://memcached.org/

• A typical multithreaded server implementation
• Pthread + libevent
• A dispatcher thread dispatches newly coming

connections to the worker threads in a round-robin
manner

• Event-driven: Each worker thread is responsible for
serving requests from the established connections

46Y. Cheng GMU CS571 Spring 2021

https://memcached.org/

Multithreading vs. Multi-processes

• Real-world debate
• Multithreading vs. Multi-processes
• Memcached vs. Redis

• Redis—A single-threaded memory-based data
store (written in C)

• https://redis.io/

47Y. Cheng GMU CS571 Spring 2021

https://redis.io/

Wish List for Redis…

48

http://goo.gl/N9UTKD

Y. Cheng GMU CS571 Spring 2021

http://goo.gl/N9UTKD

Y. Cheng GMU CS571 Spring 2021 49

Concurrency

• Threads

• Race Conditions

• The Critical Section Problem

• Locks

• Semaphores

50Y. Cheng GMU CS571 Spring 2021

51

Threaded Counting Example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$./t1 <loop_count>

Try it yourself

https://github.com/tddg/demo-ostep-code

Back-to-Back Runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)
Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)

52Y. Cheng GMU CS571 Spring 2021

What exactly Happened??

53Y. Cheng GMU CS571 Spring 2021

What exactly Happened??

% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1, %eax
0000000100000d5b movl %eax, 0x2f8e

…

54

counter = counter + 1;

Y. Cheng GMU CS571 Spring 2021

Concurrent Access to the Same
Memory Address

55

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2021

Concurrent Access to the Same
Memory Address

56

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

Concurrent Access to the Same
Memory Address

57

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Concurrent Access to the Same
Memory Address

58

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

Concurrent Access to the Same
Memory Address

59

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e

Concurrent Access to the Same
Memory Address

60

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e 51

Concurrent Access to the Same
Memory Address

61

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value

Y. Cheng GMU CS571 Spring 2021

Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e

50
51
51

Interrupt
Save T2’s state
Restore T1’s state

movl %eax, 0x2f8e 51

62

• Observe: In a time-shared system, the exact
instruction execution order cannot be predicted

• Deterministic vs. Non-deterministic

• Any possible orders can happen, which result in
different output across runs

Race Conditions

Y. Cheng GMU CS571 Spring 2021

63

• Situations like this, where multiple threads are
writing or reading some shared data and the final
result depends on who runs precisely when, are
called race conditions
• A serious problem for any concurrent system using

shared variables

• Programmers must make sure that some high-
level code sections are executed atomically
• Atomic operation: It completes in its entirety without

worrying about interruption by any other potentially
conflict-causing thread

Race Conditions

Y. Cheng GMU CS571 Spring 2021

The Critical-Section Problem
• N threads all competing to access the shared data

• Each process/thread has a code segment, called
critical section (critical region), in which the shared
data is accessed

• Problem – ensure that when one thread is executing
in its critical section, no other thread is allowed to
execute in that critical section

• The execution of the critical sections by the threads
must be mutually exclusive in time

Y. Cheng GMU CS571 Spring 2021 64

Mutual Exclusion

Y. Cheng GMU CS571 Spring 2021 65

Solving Critical-Section Problem
Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two threads may be simultaneously inside the same critical
section

Bounded Waiting:
No thread should have to wait forever to enter a critical section

Progress:
No thread executing a code segment unrelated to a given

critical section can block another thread trying to enter the same
critical section

Arbitrary Speed:
No assumption can be made about the relative speed of
different threads (though all threads have a non-zero speed)

Y. Cheng GMU CS571 Spring 2021 66

Using Lock to Protect Shared Data

• Suppose that two threads A and B have
access to a shared variable “balance”

Thread A: Thread B:
balance = balance + 1 balance = balance + 1

67Y. Cheng GMU CS571 Spring 2021

Locks

• A lock is a variable

• Two states
• Available or free
• Locked or held

• lock(): tries to acquire the lock
• unlock(): releases the lock that has been

acquired by caller

68Y. Cheng GMU CS571 Spring 2021

Building a Lock

• Needs help from hardware + OS
• A number of hardware primitives to support a

lock
• Goals of a lock

• Basic task: Mutual exclusion
• Fairness
• Performance

69Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

70Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

71

A spin lock

Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

72

A spin lock

What’s the problem?
Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

73

Failed reason: No mutual exclusion!

Flag is 0 initially

Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

74

Failed reason: No mutual exclusion!

Flag is 0 initially

Checking that Flag is 0, again…

Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

75

Failed reason: No mutual exclusion!

Flag is set to 1 by T2

Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

76

Flag is set to 1 again! Two threads both in Critical Section

Y. Cheng GMU CS571 Spring 2021

First Attempt: A Simple Flag

77

Culprit:
Lock operation is not atomic!
Therefore, no mutual exclusion!

Flag is set to 1 again! Two threads both in Critical Section

Y. Cheng GMU CS571 Spring 2021

Getting Help from the Hardware

• One solution supported by hardware may be to use
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);

78Y. Cheng GMU CS571 Spring 2021

Getting Help from the Hardware

• One solution supported by hardware may be to use
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);

79

Are we done??

Y. Cheng GMU CS571 Spring 2021

Synchronization Hardware
• Many machines provide special hardware

instructions to help achieve mutual exclusion

• The TestAndSet (TAS) instruction tests and
modifies the content of a memory word atomically

• TAS returns old value pointed to by old_ptr and
updates said value to new

80

Operations
performed
atomically!

Y. Cheng GMU CS571 Spring 2021

Mutual Exclusion with TAS

• Initially, lock’s flag set to 0

81

A correct spin lock

Y. Cheng GMU CS571 Spring 2021

Busy Waiting and Spin Locks

82

• This approach is based on busy waiting
• If the critical section is being used, waiting processes

loop continuously at the entry point
• A binary “lock” variable that uses busy waiting is

called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)
• Disadvantages?

• Fairness?
• Performance?

Y. Cheng GMU CS571 Spring 2021

Busy Waiting and Spin Locks

83

• This approach is based on busy waiting
• If the critical section is being used, waiting processes

loop continuously at the entry point
• A binary “lock” variable that uses busy waiting is

called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)
• Disadvantages?

• Fairness? (A: No. Heavy contention may cause
starvation)

• Performance? (A: Busy waiting wastes CPU cycles)

Y. Cheng GMU CS571 Spring 2021

A Simple Approach: Yield!

• When you are going to spin, just give up the
CPU to another process/thread

84Y. Cheng GMU CS571 Spring 2021

Semaphores

• Introduced by E. W. Dijkstra
• Motivation: Avoid busy waiting by blocking a

process execution until some condition is
satisfied

• Two operations are defined on a semaphore
variable s:

sem_wait(s) (also called P(s) or down(s))
sem_post(s) (also called V(s) or up(s))

85Y. Cheng GMU CS571 Spring 2021

Semaphore Operations
• Conceptually, a semaphore has an integer value. This value

is greater than or equal to 0

• sem_wait(s):
s.value-- ; /* Executed atomically */
/* wait/block if s.value < 0 (or negative) */

• A process/thread executing the wait operation on a
semaphore with value < 0 being blocked until the
semaphore’s value becomes greater than 0

• No busy waiting

• sem_post(s):
s.value++; /* Executed atomically */
/* if one or more process/thread waiting, wake one */

86Y. Cheng GMU CS571 Spring 2021

Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the
same semaphore ‘s’, only one of them will be
awakened when another process performs
post(s) operation

• Who will have higher priority?

Y. Cheng GMU CS571 Spring 2021 87

Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the
same semaphore ‘s’, only one of them will be
awakened when another process performs
post(s) operation

• Who will have higher priority?
• A: FIFO, or whatever queuing strategy

Y. Cheng GMU CS571 Spring 2021 88

• Declare and define a semaphore:
sem_t s;
sem_init(&s, 0, 1); /* initially s = 1 */

• Routine of Thread 0 & 1:
do {

sem_wait(s);
critical section

sem_post(s);
remainder section

} while (1);

Attacking Critical Section Problem
with Semaphores

89

Binary semaphore,
which is a lock

Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

90Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

91Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

92Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore

93Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

94Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

95Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

96Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

97Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

98Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

99Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

100Y. Cheng GMU CS571 Spring 2021

Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

101Y. Cheng GMU CS571 Spring 2021

102

• Producer-Consumer Problem
• Semaphore version
• Condition Variable

• A CV-based version

• Readers-Writers Problem

• Dining-Philosophers Problem

Classical Synchronization Problems

Y. Cheng GMU CS571 Spring 2021

Today

Producer-Consumer Problem
• The bounded-buffer producer-consumer problem assumes

that there is a buffer of size N
• The producer process puts items to the buffer area
• The consumer process consumes items from the buffer
• The producer and the consumer execute concurrently

producer consumer

.

103Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

• A pipe may have many writers and readers

• Internally, there is a finite-sized buffer

• Writers add data to the buffer

• Readers remove data from the buffer

104Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

105

Buffer

end

start

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

106

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

107

Buffer

end

start

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

108

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

109

Buffer

end

start

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

110

Buffer

end

start

Read

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

111

Buffer

end

start

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

112

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

113

Buffer

end

start

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

114

Buffer

end

start

Read

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

115

Buffer

end

start

Read

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

116

Buffer

end

start

Read

Note: reader must wait

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

117

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

118

Buffer

end

start

Write

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

119

Buffer

end

start

Write

Note: writer must wait

Y. Cheng GMU CS571 Spring 2021

Example: Unix Pipes

• Implementation
• Reads/writes to buffer require locking
• When buffers are full, writers (producers) must wait
• When buffers are empty, readers (consumers) must

wait

120Y. Cheng GMU CS571 Spring 2021

Linux Pipe Commands

% ps aux | less

% cat file | grep <str>

121

Pipe

Pipe

Y. Cheng GMU CS571 Spring 2021

Producer-Consumer Model: Parameters

• Shared data:
sem_t full, empty;

• Initially:

full = 0 /* The number of full buffers */

empty = MAX /* The number of empty buffers */

Y. Cheng GMU CS571 Spring 2021 122

First Attempt: MAX = 1

123

Put and Get routines

Y. Cheng GMU CS571 Spring 2021

First Attempt: MAX = 10?

124

Put and Get routines

Y. Cheng GMU CS571 Spring 2021

First Attempt: MAX = 10?

125

Producer 0: Running Producer 1: Runnable

fill = 0
empty = 10

Y. Cheng GMU CS571 Spring 2021

First Attempt: MAX = 10?

126

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2021

First Attempt: MAX = 10?

127

Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2021

First Attempt: MAX = 10?

128

Producer 0: Sleeping Producer 1: Runnable

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2021

First Attempt: MAX = 10?

129

Producer 0: Runnable Producer 1: Running

fill = 0

void put(int value) {
buffer[fill] = value;
Interrupted …
fill = (fill + 1) % MAX;

}

empty = 9

Y. Cheng GMU CS571 Spring 2021

void put(int value) {
buffer[fill] = value;
fill = (fill + 1) % MAX;

}

First Attempt: MAX = 10?

130

Producer 0: Runnable Producer 1: Running

fill = 0
Overwrite!

void put(int value) {
buffer[fill] = value;

Interrupted …
fill = (fill + 1) % MAX;

}

empty = 8

Y. Cheng GMU CS571 Spring 2021

One More Parameter: A mutex lock

• Shared data:
sem_t full, empty;

• Initially:

full = 0; /* The number of full buffers */

empty = MAX; /* The number of empty buffers */

mutex = 1; /* Semaphore controlling the access
to the buffer pool */

131Y. Cheng GMU CS571 Spring 2021

Add “Mutual Exclusion”

132Y. Cheng GMU CS571 Spring 2021

Add “Mutual Exclusion”

133Y. Cheng GMU CS571 Spring 2021

What if consumer
gets to run first??

Adding “Mutual Exclusion”

134

Producer 0: Runnable Consumer 0: Running

empty = 10
full = 0
mutex = 1

Y. Cheng GMU CS571 Spring 2021

Adding “Mutual Exclusion”

135

Producer 0: Runnable Consumer 0: Running

Consumer 0 is waiting for
full to be greater than or
equal to 0

empty = 10
full = 0
mutex = 0

Y. Cheng GMU CS571 Spring 2021

Adding “Mutual Exclusion”

136

Producer 0: Running Consumer 0: Runnable

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for
full to be greater than or
equal to 0

Y. Cheng GMU CS571 Spring 2021

Adding “Mutual Exclusion”

137

Producer 0: Running Consumer 0: Runnable

Deadlock!!

Producer 0 gets stuck at
acquiring mutex which has
been locked by Consumer 0!

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for
full to be greater than or
equal to 0

Y. Cheng GMU CS571 Spring 2021

Deadlocks
• A set of threads are said to be in a deadlock state

when every thread in the set is waiting for an event
that can be caused only by another thread in the
set

138

A typical deadlock
dependency graph

Y. Cheng GMU CS571 Spring 2021

Conditions for Deadlock
• Mutual exclusion

• Threads claim exclusive control of resources that require
e.g., a thread grabs a lock

• Hold-and-wait
• Threads hold resources allocated to them while waiting for

additional resources
• No preemption

• Resources cannot be forcibly removed from threads that
are holding them

• Circular wait
• There exists a circular chain of threads such that each

holds one or more resources that are being requests by
next thread in chain

139Y. Cheng GMU CS571 Spring 2021

Correct Mutual Exclusion

140Y. Cheng GMU CS571 Spring 2021

Mutex wraps
just around
critical section!

Mutex wraps
just around
critical section!

Producer-Consumer Solution

• Make sure that
1.The producer and the consumer do not access the buffer

area and related variables at the same time
2.No item is made available to the consumer if all the buffer

slots are empty
3.No slot in the buffer is made available to the producer if all

the buffer slots are full

141Y. Cheng GMU CS571 Spring 2021

