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Announcements 

• Project 2’s deadline is extended by one week
• Due at 11:59pm, 03/26

• Project 3-5 will be team projects
• Please fill out the Google form about your team 

composition: 
https://forms.gle/DwNN1pZPn5J6jFAS9

• Feel free to post on Piazza to search for teammates!
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Concurrency

• Threads

• Race Conditions

• The Critical Section Problem

• Locks

• Semaphores
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Threads
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Why Thread Abstraction?
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Process Abstraction: Challenge 1

• Inter-process communication (IPC)
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Inter-Process Communication

• Mechanism for processes to communicate and 
to synchronize their actions

• Two models
• Communication through a shared memory region
• Communication through message passing
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Communication Models
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• Message system – processes communicate with 
each other without resorting to shared variables

• A message-passing facility must provide at least two 
operations:
• send(message, recipient) 
• receive(message, recipient)

• With indirect communication, the messages are sent 
to and received from mailboxes (or, ports)
• send(A, message) /* A is a mailbox */
• receive(A, message)

Communication through 
Message Passing
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Communication through Message Passing
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• Message passing can be either blocking
(synchronous) or non-blocking (asynchronous)

• Blocking Send: The sending process is blocked until the 
message is received by the receiving process or by the 
mailbox

• Non-blocking Send: The sending process resumes the 
operation as soon as the message is received by the 
kernel

• Blocking Receive: The receiver blocks until the message 
is available

• Non-blocking Receive: “Receive” operation does not 
block; it either returns a valid message or a default value 
(null) to indicate a non-existing message
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• The memory region to be shared must be explicitly 
defined

• System calls (Linux): 
• shmget creates a shared memory block 
• shmat maps/attaches an existing shared memory 

block into a process’s address space
• shmdt removes (“unmaps”) a shared memory block 

from the process’s address space
• shmctl is a general-purpose function allowing various 

operations on the shared block (receive information 
about the block, set the permissions, lock in memory, 
…)

• Problems with simultaneous access to the shared 
variables

Communication through Shared Memory
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Process Abstraction: Challenge 1

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)
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Process Abstraction: Challenge 2

• Inter-process communication (IPC)
• Cumbersome programming!
• Copying overheads (inefficient communication)
• Expensive context switching (why expensive?)

• CPU utilization
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What if there is only one process?
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Moore’s law: # transistors doubles every ~2 years
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Moore’s law is ending!

Moore’s law: # transistors doubles every ~2 years



CPU Trends – What Moore’s Law Implies…

• The future
• Same CPU speed
• More cores (to scale-up)

• Faster programs => concurrent execution

• Goal: Write applications that fully utilize many 
CPU cores… 
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Goal

• Write applications that fully utilize many CPUs…
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Strategy 1

• Build applications from many communication 
processes

• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons?
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Strategy 1
• Build applications from many communication 

processes
• Like Chrome (process per tab)
• Communicate via pipe() or similar

• Pros/cons? – That we’ve talked about in previous slides
• Pros: 

• Don’t need new abstractions!
• Better (fault) isolation?

• Cons: 
• Cumbersome programming using IPC
• Copying overheads
• Expensive context switching
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Strategy 2

• New abstraction: the thread
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Introducing Thread Abstraction

• New abstraction: the thread

• Threads are just like processes, but threads 
share the address space
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Thread

• A process, as defined so far, has only one thread 
of execution

• Idea: Allow multiple threads of concurrently 
running execution within the same process 
environment, to a large degree independent of 
each other

• Each thread may be executing different code at the 
same time
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Process vs. Thread

• Multiple threads within a process will share
• The address space
• Open files (file descriptors)
• Other resources

• Thread
• Efficient and fast resource sharing
• Efficient utilization of many CPU cores with only one 

process
• Less context switching overheads
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Running 
thread 1
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Running 
thread 2
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Each thread may be executing 
different code at the same time

Virtual mem
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Linux process Threads within a Linux process

*: https://computing.llnl.gov/tutorials/pthreads/



Single- vs. Multi-threaded Process
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Using Threads

• Processes usually start with a single thread
• Usually, library procedures are invoked to manage 

threads
• thread_create: typically specifies the name of the 

procedure for the new thread to run
• thread_exit
• thread_join: blocks the calling thread until another 

(specific) thread has exited
• thread_yield: voluntarily gives up the CPU to let another 

thread run
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Pthread

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of the 
library

• Common in UNIX (e.g., Linux) OSes
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Pthread APIs
Thread Call Description
pthread_create Create a new thread in the 

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

pthread_cond_init Create a condition variable

pthread_cond_destroy Destroy a condition variable

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Release one thread waiting on a 
condition variable



Pthread APIs
Thread Call Description
pthread_create Create a new thread in the 

caller’s address space
pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_init Create a new mutex

pthread_mutex_destroy Destroy a mutex

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex
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Thread 
lock

Thread 
CV



Example of Using Pthread
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Example Multithreaded Applications
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A multithreaded web server



Example Multithreaded Applications

43
Requests

Logic that
handles requests

A multithreaded web server
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Code Sketch

while (TRUE) {                   while (TRUE) {

get_next_request(&buf);          wait_for_work(&buf);
handoff_work(&buf);              check_cache(&buf; &page);

}                                   if (not_in_cache)
read_from_disk(&buf,  &page);

return_page(&page);

}

(a) Dispatcher thread                            (b) Worker thread 
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• Resource sharing
• Sharing the address space and other resources may 

result in high degree of cooperation
• Economy

• Creating/managing processes much more time 
consuming than managing threads: e.g., context switch

• Better utilization of multicore architectures
• Threads are doing job concurrently (or in parallel)
• Multithreading an interactive application may allow a 

program to continue running even if part of it is blocked 
or performing a lengthy operation

Benefits of Multi-threading
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Real-world Example: Memcached

• Memcached—A high-performance memory-
based caching system

• Written in C
• https://memcached.org/

• A typical multithreaded server implementation
• Pthread + libevent
• A dispatcher thread dispatches newly coming 

connections to the worker threads in a round-robin 
manner

• Event-driven: Each worker thread is responsible for 
serving requests from the established connections
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Multithreading vs. Multi-processes

• Real-world debate
• Multithreading vs. Multi-processes
• Memcached vs. Redis

• Redis—A single-threaded memory-based data 
store (written in C)

• https://redis.io/
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Wish List for Redis…

48

http://goo.gl/N9UTKD
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Concurrency

• Threads

• Race Conditions

• The Critical Section Problem

• Locks

• Semaphores
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Threaded Counting Example

$ git clone https://github.com/tddg/demo-ostep-code
$ cd demo-ostep-code/threads-intro
$ make
$ ./t1 <loop_count>

Try it yourself

https://github.com/tddg/demo-ostep-code


Back-to-Back Runs
Run 1…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 10706438)
Run 2…
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 11852529)
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What exactly Happened??
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What exactly Happened??

% otool -t -v thread_rc [Mac OS X]
% objdump -d thread_rc [Linux]

…
0000000100000d52 movl 0x2f8e %eax
0000000100000d58 addl $0x1,   %eax
0000000100000d5b movl %eax,  0x2f8e

…

54

counter = counter + 1;
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Concurrent Access to the Same 
Memory Address

55

OS Thread 1 Thread 2

Time

Enter into critical section
movl 0x2f8e, %eax
addl $0x1, %eax

50
51

Value
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Concurrent Access to the Same 
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Interrupt
Save T1’s state
Restore T2’s state

movl 0x2f8e, %eax
addl $0x1, %eax
movl %eax, 0x2f8e
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• Observe: In a time-shared system, the exact 
instruction execution order cannot be predicted

• Deterministic vs. Non-deterministic

• Any possible orders can happen, which result in 
different output across runs

Race Conditions
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• Situations like this, where multiple threads are 
writing or reading some shared data and the final 
result depends on who runs precisely when, are 
called race conditions
• A serious problem for any concurrent system using 

shared variables

• Programmers must make sure that some high-
level code sections are executed atomically
• Atomic operation: It completes in its entirety without 

worrying about interruption by any other potentially 
conflict-causing thread

Race Conditions
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The Critical-Section Problem
• N threads all competing to access the shared data

• Each process/thread has a code segment, called 
critical section (critical region), in which the shared 
data is accessed

• Problem – ensure that when one thread is executing 
in its critical section, no other thread is allowed to 
execute in that critical section

• The execution of the critical sections by the threads 
must be mutually exclusive in time
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Mutual Exclusion
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Solving Critical-Section Problem
Any solution to the problem must satisfy four conditions!
Mutual Exclusion:

No two threads may be simultaneously inside the same critical 
section

Bounded Waiting: 
No thread should have to wait forever to enter a critical section

Progress:
No thread executing a code segment unrelated to a given 

critical section can block another thread trying to enter the same 
critical section

Arbitrary Speed:
No assumption can be made about the relative speed of 
different threads (though all threads have a non-zero speed)
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Using Lock to Protect Shared Data

• Suppose that two threads A and B have 
access to a shared variable “balance”

Thread A:                       Thread B:
balance = balance + 1       balance = balance + 1
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Locks

• A lock is a variable

• Two states
• Available or free
• Locked or held

• lock(): tries to acquire the lock
• unlock(): releases the lock that has been 

acquired by caller
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Building a Lock

• Needs help from hardware + OS
• A number of hardware primitives to support a 

lock
• Goals of a lock

• Basic task: Mutual exclusion
• Fairness
• Performance
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First Attempt: A Simple Flag

• How about just using loads/stores
instructions?
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First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

71

A spin lock
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First Attempt: A Simple Flag

• How about just using loads/stores
instructions?

72

A spin lock

What’s the problem?
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First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is 0 initially
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First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is 0 initially

Checking that Flag is 0, again…
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First Attempt: A Simple Flag
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Failed reason: No mutual exclusion!

Flag is set to 1 by T2
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First Attempt: A Simple Flag
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Flag is set to 1 again! Two threads both in Critical Section
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First Attempt: A Simple Flag
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Culprit: 
Lock operation is not atomic!
Therefore, no mutual exclusion!

Flag is set to 1 again! Two threads both in Critical Section
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Getting Help from the Hardware

• One solution supported by hardware may be to use 
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);
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Getting Help from the Hardware

• One solution supported by hardware may be to use 
interrupt capability

do {
lock()
critical section;

unlock()
remainder section;

} while (1);
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Are we done??
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Synchronization Hardware
• Many machines provide special hardware 

instructions to help achieve mutual exclusion 

• The TestAndSet (TAS) instruction tests and 
modifies the content of a memory word atomically

• TAS returns old value pointed to by old_ptr and 
updates said value to new

80

Operations 
performed 
atomically!
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Mutual Exclusion with TAS

• Initially, lock’s flag set to 0

81

A correct spin lock
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Busy Waiting and Spin Locks

82

• This approach is based on busy waiting
• If the critical section is being used, waiting processes 

loop continuously at the entry point
• A binary “lock” variable that uses busy waiting is 

called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)
• Disadvantages?

• Fairness?
• Performance?
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Busy Waiting and Spin Locks

83

• This approach is based on busy waiting
• If the critical section is being used, waiting processes 

loop continuously at the entry point
• A binary “lock” variable that uses busy waiting is 

called a spin lock
• Processes that find the lock unavailable “spin” at the entry

• It actually works (mutual exclusion)
• Disadvantages?

• Fairness? (A: No. Heavy contention may cause 
starvation)

• Performance? (A: Busy waiting wastes CPU cycles)
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A Simple Approach: Yield!

• When you are going to spin, just give up the 
CPU to another process/thread
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Semaphores

• Introduced by E. W. Dijkstra
• Motivation:  Avoid busy waiting by blocking a 

process execution until some condition is 
satisfied

• Two operations are defined on a semaphore 
variable s:

sem_wait(s) (also called P(s) or down(s))
sem_post(s) (also called V(s) or up(s))
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Semaphore Operations
• Conceptually, a semaphore has an integer value. This value 

is greater than or equal to 0

• sem_wait(s):
s.value-- ;  /*  Executed atomically */ 
/* wait/block if s.value < 0 (or negative) */

• A process/thread executing the wait operation on a 
semaphore  with value < 0 being blocked until the 
semaphore’s value becomes greater than 0

• No busy waiting

• sem_post(s):
s.value++;  /* Executed atomically */
/* if one or more process/thread waiting, wake one */
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Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the 
same semaphore ‘s’, only one of them will be 
awakened when another process performs 
post(s) operation

• Who will have higher priority?
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Semaphore Operations (cont.)

• If multiple processes/threads are blocked on the 
same semaphore ‘s’, only one of them will be 
awakened when another process performs 
post(s) operation

• Who will have higher priority?
• A: FIFO, or whatever queuing strategy
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• Declare and define a semaphore:
sem_t s;  
sem_init(&s, 0, 1);  /* initially s = 1 */

• Routine of Thread 0 & 1: 
do {

sem_wait(s);
critical section

sem_post(s);
remainder section

} while (1);

Attacking Critical Section Problem
with Semaphores

89

Binary semaphore, 
which is a lock
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Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore
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Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore
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Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore
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Attacking Critical Section Problem
with Semaphores

• Single thread using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore

94Y. Cheng GMU CS571 Spring 2021



Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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Attacking Critical Section Problem
with Semaphores
• Two threads using a binary semaphore
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• Producer-Consumer Problem
• Semaphore version
• Condition Variable

• A CV-based version

• Readers-Writers Problem

• Dining-Philosophers Problem

Classical Synchronization Problems
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Producer-Consumer Problem
• The bounded-buffer producer-consumer problem assumes 

that there is a buffer of size N
• The producer process puts items to the buffer area
• The consumer process consumes items from the buffer
• The producer and the consumer execute concurrently

producer consumer

. . . . . . . .
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Example: Unix Pipes

• A pipe may have many writers and readers

• Internally, there is a finite-sized buffer

• Writers add data to the buffer

• Readers remove data from the buffer
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Example: Unix Pipes
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Buffer

end

start
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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start

Read

Note: reader must wait
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Example: Unix Pipes
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Example: Unix Pipes
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Example: Unix Pipes
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Buffer

end

start

Write

Note: writer must wait
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Example: Unix Pipes

• Implementation
• Reads/writes to buffer require locking
• When buffers are full, writers (producers) must wait
• When buffers are empty, readers (consumers) must 

wait
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Linux Pipe Commands

% ps aux | less

% cat file | grep <str>

121

Pipe

Pipe
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Producer-Consumer Model: Parameters

• Shared data:
sem_t full, empty;

• Initially:

full = 0       /* The number of full buffers */

empty = MAX    /* The number of empty buffers */
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First Attempt: MAX = 1
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Put and Get routines
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First Attempt: MAX = 10?
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Put and Get routines
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First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0
empty = 10
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First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
fill = (fill + 1) % MAX; 

} 

empty = 9
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First Attempt: MAX = 10?
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Producer 0: Running Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9
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First Attempt: MAX = 10?
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Producer 0: Sleeping Producer 1: Runnable

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9
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First Attempt: MAX = 10?
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Producer 0: Runnable Producer 1: Running

fill = 0

void put(int value) { 
buffer[fill] = value; 
Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 9
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void put(int value) { 
buffer[fill] = value; 
fill = (fill + 1) % MAX; 

} 

First Attempt: MAX = 10?
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Producer 0: Runnable Producer 1: Running

fill = 0
Overwrite!

void put(int value) { 
buffer[fill] = value; 

Interrupted …
fill = (fill + 1) % MAX; 

} 

empty = 8
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One More Parameter: A mutex lock

• Shared data:
sem_t full, empty;

• Initially:

full = 0;    /* The number of full buffers */

empty = MAX; /* The number of empty buffers */

mutex = 1;   /* Semaphore controlling the access  
to the buffer pool */
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Add “Mutual Exclusion”
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Add “Mutual Exclusion”
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What if consumer
gets to run first??



Adding “Mutual Exclusion”
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Producer 0: Runnable Consumer 0: Running

empty = 10
full = 0
mutex = 1
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Adding “Mutual Exclusion”
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Producer 0: Runnable Consumer 0: Running

Consumer 0 is waiting for 
full to be greater than or 
equal to 0

empty = 10
full = 0
mutex = 0
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Adding “Mutual Exclusion”
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Producer 0: Running Consumer 0: Runnable

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for 
full to be greater than or 
equal to 0
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Adding “Mutual Exclusion”
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Producer 0: Running Consumer 0: Runnable

Deadlock!!

Producer 0 gets stuck at 
acquiring mutex which has 
been locked by Consumer 0!

empty = 10
full = -1
mutex = -1

Consumer 0 is waiting for 
full to be greater than or 
equal to 0

Y. Cheng GMU CS571 Spring 2021



Deadlocks
• A set of threads are said to be in a deadlock state 

when every thread in the set is waiting for an event 
that can be caused only by another thread in the 
set 
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A typical deadlock 
dependency graph
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Conditions for Deadlock
• Mutual exclusion

• Threads claim exclusive control of resources that require 
e.g., a thread grabs a lock

• Hold-and-wait
• Threads hold resources allocated to them while waiting for 

additional resources
• No preemption

• Resources cannot be forcibly removed from threads that 
are holding them

• Circular wait
• There exists a circular chain of threads such that each 

holds one or more resources that are being requests by 
next thread in chain
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Correct Mutual Exclusion
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Mutex wraps 
just around 
critical section!

Mutex wraps 
just around 
critical section!



Producer-Consumer Solution

• Make sure that
1.The producer and the consumer do not access the buffer 

area and related variables at the same time
2.No item is made available to the consumer if all the buffer 

slots are empty
3.No slot in the buffer is made available to the producer if all 

the  buffer slots are full
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