lization:
Beyond Physwal Memory

Some material taken/derived from:
» Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Today’s outline

1. Mechanisms

2. Polices

1.

ok W

FIFO

Random

LRU

MIN: Belady’s optimal
ARC

3. Misc. (TLB caching)

Beyond Physical Memory:
Mechanisms

Virtual memory

Program

Y. Cheng GMU CS571 Spring 2021

Y. Cheng

Program

GMU CS571 Spring 2021

Virtual memory

...:::::;'"'g;aag
data
heap
L stack :
Process 1

Virtual memory

................................. ...y code i
data
heap
Program
L stack :
Process 1

What’s in code?

Y. Cheng GMU CS571 Spring 2021

Y. Cheng

Disk

..............................

Program

What’s in code?

Virtual memory

1

data
heap

Process 1

Many large libraries, some of which are rarely/never used

GMU CS571 Spring 2021

Disk Virtual memory

1

data
heap

Program

Process 1

How to avoid wasting physical pages to
back rarely used virtual pages?

Y. Cheng GMU CS571 Spring 2021

Y. Cheng

Disk

Program

Physical memory

Virtual memory

data
heap

Process 1

GMU CS571 Spring 2021

Y. Cheng

Program

Virtual memory

-

p

: /’ data |
P heap’
4

’

. ”
_i--=-"Stack

Process 1

- -— - L

/”

V4
l, g
4 /’
/ V4
Y] V4
/! V4
N Y 4
N V4

N /
Physical minory
¥

GMU CS571 Spring 2021

Program

Process 1 accesses LibB

Y. Cheng

Virtual memory

-

p

LibC Prog
/ data |

- V4
: .*" heap’
’f

)’

’

. ”
_i--=-"Stack

Process 1

oy -

/,’

V4
ll 4
U4 /’
4 V4
Y/ V4
! V4
N /
N 4

I /
Physical minory
A4

GMU CS571 Spring 2021

-

Program

OS copies LibB to mem

Y. Cheng

Virtual memory

/ data | \
! " heap’ \
’ . 2 . 1
e’ . ’ =1
/7’ _i--=-"Stack i
, ‘l A EEEEEEEEEEEEEEEEEEEEEEEENEER [|
/! 7 Process 1 !
q /]
/ / Y
/ ,' /
! / s
I
Physical mgmory ol
¥ 7
’/

P

GMU CS571 Spring 2021

-

Program

called “swapping in” or
“paging in”

Y. Cheng

Virtual memory

l
1
/ data | \
! " heap’ \
7 . P - |
e’ . ’ =1
/7’ _i--=-"Stack i
, ‘l A EEEEEEEEEEEEEEEEEEEEEEEENEER [|
/! 7 Process 1 !
q /]
/ / Y
/ ,' /
! / s
I
Physical mgmory ol
¥ 7
’/

P

GMU CS571 Spring 2021

How to Know Where a Page Lives?

Present Bit

* With each PTE a present is associated
1 =» in-memory, O = out in disk

An 32-bit X86 page table entry (PTE)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
— o)l
PFN 0<o<o§%§&
o oo
Present bit

 During address translation, if present bit in PTE is O
=>» page fault

Present Bit

N o G
5 1 r-xX 1

0
0
60 1 rw- 0
0 0
0 0
0 0
4 1 rw- 1
64 1 rw- 0

Y. Cheng A page table

Present Bit

Disk

Phys memory

Y. Cheng

64

GMU CS571 Spring 2021

r'w-

r'w-

Present Bit

Disk

Phys memory

N o G
5 1 r-xX 1

60

Y. Cheng

64

GMU CS571 Spring 2021

r'w-

r'w-

r'w-

dccess

Present Bit

Disk PPN valid jprot fpresent.
) 1 r-X 1

- 0 - -
- 0 - -
8 1 rw- 1 access
- 0 0 -
Phys memory] 0 0]
- - 0 0 -
B 4 1 rw- 1
64 1 rw- 0

Y. Cheng GMU CS571 Spring 2021 19

What if NO Memory is Left?

Present Bit

Phys memory

Disk

FULL

Y. Cheng

64

GMU CS571 Spring 2021

r'w-

r'w-

21

Present Bit

Disk PPN valid jprot fpresent.
) 1 r-X 1

0
0
60 1 rw- 0O access
0 0
Phys memory 0 0
0 0
F U L L S 4 1 rw- 1
64 1 rw- 0

Y. Cheng GMU CS571 Spring 2021 22

Present Bit

Disk PRV vl prot
) 1 r-X 1

evict
0
0
60 1 rw- 0 access
0 0
Phys memory) 0 0
] - 0 0
FULL |« . 1 - 1
64 1 rw- 0

Y. Cheng GMU CS571 Spring 2021 23

Present Bit

. valid
Disk PFN_Jvalid [prot
63 1 r-X 0

evict

- 0 - -
- 0 - -

60 1 rw- 0O access
- 0 0 -
Phys memory) 0 0)
- 0 0 -
B 4 1 rw- 1
64 1 rw- 0

Y. Cheng GMU CS571 Spring 2021 24

called “swapping out”

Present Bit or “paging out’
Disk N
63 1 r-x 0 evict
i 0 i i
i 0 i i
60 1 rw- 0 access
i 0 0 i
Phys memory) 0 0)
i 0 0 i
AR 4 1 rw- 1
64 1 rw- 0

Y. Cheng GMU CS571 Spring 2021 25

Present Bit

Disk

Phys memory

o I e
63 1 r-X 0

60

Y. Cheng

64

GMU CS571 Spring 2021

r'w-

r'w-

r'w-

dccess

26

Present Bit

. valid
Disk PPN valid [prot |present.
63 1 r-X 0

5
Phys memory)
N _
R 4

64

again, another “swapping in”
or “paging in” GMU CS571 Spring 2021

r'w-

r'w-

dccess

27

Why not Leave Page on Disk?

Why not Leave Page on Disk?

* Performance: Memory vs. Disk

* How long does it take to access a 4-byte int
from main memory vs. disk”
« DRAM: ~100ns
e Disk: ~10ms

Beyond the Physical Memory

e |dea: use the disk space as an extension of main
memory

» Two ways of interaction b/w memory and disk
* Demand paging
« Swapping

Demand Paging

* Bring a page into memory only when it is needed
(demanded)
* Less |/O needed
* Less memory needed
 Faster response
¢ SUPPOIrt More processes/users

* Page is needed = use the reference to page
* |[f not In memory = must bring from the disk

Y. Cheng GMU CS571 Spring 2021 3

Swapping

« Swapping allows OS to support the illusion of a
large virtual memory for multiprogramming
* Multiple programs can run “at once”
 Better utilization
* Ease of use

* Demand paging vs. swapping
« On demand vs. page replacement under memory
pressure

Swapping

« Swapping allows OS to support the illusion of a
large virtual memory for multiprogramming
* Multiple programs can run “at once”
 Better utilization
* Ease of use

Physical
Memory

Swap
Space

Block 4 Block 5 Block 6 Block 7

PFN 0 PFN 1 PFN 2 PFN 3

Proc0O | Proc1 | Proc1 | Proc 2
[VPNO] | [VPN2] | [VPN3] | [VPN 0]
Block O Block 1 Block 2 Block 3
Proc 0 | Proc O Proc 1
[VPN 1] | [vPN 2] | [Free] | [vPN O]

Proc 1 Bxd(elo¥] Proc 3
[VPN 1] BIVETUE [VPN 11 BVGRD

Swap Space

 Part of disk space reserved for moving pages back
and forth
e Swap pages out of memory
e Swap pages into memory from disk

» OS reads from and writes to the swap space at
page-sized unit
PFNO PFN1 PFN2 PFN3

Physical | Proc0 | Proc1 | Proc 1 | Proc 2 :
Memory | [VPNO] | [VPN 2] | [VPN 3] | [VPN 0] In this example,

Proc 3 is all swapped to disk

Block O Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Swap | Proc0O | Proc O Proc1 | Proc 1 (IR Proc 2 (oo}
Space | [VPN1] [[vPN2] | [Free] | (veno] | [vPN 1] BINGOXUR (VPN 1] BVGORD

Address Translation Steps

Hardware: for each memory reference:
Extract VPN from VA
Check TLB for VPN
TLB hit:
Build PA from and offset
Fetch PA from memory
TLB miss:
Fetch PTE
if (Ilvalid): exception [segfault]
else if (Ipresent): exception [page fault: page miss|
else: extract , insert in TLB, retry

Address Translation Steps

Hardware: for each memory reference:
Extract VPN from VA
Check TLB for VPN

TLB hit:
Build PA from and offset
Fetch PA from memory
TLB miss:
Fetch PTE
if (Ilvalid): exception [segfault]
else if (Ipresent): exception [page fault: page miss|
else: extract , insert in TLB, retry

* Q: Which steps are expensive??

Y. Cheng GMU CS571 Spring 2021

36

Address Translation Steps

Hardware: for each memory reference:

(cheap) Extract VPN from VA

(cheap) Check TLB for VPN
TLB hit:

Build PA from PFN and offset

Fetch PA from memory

TLB miss:

(cheap)
(expensive)

(expensive)

(expensive)

(expensive)
(cheap)

Fetch PTE

if (Ilvalid): exception [segfault]

else if (lpresent):

exception [page fault: page miss]

else: extract PFEN, insert in TLB, retry

* Q: Which steps are expensive??

Y. Cheng

GMU CS571 Spring 2021

37

Page Fault

* The act of accessing a page that is not in
physical memory is called a page fault

« OS is invoked to service the page fault
« Page fault handler

« Typically, PTE contains the page address on disk

Y. Cheng GMU CS571 Spring 2021 38

Page-Fault Handler (0S)

Y. Cheng

PFN = FindFreePage()
if (PFN == -1)

PFEN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

GMU CS571 Spring 2021

39

Page-Fault Handler (0S)

Y. Cheng

PFN = FindFreePage()
if (PFN == -1)

PFEN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)
PTE.present = 1
PTE.PFN = PFN
retry instruction

Q: which steps are expensive?

GMU CS571 Spring 2021

40

Page-Fault Handler (0S)

creap) PEN = FindFreePagel)
chezp) i (PFN == -1)
(depends) PEN = EvictPage()
(expensive) DiskRead(P TE.DiskAddr, PFN)
cheap) PTE.present = 1
PTE.PFN = PFN

cheap) retry instruction

(cheap

N—"

Q: which steps are expensive?

Y. Cheng GMU CS571 Spring 2021

41

Page-Fault Handler (0S)

(cheap)
(cheap)
(depends)
(expensive)
(cheap)
(cheap)

(cheap)

Y. Cheng

PFN = FindFreePage()
if (PFN == -1)

PEN = EvictPage()
DiskRead(PTE.DiskAddr, PFN)

PTE.present = 1
PTE.PFN = PFN

retry instruction

GMU CS571 Spring 2021

What to evict?
What to read?

42

Major Steps of A Page Fault

page is on
backing store

F 3

load M

\v/

operating
system @
reference
@ trap
< = L
restart page table
instruction
free frame =
reset page bring in
table missing page
physical
memory

Y. Cheng

GMU CS571 Spring 2021

43

Impact of Page Faults

* Each page fault affects the system performance
negatively
* The process experiencing the page fault will not be able

to continue until the missing page is brought to the main
memory

* The process will be blocked (moved to the waiting state)

 Dealing with the page fault involves disk /O
* Increased demand to the disk drive
* Increased waiting time for process experiencing page fault

Memory as a Cache

* As we increase the degree of multiprogramming,
over-allocation of memory lbecomes a problem

 \What if we are unable to find a free frame at the
time of the page fault?

« OS chooses to page out one or more pages to
make room for new page(s) OS is about to bring
IN

 The process to replace page(s) is called page
replacement policy

Y. Cheng GMU CS571 Spring 2021 45

Memory as a Cache

* OS keeps a small portion of memory free
proactively
« High watermark (HW) and low watermark (L\W)

* When OS notices free memory is below LW (i.e.,
Memory pressure)

« A background thread (i.e., swap/page daemon) starts
running to free memory

* |t evicts pages until there are HW pages available

Y. Cheng GMU CS571 Spring 2021 46

Beyond Physical Memory:
Policies - What to Evict?

Page Replacement

* Page replacement completes the separation
between the logical memory and the physical
memory

 Large virtual memory can be provided on a smaller
physical memory

* Impact on performance

« If there are no free frames, two page transfers needed at
each page fault!

* \We can use a modify (dirty) bit to reduce overhead
of page transfers — only modified pages are written
back to disk

Page Replacement Policy

* Formalizing the problem

« Cache management: Physical memory is a cache for
virtual memory pages in the system
* Primary objective:
« High performance
 High efficiency
* Low cost
» Goal: Minimize cache misses
« To minimize # times OS has to fetch a page from disk
* -OR- maximize cache hits

Y. Cheng GMU CS571 Spring 2021 49

Average Memory Access Time

 Average (or effective) memory access time (AMAT) is
the metric to calculate the effective memory
performance

* T, Cost of accessing memory

* T,: Cost of accessing disk

* P,.: Probability of finding data in cache (hit)
 Hit rate

* Pyiss: Probability of not finding data in cache (miss)
* Miss rate

An Example

e Assuming

* Ty is 100 nanoseconds (ns), Ty is 10 milliseconds
(ms)
* Py is 0.9, and Py 1S 0.1

e AMAT = 0.9*100ns + 0.1*%10ms = 90ns + 1lms =
1.00009ms

 Or around 1 millisecond

* \What if the hit rate is 99.9%7

» Result changes to 10.1 microseconds (or us)
* Roughly 100 times faster!

First-In First-Out (FIFO)

First-in First-out (FIFO)
« Simplest page replacement algorithm

e |dea: items are evicted in the order they are
Inserted

 Implementation: FIFO queue holds identifiers of
all the pages in memory
* We replace the page at the head of the queue

* When a page is brought into memory, it is inserted at
the tail of the queue

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3

NP, QOO WRFRrRONRFRO

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2021 56

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2021 57

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 0,1,2

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2021 58

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me

Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 0,1,2
Miss

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2021 59

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 0,1,2
Miss 0 First-in— 1,2,3

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2021 60

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
0 Miss First-in— 0
1 Miss First-in— 35 |
2 Miss First-in— 0,1, 2
0 Hit First-in— 0,1,2
1 Hit First-in— 0,1,2
3 Miss 0 First-in— 1,2,3
0 Miss 1 First-in— 2,3,0
3 Hit First-in— 2,3,0
1 Miss 2 First-in— 3,0, 1
2 Miss 3 First-in— 0,1,2
1 Hit First-in— 0,1, 2

~
~

Y. Cheng GMU CS571 Spring 2021 6l

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

* Issue: the “oldest” page may contain a heavily
used data

* Will need to bring back that page in near future

FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
 Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4

Access | it | Stato atter) [N Access | Hit | Stataften

o B~ WO N = 00NV = B W N =
o B~ WO N = 00NV = B W N =

FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
 Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4

Access | Hit | State (atter) [Nl Access | it | State (after)
1 no 1 1

2 no 1,2 2

3 no 1,2,3 3

4 no 2,3,4 4

1 no 3,4,1 1

2 no 41,2 2

5 no 1,2,5 5

1 yes 1,2,5 1

2 yes 1,2,5 2

3 no 2,5,3 3

4 no 5,3,4 4

5 yes 5,3,4 5

FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
 Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4
Access | Hit | State (atter) [Nl Access | it | State (after)

1 no 1 1 no 1
2 no 1,2 2 no 1,2
3 no 1,2,3 3 no 1,2,3
4 no 2,3,4 4 no 1,2,3,4
1 no 3,4,1 1 yes 1,2,3,4
2 no 41,2 2 yes 1,2,3,4
5 no 1,2,5 5 no 2,3,4,5
1 yes 1,2,5 1 no 3,4,5,1
2 yes 1,2,5 2 no 451,2
3 no 2,5,3 3 no 5,1,2,3
4 no 53,4 4 no 1,2,3,4
5 yes 5,3,4 5 no 2,3,4,5

Belady’s Anomaly

* Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
« Size-3 (3-frames) case results in 9 page faults
« Size-4 (4-frames) case results in 10 page faults

* Program runs potentially slower w/ more memory!

* Belady’s anomaly
* More frames =2» more page faults for some access pattern

Y. Cheng

1

2

9 page faults 3

4

1

2
3
4

GMU CS571 Spring 2021

5 4

1 5
10 page faults

66

Random

Random Policy

* |dea: picks a random page to replace
« Simple to implement like FIFO

* No intelligence of preserving locality

Random Policy

* |dea: picks a random page to replace

« Example workload: 01201303121

Y. Cheng

Resulting
Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0,1
2 Miss D2
0 Hit 0,1,2
1 Hit 0.1.2
! Miss 0 1.2.3
0 Miss 1 2:8:0
3 Hit 2,30
d Miss S 2,0,1
2 Hit 2,0,1
1 Hit 201

GMU CS571 Spring 2021

assume
cache size 3

69

How Random Policy Performs?

* Depends entirely on how lucky you are
* Example workload: 012013030121

Random performance over 10000 trials
50 A

Frequency
N w A
o o o
1 1

-t
o
1

o

1 2 3 4 5 6 7
Number of Hits

o

How Random Policy Performs?

* Depends entirely on how lucky you are
* Example workload: 012013030121

Random performance over 10000 trials

o - s - -

Number of Hits s=——7
Y. Cheng GMU CS571 Spring 2021 71

50 - R
40 : :
) Extremely I |
g % bad result! !
-1 ad result! 1 Same as
@ 20 - : i ‘ .
s] | optimal
10 - : |
0 1 r 1 || \I_ I | E 1 : 1
0 1 12 3) 4 51 6 | 7

Least-Recently-Used (LRU)

Least-Recently-Used Policy (LRU)

» Use the recent pass as an approximation of the
near future (using history)

* |dea: evict the page that has not been used for the
longest period of time

Least-Recently-Used Policy (LRU)

dea: evict the page that has not been used for the
ongest period of time

—xample workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State

-

= N = QDO WRERON =

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—~ 0,1,2

= N = QDO WRERON =

Y. Cheng GMU CS571 Spring 2021 75

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU—

Miss LRU—
Miss LRU—
Hit LRU—

=&
NS
ON RO

= N = QDO WRERON =

Y. Cheng GMU CS571 Spring 2021 76

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—~ 0,1,2
Hit LRU— 1,2,0
Hit LRU— 2,0,1

= N = QDO WRERON =

Y. Cheng GMU CS571 Spring 2021 77

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—~ 0,1,2
Hit LRU— 1,2,0
Hit LRU— 2,0,1
Miss 2 LRU—~ 0,1,3

~
Y

= N = QDO WRERON =

Y. Cheng GMU CS571 Spring 2021 78

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
Miss LRU— 0,1
Miss LRU—~ 0,1,2
Hit LRU— 1,2,0
Hit LRU— 2,0,1
Miss 2 LRU—~ 0,1,3
Hit LRU—~ 1,3,0

Y
~

= N = QDO WRERON =

Y. Cheng GMU CS571 Spring 2021 79

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Y
~

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—~ 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU—~ 0,1,3
0 Hit LRU—~ 1,3,0
3 Hit LRU—~ 10,3
1

2

i |

Y. Cheng GMU CS571 Spring 2021 80

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State

0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—~ 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU—~ 0,1,3
0 Hit LRU—~ 1,3,0
3 Hit LRU— 1,03
1 Hit LRU— 0,31
2

i |

Y. Cheng GMU CS571 Spring 2021 8l

Least-Recently-Used Policy (LRU)

* |dea: evict the page that has not been used for the
ongest period of time

* Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss LRU— 0
1 Miss LRU— 0,1
2 Miss LRU—~ 0,1,2
0 Hit LRU— 1,2,0
1 Hit LRU— 2,0,1
3 Miss 2 LRU—~ 0,1,3
0 Hit LRU—~ 1,3,0
3 Hit LRU— 1,03
1 Hit LRU— 0,31
2 Miss 0 LRU— 3,1,2
i | Hit LRU— 3,2,1

~
~

Y. Cheng GMU CS571 Spring 2021 82

LRU Stack Implementation

« Stack implementation: keep a stack of page
numbers in a doubly linked list form
* Page referenced, move it to the top
* Requires quite a few pointers to be changed
* No search required for replacement operation!

Using a Stack to Approximate LRU

reference string

4 v o0 7 1 0 1 2 1 2 7 1

Most recently used T T
—> | 2
a b
1
0
7/
Least recently used
—» | 4

stack
before
a

Y. Cheng GMU CS571 Spring 2021

Using a Stack to Approximate LRU

reference string
4 7 o0 7 1 0 1 2 1 2 7 A1

Most recently used T T
md v | 7
a b
1 7 moved to MRU 2
position
0 , 1
7 | 0
Least recently used
—» | 4 4
stack stack
before after
a b

Y. Cheng GMU CS571 Spring 2021

Belady’s Optimal

MIN: The Optimal Replacement Policy

« Many years ago Belady demonstrated that there is
a simple policy (MIN or OPT) which always leads to
fewest number of misses

* |dea: evict the page that will be accessed furthest
In the future

« Assumption: we know about the future
 Impossible to implement OPT in practice!

« But it Is extremely useful as a practical best-case
pbaseline for comparison purpose

Proof of Optimality for Belady’s
Optimal Replacement Policy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1 &type=pdf

A Short Proof of Optimality for
the MIN Cache Replacement Algorithm
Benjamin Van Roy

Stanford University

December 2, 2010

Abstract

The MIN algorithm is an offline strategy for deciding which item to replace
when writing a new item to a cache. Its optimality was first established by Mattson,
Gecsei, Slutz, and Traiger [2] through a lengthy analysis. We provide a short and
elementary proof based on a dynamic programming argument.

Keywords: analysis of algorithms, on-line algorithms, caching, paging

1 The MIN Algorithm

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.7603&rep=rep1&type=pdf

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
Acgess Hit/Miss? Evict Cache State cache size 3
1
2
0
1
3
0
g
1
2
1

Y. Cheng GMU CS571 Spring 2021 90

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
. . ? . .
Access HIUMlss. Evict Cache State cache size 3
Miss 0
Miss 0,1
Miss 0oL 2

N QOO WRFRrRONRFEO

Y. Cheng GMU CS571 Spring 2021 9l

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
Access HIUMlss? Evict Cache State cache size 3
Miss 0
Miss 0,1
Miss 0,1,2
Hit .17
Hit 0.71,2

N QOO WRFRrRONRFEO

Y. Cheng GMU CS571 Spring 2021 92

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
. ° ? . [
Access HIUMlss. Evict Cache State cache size 3
Miss 0
Miss 0,1
MiSS 0/ 11 2
Hit 02
Hit 0,1,2 What to evict??

N QOO WRFRrRONRFEO

Y. Cheng GMU CS571 Spring 2021 93

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
Access Hit/Miss? Evict Cache State cache size 3
0 Miss 0
1 Miss 0,1
Page 2 happens to g l\ﬁflsts 8: 1%
be the one that will | 1 Hit 0,1,2 What to evict??
be accessed 3
furthest in future! g

&

Y. Cheng GMU CS571 Spring 2021 94

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
Access HIUMlss? Evict Cache State cache size 3
Miss 0
Miss 0,1
Miss 0,1,2
Hit 0,12
Hit 0,1,2
Miss 2 0,1,3

~
~

N QOO WRFRrRONRFEO

Y. Cheng GMU CS571 Spring 2021 95

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
Access HIUMlss? Evict Cache State cache size 3

0 Miss 0
1 Miss 0,1
2 Miss 0,1,2
0 Hit 0,1,2
1 Hit 0,1,2
3 Miss 2 973 B
0 Hit 0.5
3 Hit 033
1 Hit 1
2

1

Y. Cheng GMU CS571 Spring 2021 96

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume

Access HIUMISS? Evict Cache State cache size 3

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 0. 1.2

1 Hit 012

3 Miss 2 0,1,3

0 Hit 0,1,3

3 Hit i 1 e

! Hit L3 What to evict??

1

Y. Cheng GMU CS571 Spring 2021 97

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
. . 7 . .
Access Hit/Miss? Evict Cache State cache size 3

Miss
Miss
Miss

~

~

Hit
Hit
Miss 2
Hit
Hit

~

Page 1 will be
accessed right
after page 2.
Hence 1 is safe!

~

~

— WO WRONRO
! el EsiEs ey
e g S gy S T
WWWWNNNR~RO

~ ~ ~ ~ ~ ~ ~

Hit

~

What to evict??

5

Y. Cheng GMU CS571 Spring 2021 98

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Y. Cheng

Resulting

Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0,1
2 Miss 0.1 72
0 Hit .17
1 Hit 012
3 Miss 2 0.1.3
0 Hit 0,1,3
3 Hit i 1 e
1 Hit 01,3
2 Miss 3 012
1

GMU CS571 Spring 2021

assume
cache size 3

99

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Y. Cheng

Access

Hit/Miss? Evict

Resulting
Cache State

N QOO WRFRrRONRFEO

Miss

Miss

Miss
Hit
Hit

Miss 2
Hit
Hit
Hit

Miss 5
Hit

GMU CS571 Spring 2021

~ ~
~

~

~ ~

~

A R R e e e
NNWWWWNRNN~O

COLooOoLoooeoocoeo

~

assume
cache size 3

100

MIN the Optimal

* |dea: evict the page that will be accessed furthest
In the future

e Example workload: 01201303121

Resulting assume
. . ? . .
Access Hit/Miss? Evict Cache State cache size 3

Miss
Miss
Miss
Hit
Hit
Miss 2
Hit
Hit
Hit
Miss 5
Hit
v.cheng 1 he optimal number of cache hits is 6 for this workload! 101

N = WO WMERONMERO
CoLLLLLee
e e e e e e O
NNWWWWNDNNREFEO

~u ~ ~ ~ ~ ~u ~ ~ ~

st

~

ARC: Adaptive Replacement Cache

Adaptive Replacement Cache

* ARC policy
* Developed and patented by IBM
* (...Dissuaded its adoption in open-source projects??)

ARC: A SELF-TUNING, LOW OVERHEAD REPLACEMENT CACHE

Nimrod Megiddo and Dharmendra S. Modha
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
Email: {megiddo,dmodha} @almaden.ibm.com

Abstract— We consider the problem of cache management
in a demand paging scenario with uniform page sizes. We
propose a new cache management policy, namely, Adaptive
Replacement Cache (ARC), that has several advantages.

In response to evolving and changing access patterns, ARC
dynamically, adaptively, and continually balances between the
recency and frequency components in an online and self-
tuning fashion. The policy ARC uses a learning rule to
adaptively and continually revise its assumptions about the
workload.

The policy ARC is empirically universal, that is, it empir-
ically performs as well as a certain fixed replacement policy—

compression [9] and list updating [10]. Any substantial
progress in caching algorithms will affect the entire
modern computational stack.

Consider a system consisting of two memory levels:
main (or cache) and auxiliary. The cache is assumed
to be significantly faster than the auxiliary memory,
but is also significantly more expensive. Hence, the
size of the cache memory is usually only a fraction
of the size of the auxiliary memory. Both memories are
managed in units of uniformly sized items known as

Why ARC?

« Offline optimal (MIN): Replaces the page that has
the greatest forward distance

* Requires knowledge of future
* Provides an upper-bound

* Recency (LRU)

* Most commonly used policy

* Frequency (LFU)

» Optimal under

Y. Cheng GMU CS571 Spring 2021 104

Mechanisms

* Maintains two LRU lists
« Pages that have been referenced only once (L1)
« Pages that have been referenced at least twice (L2)

» Each list has the same length ¢ as cache
» Cache contains tops of both lists: T1 and T2

 Bottoms B1 and B2 are not In cache
* Ghost cache

Y. Cheng GMU CS571 Spring 2021 105

Mechanisms (cont.)

|T1|+]|T2]|=c

Ghost cache

(pages not in memory) —

L1 L2
MRU
T1
T2
_ | Bf1
- B2

LRU

MRU

LRU

Policy

« ARC attempts to maintain a target size
target T1 for list T1 (parameter p)
« ARC continually and dynamically revises target T1

* When cache is full, ARC evicts:
* The LRU page from T1 if:
|T1| >= target T1
* The LRU page from T2 otherwise

Y. Cheng GMU CS571 Spring 2021 107

Policy (cont.)

e If the missing page was in bottom B1 of L1:
« ARC increases target T1
target Ti1=min(target T1+max(|B2|/|B1]|,1),c)

* |f the missing page was in bottom B2 of L2:

« ARC decreases target T1
target Tl=max(target T1-max(|B1|/|B2]|,1),0)

Policy (cont.)

e |ntuition
* Two heuristics compete with each other

« Each heuristic gets rewarded any time it can show that
adding more pages to its top list would have avoided a
cache miss

* ARC chooses whether it should care more about
recency or frequency of access in eviction decisions

* Note that ARC has no tunable parameter
(parameter-less)
« Cannot get it wrong!

Y. Cheng GMU CS571 Spring 2021 109

Policy (cont.)

* ARC generally performs much better than LRU

« Can achieve greater hit rates than LRU w/ the same
cache size

e Or, can achieve same hit rates as LRU w/ a much
smaller cache

Project 2

Miscellaneous: TLB Caching

TLB Replacement Policy

« Cache: When we want to add a new entry to a full
TLB, an old entry must be evicted and replaced

* | RU policy

* Intuition: A page entry that has not recently been used
implies it won't likely to be used in the near future

« Random policy
 Evicts an entry at random

TLB Workloads

» Sequential array accesses can almost always hit
In the TLB, and hence are very fast

* What pattern would be slow?

Y. Cheng GMU CS571 Spring 2021 | 14

TLB Workloads

» Sequential array accesses can almost always hit
In the TLB, and hence are very fast

* What pattern would be slow?
» Highly random, with no repeat accesses

Y. Cheng GMU CS571 Spring 2021 115

Workload Characteristics

Workload A

int sum = 0;
for (i=0; i<1024; i++) {
sum += a[i];

}

Workload B

int sum = 0;

srand(1234);

for (1=0; 1<512; 1i++) {
sum += a[rand() % N];

}

srand(1234); // same seed

for (i=0; i<512; i++) {
sum += a[rand() % N];

}

Access Patterns

Workload A Workload B
A A
]]
3 3
<C <C . .
]]
]]
> >

Time Time

Y. Cheng GMU CS571 Spring 2021 117

Access Patterns

Workload A Workload B
A A
]]
5 5
<C <C . .
]]
]]
> >
Time Time

Spatial Locality Temporal Locality

Y. Cheng GMU CS571 Spring 2021 118

Workload Locality

« Spatial locality:
 Future access will be to nearby addresses

» Temporal locality:
 Future access will be repeated to the same data

Y. Cheng GMU CS571 Spring 2021 119

Workload Locality

« Spatial locality:
 Future access will be to nearby addresses

» Temporal locality:
 Future access will be repeated to the same data

* Q: What TLB characteristics are best for each
type”?

Y. Cheng GMU CS571 Spring 2021 120

Workload Locality

« Spatial locality:
» Future access will be to nearby addresses

 Temporal locality:
« Future access will be repeated to the same data

* Q: What TLB characteristics are best for each
type”?
* One TLB entry holds the translation for one memory

page: all accesses to that particular page benefit from
this single TLB entry (spatial locality)

« TLB is a small cache (if supporting LRU): memory
accesses with temporal locality benefit

TLB Replacement Policy

« Cache: When we want to add a new entry to a full
TLB, an old entry must be evicted and replaced

» | east-recently-used (LRU) policy

* Intuition: A page entry that has not recently been used
implies it won't likely to be used in the near future

« Random policy
 Evicts an entry at random

Y. Cheng GMU CS571 Spring 2021 122

LRU Trouble

Virt addr CPU’s TLB cache
:
1 0
2 0
3 0
4 0

Y. Cheng GMU CS571 Spring 2021 123

LRU Trouble

Virt addr CPU’s TLB cache
o
1 1 0 ?

2 0
3 0
4 0

Y. Cheng GMU CS571 Spring 2021 124

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 0 ?

2 0
3 0
4 0

TLB miss

Y. Cheng GMU CS571 Spring 2021 125

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 0 ?

2 1 1 ?
3 0
4 0

Y. Cheng GMU CS571 Spring 2021 126

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 0 ?

2 1 1 ?
3 0
4 0

TLB miss

Y. Cheng GMU CS571 Spring 2021 127

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 0 ?

2 1 1 ?
3 1 2 2
4 0

Y. Cheng GMU CS571 Spring 2021 128

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 0 ?

2 1 1 ?
3 1 2 2
4 0

TLB miss

Y. Cheng GMU CS571 Spring 2021 129

LRU Trouble

Y. Cheng

Virt addr
0

A WO DN =

GMU CS571 Spring 2021

CPU’s TLB cache

1
1
1
1

0 ?
1 ?
2 ?
3 ?

130

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 0 ?

2 1 1 ?
3 1 2 ?
4 1 3 ?

TLB miss

Y. Cheng GMU CS571 Spring 2021 131

LRU Trouble

Y. Cheng

Virt addr
0

A WO DN =

GMU CS571 Spring 2021

CPU’s TLB cache

1
1
1
1

0 ?
1 ?
2 ?
3 ?

132

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 0 ?

2 1 1 ?
3 1 2 ?
4 1 3 ?

Now, 0 is the least-recently used item in TLB

Y. Cheng GMU CS571 Spring 2021

133

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 4 ?

2 1 1 ?
3 1 2 ?
4 1 3 ?

Replace O with 4

Y. Cheng GMU CS571 Spring 2021 134

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 4 ?

2 1 1 ?
3 1 2 ?
4 1 3 ?

TLB miss

Replace O with 4

Y. Cheng GMU CS571 Spring 2021 135

LRU Trouble

Virt addr CPU’s TLB cache
:
1 1 4 ?

2 1 1 ?
3 1 2 ?
4 1 3 ?

Accessing 0 again, which was unfortunately just evicted...

Y. Cheng GMU CS571 Spring 2021 136

LRU Trouble

Virt addr CPU’s TLB cache

0] je——

1 1 4 ?

2 1 0 ?

3 1 2 ?

4 1 3 ?
TLB miss

Accessing 0 again, which was unfortunately just evicted...
Replace 1 (which is the least-recently used item at this
point) with O...

Takeaway

o | RU
e Random

* When is each better”
« Sometimes random is better than a “smart” policy!

Y. Cheng GMU CS571 Spring 2021 138

