
CPU Virtualization:
Priority, MLFQ, and

CFS
CS 571: Operating Systems (Spring 2021)

Lecture 3

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Announcement

• Project 0a is graded

• Project 1 is out
• Please start early!

Y. Cheng GMU CS571 Spring 2021 2

CPU Scheduling: Outline

• Basic concept
• Scheduling criteria
• Scheduling algorithms
• First In, First Out (FIFO)
• Shortest Job First (SFJ)
• Shortest Time-to-Completion First (STCF)
• Round Robin (RR)
• Priority
• Multi-Level Feedback Queue (MLFQ)
• (Advanced) Linux scheduling

• Completely Fair Scheduler (CFS)
• Lottery Scheduling

3Y. Cheng GMU CS571 Spring 2021

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

4Y. Cheng GMU CS571 Spring 2021

Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known

5Y. Cheng GMU CS571 Spring 2021

Priority-Based Scheduling

6Y. Cheng GMU CS571 Spring 2021

Priority-Based Scheduling

• A priority number (integer) is associated with each
process

• The CPU is allocated to the process with the highest
priority
oWe assume: smallest integer º highest priority
o Preemptive
o Non-preemptive

7Y. Cheng GMU CS571 Spring 2021

Example for Priority-Based Scheduling
ProcessAaiBurst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2

8

P2 P3P5

1 180 16

P4

196

P1

Y. Cheng GMU CS571 Spring 2021

Priority-Based Scheduling (cont.)
• Priority Assignment

• Internal factors: timing constraints, memory requirements,
the ratio of average I/O burst to average CPU burst …

• External factors: Importance of the process, financial
considerations, hierarchy among users …

• Problem: Indefinite blocking (or starvation) – low priority
processes may never execute

• One solution: Aging
o As time progresses increase the priority of the processes that

wait in the system for a long time

9Y. Cheng GMU CS571 Spring 2021

Multi-Level Feedback Queue (MLFQ)

10Y. Cheng GMU CS571 Spring 2021

Multi-Level Feedback Queue (MLFQ)

• Goals of MLFQ
• Optimize turnaround time

• In reality, SJF does not work since OS does not know how
long a process will run

• Minimize response time
• Unfortunately, RR is really bad on optimizing turnaround

time

11Y. Cheng GMU CS571 Spring 2021

MLFQ: Basics

• MLFQ maintains a number of queues (multi-level
queue)
• Each assigned a different priority level
• Priority decides which process should run at a given

time

12Y. Cheng GMU CS571 Spring 2021

MLFQ Example

13

How to know process type
to set priority?
1. nice
2. history

Y. Cheng GMU CS571 Spring 2021

How to Check Nice Values in Linux?

• % ps ax -o pid,ni,cmd

14Y. Cheng GMU CS571 Spring 2021

MLFQ Example

15

How to know process type
to set priority?
1. nice
2. history

In this example, A and B are
given high priority to run,
while C and D may starve

Y. Cheng GMU CS571 Spring 2021

MLFQ: Basic Rules

• MLFQ maintains a number of queues (multi-level
queue)
• Each assigned a different priority level
• Priority decides which process should run at a given

time

16Y. Cheng GMU CS571 Spring 2021

Attempt #1: Change Priority

• Workload
• Interactive processes (many short-run CPU bursts)
• Long-running processes (CPU-bound)

• Each time quantum = 10ms

17Y. Cheng GMU CS571 Spring 2021

Example 1: One Single Long-Running
Process
• A process enters at highest priority (time

quantum = 10ms)

18Y. Cheng GMU CS571 Spring 2021

Example 1: One Single Long-Running
Process
• A process enters at highest priority (time

quantum = 10ms)

19Y. Cheng GMU CS571 Spring 2021

Example 1: One Single Long-Running
Process
• A process enters at highest priority (time

quantum = 10ms)

20Y. Cheng GMU CS571 Spring 2021

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)

21

Process A

Y. Cheng GMU CS571 Spring 2021

Process B

GMU CS571 Spring 2021

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)
• Process B: short-running interactive process

(start at 100)

22

Process A

Process B

Y. Cheng

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)
• Process B: short-running interactive process

(start at 100)

23

Process A

Process B

Y. Cheng GMU CS571 Spring 2021

GMU CS571 Spring 2021

Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)
• Process B: short-running interactive process

(start at 100)

24

Process A

Process B

Y. Cheng

GMU CS571 Spring 2021

Example 3: What about I/O?

• Process A: long-running process
• Process B: I/O-intensive interactive process

(each CPU burst = 1ms)

25

CPU-intensive Process A

I/O-intensive Process BRule 4b

Y. Cheng

GMU CS571 Spring 2021

Example 4: What’s the Problem?

• Process A: long-running process
• Process B + C: Interactive process

26

Interactive Process B

Interactive Process C

Y. Cheng

Example 4: What’s the Problem?

• Process A: long-running process
• Process B + C: Interactive process

27

CPU-intensive Process A
starves!

Y. Cheng GMU CS571 Spring 2021

Interactive Process B

Interactive Process C

Attempt #2: Priority Boost

• Simple idea: Periodically boost the priority of all
processes

28

CPU-intensive Process A
proceeds!

Y. Cheng

Interactive Process B

Interactive Process C

GMU CS571 Spring 2021

Tuning MLFQ

• MLFQ scheduler is defined by many parameters:
• Number of queues
• Time quantum of each queue
• How often should priority be boosted?
• A lot more…

• The scheduler can be configured to match the
requirements of a specific system
• Challenging and requires experience

29Y. Cheng GMU CS571 Spring 2021

(Advanced) Linux Scheduling

30Y. Cheng GMU CS571 Spring 2021

Symmetric Multiprocessing (SMP)

• Multiple CPUs
• Same access time to main memory (DRAM)
• Private CPU cache

Y. Cheng GMU CS571 Spring 2021 31

Shared memory

CPU0 CPU1 CPU2 CPU3

$ $ $ $

Global Queue of Processes
• One ready queue shared across all CPUs

• Advantages
• Good CPU utilization
• Fair to all processes

• Disadvantages
• Not scalable (contention for global queue lock)
• Poor cache locality

• Linux 2.4 uses global queue
Y. Cheng GMU CS571 Spring 2021 32

CPU0 CPU1 CPU2 CPU3

Per-CPU queue of processes
• Static partition of processes to CPUs

• Advantages
• Easy to implement
• Scalable (no contention on ready queue)
• Better cache locality

• Disadvantages
• Load imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilizations

Y. Cheng GMU CS571 Spring 2021 33

CPU0 CPU1 CPU2 CPU3

Modern OSes Take Hybrid Approaches

• Use both global and per-CPU queues
• Migrate processes across per-CPU queues

• Processor affinity
• Add process to a CPU’s queue if recently run on that CPU

• Cache state may still present

Y. Cheng GMU CS571 Spring 2021 34

CPU0 CPU1 CPU2 CPU3

Real-Time Scheduling

• Real-time processes have timing constraints
• Expressed as deadlines or rate requirements
• E.g., gaming, video/music player, autopilot

• Hard real-time systems – required to complete a
critical task within a guaranteed amount of time
• Soft real-time computing – requires that critical

processes receive priority over others

• Linux supports soft real-time

Y. Cheng GMU CS571 Spring 2021 35

Linux: Multi-Level Queue with Priorities

• Soft real-time scheduling policies
• SCHED_FIFO (FIFO)
• SCHED_RR (round robin)
• Priority over normal tasks
• 100 static priority levels (1–99)

• Normal scheduling policies
• SCHED_NORMAL: standard

• SCHED_OTHER in POSIX
• SCHED_BATCH: CPU-bound tasks
• SCHED_IDLE: lower priority tasks
• Static priority is 0

• 40 dynamic priority levels
• “Nice” values

• sched_setscheduler(), nice()
• See “man 7 sched” for detailed overview
Y. Cheng GMU CS571 Spring 2021 36

Real-time 99

Real-time 3

Real-time 2

Real-time 1

…

Nice -20

Nice 0

Nice 19

…

…

Linux: Multi-Level Queue with Priorities

• Soft real-time scheduling policies
• SCHED_FIFO (FIFO)
• SCHED_RR (round robin)
• Priority over normal tasks
• 100 static priority levels (1–99)

• Normal scheduling policies
• SCHED_NORMAL: standard

• SCHED_OTHER in POSIX
• SCHED_BATCH: CPU-bound tasks
• SCHED_IDLE: lower priority tasks
• Static priority is 0

• 40 dynamic priority levels
• “Nice” values

• sched_setscheduler(), nice()
• See “man 7 sched” for detailed overview
Y. Cheng GMU CS571 Spring 2021 37

Real-time 99

Real-time 3

Real-time 2

Real-time 1

…

Nice -20

Nice 0

Nice 19

…

…

Linux Scheduler History

• O(N) scheduler up to 2.4
• Simple: global run queue
• Poor performance on multiprocessor and large N

• O(1) scheduler in 2.5 & 2.6
• Good performance: per-CPU run queue
• Complex and error-pone logic to boost interactivity
• No fairness guarantee

• Completely Fair Scheduler (CFS) in 2.6 and later
• Currently default scheduler for SCHED_NORMAL
• Processes get fair share of CPU
• Naturally boosts interactivity

Y. Cheng GMU CS571 Spring 2021 38

O(N) Scheduler (Linux 2.4)
• Time is divided into epochs
• At the start of each epoch, scheduler assigns a

priority to every process based on its behavior
• Real-time processes have an absolute priority assigned to

them, and are highest priority
• Interactive processes have a dynamic priority assigned to

them based on behavior in the previous epoch
• Batch processes are given the lowest priority

• Each process’ priority is used to compute a time
quantum
• Different processes can have different quantum lengths
• Higher-priority processes generally get larger time

quantums
• When a process has completely used up its quantum, it is

preempted and another process runs

Y. Cheng GMU CS571 Spring 2021 39

O(N) Scheduler (Linux 2.4)

• When scheduler is invoked or at start of an
epoch, scheduler iterates thru all processes
• Compute a new priority for each process

• Higher-priority processes preempt lower-priority
ones
• The current epoch ends when all runnable

processes have consumed their entire time
quantum
• Several O(N) computations in the scheduler

makes it scale terribly to large numbers of
processes

Y. Cheng GMU CS571 Spring 2021 40

O(1) Scheduler (Linux 2.6)

• Linux O(1) scheduler still includes the notion of
epochs, but only informally
• Priority array + bitmap

Y. Cheng GMU CS571 Spring 2021 41

• Find the highest-priority process to
run is a constant-time operation
• Find index of lowest 1-bit in bitmap
• Use that index to access the priority

array

Highest
priority

Lowest
priority

1 0 1 0 1 0

Lowest
priority

Highest
priority

Bitmap

Priority array

O(1) Scheduler (Linux 2.6)
• Maintains two priority arrays
• Active array contains processes w/ remaining time
• Expired array holds processes that have used up

their quantums

Y. Cheng GMU CS571 Spring 2021 42

• When an active process
uses entire quantum, it
is moved to the expired
array
• A new priority is given to

that process
• When the active array is

empty, the epoch is over
• O(1) scheduler switches

the active and expired
pointers and starts over
again

Highest
priority

Lowest
priority

Highest
priority

Lowest
priority

Active
Expired

Ideal Fair Scheduling

• Infinitesimally small time slice
• N processes: each runs uniformly at 1/Nth rate

Y. Cheng GMU CS571 Spring 2021 43

1 process

3 processes 1/3rd

progress

Ideal Fair Scheduling

• Infinitesimally small time slice
• N processes: each runs uniformly at 1/Nth rate

• Various approximations of the idea
• Linux CFS
• Lottery scheduling

Y. Cheng GMU CS571 Spring 2021 44

1 process

3 processes 1/3rd

progress

Completely Fair Scheduler
(Linux 2.6.23 till now)
• CFS approximates fair scheduling
• Run each process once per schedule period T

• sysctl_sched_latency
• Time slice for process Pi: T * Wi/(Sum of all Wi)

• sched_slice()

• Too many processes?
• Lower bound on smallest time slice

• sysctl_sched_min_granularity
• Schedule latency T = lower bound * number of procs

Y. Cheng GMU CS571 Spring 2021 45

CFS: Picking the Next Process

• Pick process w/ minimum weighted vruntime so
far
• Virtual runtime:

task->vruntime += executed time / Wi

Y. Cheng GMU CS571 Spring 2021 46

CFS: Picking the Next Process

Y. Cheng GMU CS571 Spring 2021 47

• CFS uses a red-black tree (RB tree)
• Balanced binary search tree (BST)
• Ordered by vruntime as key
• O(logN) insertion, deletion, update; O(1): find min

CFS: Picking the Next Process

Y. Cheng GMU CS571 Spring 2021 48

• CFS uses a red-black tree (RB tree)
• Balanced binary search tree (BST)
• Ordered by vruntime as key
• O(logN) insertion, deletion, update; O(1): find min

• Tasks move from left of
tree to the right
• min_vruntime caches

smallest value
• Update vruntime and
min_vruntime
• When task is added or

removed
• On every timer tick,

context switch cfs_rq->min_vruntime

CFS: Picking the Next Process

Y. Cheng GMU CS571 Spring 2021 49

• Sched is invoked at context
switch or at timer tick
• Pick the left-most node w/ the

lowest vruntime
• If the previous process is

runnable, it is inserted into the
tree depending on its new
vruntime

cfs_rq->min_vruntime

How CFS Handles I/O-bound Processes?

• Ideally:
• An I/O-bound process should get higher priority and

thus should get the CPU more easily (after being
blocked for a while waiting for I/O)

• How CFS boosts interactivity:
• I/O-bound processes typically have shorter CPU

bursts and thus will have a low vruntime – higher
priority

Y. Cheng GMU CS571 Spring 2021 50

Lottery Scheduling

51Y. Cheng GMU CS571 Spring 2021

If time permits…

Lottery Scheduling

• Goal: Proportional share
• One of the fair-share schedulers

• Approach
• Gives processes lottery tickets
• Whoever wins runs
• Higher priority à more tickets

52Y. Cheng GMU CS571 Spring 2021

Lottery Code

53Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

54

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

55

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = random(402)

Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

56

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

57

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 1 > 102?

Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

58

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 2 > 102?

Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

59

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 102 > 102?

Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

60

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 302 > 102?

Y. Cheng GMU CS571 Spring 2021

Lottery Scheduling Example

61

Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

302 > 102

OS picks Job D to run!

Y. Cheng GMU CS571 Spring 2021

Other Lottery Ideas
• Ticket transfers

• Ticket currencies

• Ticket inflation

• Read more in OSTEP

• The original lottery scheduling paper:
• Lottery scheduling: flexible proportional-share resource

management. Carl A. Waldspurger and William E. Weihl.
USENIX OSDI’94

62Y. Cheng GMU CS571 Spring 2021

https://www.usenix.org/legacy/publications/library/proceedings/osdi/full_papers/waldspurger.pdf

