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Announcement

• Project 0a is graded

• Project 1 is out
• Please start early!
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CPU Scheduling: Outline

• Basic concept
• Scheduling criteria
• Scheduling algorithms
• First In, First Out (FIFO)
• Shortest Job First (SFJ)
• Shortest Time-to-Completion First (STCF)
• Round Robin (RR)
• Priority
• Multi-Level Feedback Queue (MLFQ)
• (Advanced) Linux scheduling

• Completely Fair Scheduler (CFS)
• Lottery Scheduling
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Workload Assumptions

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (no I/O)

4. The run-time of each job is known
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Priority-Based Scheduling
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Priority-Based Scheduling

• A priority number (integer) is associated with each 
process

• The CPU is allocated to the process with the highest 
priority 
oWe assume: smallest integer º highest priority
o Preemptive
o Non-preemptive
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Example for Priority-Based Scheduling
ProcessAaiBurst TimeT   Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 
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Priority-Based Scheduling (cont.)
• Priority Assignment

• Internal factors: timing constraints, memory requirements, 
the ratio of average I/O burst to average CPU burst …

• External factors: Importance of the process, financial 
considerations, hierarchy among users …

• Problem: Indefinite blocking (or starvation) – low priority 
processes may never execute

• One solution: Aging
o As time progresses increase the priority of the processes that 

wait in the system for a long time
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Multi-Level Feedback Queue (MLFQ)
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Multi-Level Feedback Queue (MLFQ)

• Goals of MLFQ
• Optimize turnaround time

• In reality, SJF does not work since OS does not know how 
long a process will run

• Minimize response time 
• Unfortunately, RR is really bad on optimizing turnaround 

time

11Y. Cheng GMU CS571 Spring 2021



MLFQ: Basics

• MLFQ maintains a number of queues (multi-level 
queue)
• Each assigned a different priority level
• Priority decides which process should run at a given 

time
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MLFQ Example
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How to know process type 
to set priority?
1. nice
2. history
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How to Check Nice Values in Linux?

• % ps ax -o pid,ni,cmd
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MLFQ Example
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How to know process type 
to set priority?
1. nice
2. history

In this example, A and B are 
given high priority to run, 
while C and D may starve
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MLFQ: Basic Rules

• MLFQ maintains a number of queues (multi-level 
queue)
• Each assigned a different priority level
• Priority decides which process should run at a given 

time
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Attempt #1: Change Priority

• Workload
• Interactive processes (many short-run CPU bursts)
• Long-running processes (CPU-bound)

• Each time quantum = 10ms
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Example 1: One Single Long-Running 
Process
• A process enters at highest priority (time 

quantum = 10ms)
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Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)
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Process A
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Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)
• Process B: short-running interactive process 

(start at 100)
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Example 2: Along Came a Short-
Running Process
• Process A: long-running process (start at 0)
• Process B: short-running interactive process 

(start at 100)
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Example 3: What about I/O?

• Process A: long-running process 
• Process B: I/O-intensive interactive process 

(each CPU burst = 1ms)
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CPU-intensive Process A

I/O-intensive Process BRule 4b
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Example 4: What’s the Problem?

• Process A: long-running process 
• Process B + C: Interactive process
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Interactive Process B

Interactive Process C
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Example 4: What’s the Problem?

• Process A: long-running process 
• Process B + C: Interactive process
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CPU-intensive Process A
starves!
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Interactive Process C



Attempt #2: Priority Boost

• Simple idea: Periodically boost the priority of all 
processes
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CPU-intensive Process A
proceeds!

Y. Cheng

Interactive Process B

Interactive Process C
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Tuning MLFQ

• MLFQ scheduler is defined by many parameters:
• Number of queues
• Time quantum of each queue
• How often should priority be boosted?
• A lot more…

• The scheduler can be configured to match the 
requirements of a specific system
• Challenging and requires experience
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(Advanced) Linux Scheduling
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Symmetric Multiprocessing (SMP)

• Multiple CPUs
• Same access time to main memory (DRAM)
• Private CPU cache
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Shared memory

CPU0 CPU1 CPU2 CPU3

$ $ $ $



Global Queue of Processes
• One ready queue shared across all CPUs

• Advantages
• Good CPU utilization
• Fair to all processes

• Disadvantages
• Not scalable (contention for global queue lock)
• Poor cache locality

• Linux 2.4 uses global queue
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Per-CPU queue of processes
• Static partition of processes to CPUs

• Advantages
• Easy to implement
• Scalable (no contention on ready queue)
• Better cache locality

• Disadvantages
• Load imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilizations
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Modern OSes Take Hybrid Approaches

• Use both global and per-CPU queues
• Migrate processes across per-CPU queues

• Processor affinity
• Add process to a CPU’s queue if recently run on that CPU

• Cache state may still present
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Real-Time Scheduling

• Real-time processes have timing constraints
• Expressed as deadlines or rate requirements
• E.g., gaming, video/music player, autopilot

• Hard real-time systems – required to complete a 
critical task within a guaranteed amount of time
• Soft real-time computing – requires that critical 

processes receive priority over others

• Linux supports soft real-time
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Linux: Multi-Level Queue with Priorities

• Soft real-time scheduling policies
• SCHED_FIFO (FIFO)
• SCHED_RR (round robin)
• Priority over normal tasks
• 100 static priority levels (1–99)

• Normal scheduling policies
• SCHED_NORMAL: standard 

• SCHED_OTHER in POSIX
• SCHED_BATCH: CPU-bound tasks
• SCHED_IDLE: lower priority tasks
• Static priority is 0

• 40 dynamic priority levels
• “Nice” values

• sched_setscheduler(), nice()
• See “man 7 sched” for detailed overview
Y. Cheng GMU CS571 Spring 2021 36
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Linux Scheduler History

• O(N) scheduler up to 2.4
• Simple: global run queue
• Poor performance on multiprocessor and large N

• O(1) scheduler in 2.5 & 2.6
• Good performance: per-CPU run queue
• Complex and error-pone logic to boost interactivity
• No fairness guarantee

• Completely Fair Scheduler (CFS) in 2.6 and later
• Currently default scheduler for SCHED_NORMAL
• Processes get fair share of CPU
• Naturally boosts interactivity
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O(N) Scheduler (Linux 2.4)
• Time is divided into epochs
• At the start of each epoch, scheduler assigns a 

priority to every process based on its behavior
• Real-time processes have an absolute priority assigned to 

them, and are highest priority
• Interactive processes have a dynamic priority assigned to 

them based on behavior in the previous epoch
• Batch processes are given the lowest priority

• Each process’ priority is used to compute a time 
quantum
• Different processes can have different quantum lengths
• Higher-priority processes generally get larger time 

quantums
• When a process has completely used up its quantum, it is 

preempted and another process runs
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O(N) Scheduler (Linux 2.4)

• When scheduler is invoked or at start of an 
epoch, scheduler iterates thru all processes
• Compute a new priority for each process

• Higher-priority processes preempt lower-priority 
ones
• The current epoch ends when all runnable 

processes have consumed their entire time 
quantum
• Several O(N) computations in the scheduler 

makes it scale terribly to large numbers of 
processes
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O(1) Scheduler (Linux 2.6)

• Linux O(1) scheduler still includes the notion of 
epochs, but only informally
• Priority array + bitmap
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• Find the highest-priority process to 
run is a constant-time operation
• Find index of lowest 1-bit in bitmap
• Use that index to access the priority 

array

Highest 
priority

Lowest 
priority

1 0 1 0 1 0

Lowest 
priority

Highest 
priority

Bitmap

Priority array



O(1) Scheduler (Linux 2.6)
• Maintains two priority arrays
• Active array contains processes w/ remaining time
• Expired array holds processes that have used up 

their quantums
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• When an active process 
uses entire quantum, it 
is moved to the expired 
array
• A new priority is given to 

that process
• When the active array is 

empty, the epoch is over
• O(1) scheduler switches 

the active and expired 
pointers and starts over 
again

Highest 
priority

Lowest 
priority

Highest 
priority

Lowest 
priority

Active
Expired



Ideal Fair Scheduling

• Infinitesimally small time slice
• N processes: each runs uniformly at 1/Nth rate
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Ideal Fair Scheduling

• Infinitesimally small time slice
• N processes: each runs uniformly at 1/Nth rate

• Various approximations of the idea
• Linux CFS
• Lottery scheduling
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Completely Fair Scheduler 
(Linux 2.6.23 till now)
• CFS approximates fair scheduling
• Run each process once per schedule period T

• sysctl_sched_latency
• Time slice for process Pi: T * Wi/(Sum of all Wi)

• sched_slice()

• Too many processes?
• Lower bound on smallest time slice

• sysctl_sched_min_granularity
• Schedule latency T = lower bound * number of procs
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CFS: Picking the Next Process

• Pick process w/ minimum weighted vruntime so 
far
• Virtual runtime: 

task->vruntime += executed time / Wi
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CFS: Picking the Next Process
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• CFS uses a red-black tree (RB tree)
• Balanced binary search tree (BST)
• Ordered by vruntime as key
• O(logN) insertion, deletion, update; O(1): find min



CFS: Picking the Next Process
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• CFS uses a red-black tree (RB tree)
• Balanced binary search tree (BST)
• Ordered by vruntime as key
• O(logN) insertion, deletion, update; O(1): find min

• Tasks move from left of 
tree to the right
• min_vruntime caches 

smallest value
• Update vruntime and 
min_vruntime
• When task is added or 

removed
• On every timer tick, 

context switch cfs_rq->min_vruntime



CFS: Picking the Next Process
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• Sched is invoked at context 
switch or at timer tick
• Pick the left-most node w/ the 

lowest vruntime
• If the previous process is 

runnable, it is inserted into the 
tree depending on its new 
vruntime

cfs_rq->min_vruntime



How CFS Handles I/O-bound Processes?

• Ideally:
• An I/O-bound process should get higher priority and 

thus should get the CPU more easily (after being 
blocked for a while waiting for I/O)

• How CFS boosts interactivity:
• I/O-bound processes typically have shorter CPU 

bursts and thus will have a low vruntime – higher 
priority
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Lottery Scheduling
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If time permits… 



Lottery Scheduling

• Goal: Proportional share
• One of the fair-share schedulers

• Approach
• Gives processes lottery tickets
• Whoever wins runs
• Higher priority à more tickets
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Lottery Code
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = random(402)
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Lottery Scheduling Example
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Job B
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 1 > 102?
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 2 > 102?
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 102 > 102?
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

Is 302 > 102?
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Lottery Scheduling Example
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Job A
(1)

Job B
(1)

Job C
(100)

Job D
(200)

Job E
(100)

402 total tickets

winner = 102

302 > 102

OS picks Job D to run!
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Other Lottery Ideas
• Ticket transfers

• Ticket currencies

• Ticket inflation

• Read more in OSTEP

• The original lottery scheduling paper: 
• Lottery scheduling: flexible proportional-share resource 

management. Carl A. Waldspurger and William E. Weihl. 
USENIX OSDI’94
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https://www.usenix.org/legacy/publications/library/proceedings/osdi/full_papers/waldspurger.pdf

