
CPU Virtualization: 
Limited Direct 

Execution (LDE)
CS 571: Operating Systems (Spring 2021)

Lecture 2a

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



Process Creation

2

Before, PC points to 
kernel code

PC

Y. Cheng GMU CS571 Spring 2021



Process Creation

3

PC

Now, after process 
creation, CPU begins 
directly executing 
process code

Y. Cheng GMU CS571 Spring 2021



Process Creation

4

PC

Challenge: how to prevent 
process from doing “OS 
kernel stuff”?

Y. Cheng GMU CS571 Spring 2021



Limited Direct Execution (LDE)

5Y. Cheng GMU CS571 Spring 2021



Limited Direct Execution (LDE)

• Low-level mechanism that implements the user-
kernel space separation

• Usually let processes run with no OS 
involvement
• Limit what processes can do
• Offer privileged operations through well-defined 

channels with help of OS

6Y. Cheng GMU CS571 Spring 2021



Limited Direct Execution (LDE)

7Y. Cheng GMU CS571 Spring 2021



Limited Direct Execution (LDE)

8

User-level process

OS

LDE 
mechanism

Y. Cheng GMU CS571 Spring 2021



What to limit?

• General memory access
• Disk I/O
• Certain x86 instructions

9Y. Cheng GMU CS571 Spring 2021



How to limit?

• Need hardware support
• Add additional execution mode to CPU

• User mode: restricted, limited capabilities
• Kernel mode: privileged, not restricted

• Processes start in user mode
• OS starts in kernel mode

10Y. Cheng GMU CS571 Spring 2021



LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do anything) 
if it’s not running?

11Y. Cheng GMU CS571 Spring 2021



LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do anything) 
if it’s not running?

12Y. Cheng GMU CS571 Spring 2021



Taking Turns

13

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2021



Taking Turns

14

Process

OS

Hardware

Running

T1
Time:

Y. Cheng GMU CS571 Spring 2021



Taking Turns

15

Process

OS

Hardware

Running

T1
Time:

T2

Y. Cheng GMU CS571 Spring 2021



Taking Turns

16

Process

OS

Hardware

Running

T1
Time:

T2 T3

Y. Cheng GMU CS571 Spring 2021



Taking Turns

17

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Y. Cheng GMU CS571 Spring 2021



Taking Turns

18

Process

OS

Hardware

Running

T1
Time:

T2 T3 T4

Question: when/how do we switch to OS?

Y. Cheng GMU CS571 Spring 2021



Exceptions

19Y. Cheng GMU CS571 Spring 2021



Interrupt

20

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2021



Interrupt

21

Process

OS

Hardware
key

Y. Cheng GMU CS571 Spring 2021



Interrupt

22

Process

OS

Hardware
key

handler Hardware interrupt

Y. Cheng GMU CS571 Spring 2021



Interrupt

23

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2021



System Call

24

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2021



System Call

25

Process

OS

Hardware

open

Y. Cheng GMU CS571 Spring 2021



System Call

26

Process

OS

Hardware

open

handler System call “trap”

Y. Cheng GMU CS571 Spring 2021



System Call

27

Process

OS

Hardware

Y. Cheng GMU CS571 Spring 2021



Exception Handling

28Y. Cheng GMU CS571 Spring 2021



Exception Handling: Implementation

• Goal: Processes and hardware should be able to 
call functions in the OS

• Corresponding OS functions should be:
• At well-known locations
• Safe from processes

29Y. Cheng GMU CS571 Spring 2021



30

disk

network

timer

keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is) 

Y. Cheng GMU CS571 Spring 2021



31

disk

network

keyboard

system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows this through lidt instruction) 

tick
timer

Y. Cheng GMU CS571 Spring 2021



32

disk

network

timer

keyboard

system call

Trap table

How to handle variable number of system calls?

Y. Cheng GMU CS571 Spring 2021



33

disk

network

timer

keyboard

system call

Trap table

open
read
write

syscall table

Y. Cheng GMU CS571 Spring 2021



34

disk

network

timer

keyboard

system call

Trap table

open
read
write

syscall table

syscall

Y. Cheng GMU CS571 Spring 2021



35

disk

network

timer

keyboard

system call

Trap table

read
write

syscall table
open

syscall

Y. Cheng GMU CS571 Spring 2021



Safe Transfers

• Only certain kernel functions should be callable
• Privileges should escalate at the moment of the 

call
• Read/write disk
• Kill processes
• Access all memory
• … 

36Y. Cheng GMU CS571 Spring 2021



LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do 
anything) if it’s not running?

37Y. Cheng GMU CS571 Spring 2021



Sharing (virtualizing) the CPU

38Y. Cheng GMU CS571 Spring 2021



How does OS share… 

• CPU?

• Memory?

• Disk?

39Y. Cheng GMU CS571 Spring 2021



How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)

40Y. Cheng GMU CS571 Spring 2021



How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)

41

Today

Y. Cheng GMU CS571 Spring 2021



How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)

42

Today

Goal: processes should not know they are sharing (each 
process will get its own virtual CPU)

Y. Cheng GMU CS571 Spring 2021



What to do with processes that are 
not running?
• A: Store context in OS struct

43Y. Cheng GMU CS571 Spring 2021



What to do with processes that are 
not running?
• A: Store context in OS struct

• Context:
• CPU registers
• Open file descriptors
• State (sleeping, running, etc.)

44Y. Cheng GMU CS571 Spring 2021



What to do with processes that are 
not running?
• A: Store context in OS struct

• Context:
• CPU registers
• Open file descriptors
• State (sleeping, running, etc.)

45Y. Cheng GMU CS571 Spring 2021



Process State Transitions

46

Running

Blocked

Scheduled

Descheduled

Event waitEvent occurs

Ready

Y. Cheng GMU CS571 Spring 2021



Process State Transitions

47

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2021



48

Running

Blocked

I/O: initiateI/O: done

Ready

View process state with “ps xa”

Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2021

Process State Transitions



How to transition? (mechanism)
When to transition? (policy)

49

Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2021



Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?

50Y. Cheng GMU CS571 Spring 2021



Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
• A: it can’t

51Y. Cheng GMU CS571 Spring 2021



Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
• A: it can’t

• Solution: Switch on interrupts
• But what interrupt?

52Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

53Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

54

P1

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

55

P1
yield() call

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

56

yield() call

OS

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

57

OS

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

58

yield() return

OS

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

59

yield() return

P2

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

60

P2

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

61

yield() call

P2

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

62

yield() call

OS

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

63

OS

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

64

yield() return

OS

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

65

yield() return

P1

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

66

P1

Y. Cheng GMU CS571 Spring 2021



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

67

P1

Y. Cheng GMU CS571 Spring 2021

Critiques?



Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

• Cooperative approach is a passive approach

68

P1

Critiques?
What if P1 never calls yield()?

Y. Cheng GMU CS571 Spring 2021



Non-Cooperative Approach

• Switch contexts on timer (hardware) interrupt

• Set up before running any processes

• Hardware does not let processes prevent this
• Hardware/OS enforces process preemption

69Y. Cheng GMU CS571 Spring 2021



70

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2021



71

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2021



72

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2021



73

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2021



74

Non-Cooperative Approach

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

75

P1

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

76

P1

tick

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

77

tickOS

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

78

OS

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

79

OS

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

80

P2

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

81

P2

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

82

P2

tick

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

83

tickOS

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

84

OS

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

85

OS

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

86

P1

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach

87

P1

Y. Cheng GMU CS571 Spring 2021



LDE Summary

• Smooth context switching makes each process 
think it has its own CPU (virtualization!)
• Limited direct execution makes processes fast
• Hardware provides a lot of OS support
• Limited direct execution
• Timer interrupt
• Automatic register saving

88Y. Cheng GMU CS571 Spring 2021



Y. Cheng GMU CS571 Spring 2021 89


