
CPU Virtualization: 
Limited Direct 

Execution (LDE)
CS 571: Operating Systems (Spring 2021)

Lecture 2a

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



Process Creation

2

Before, PC points to 
kernel code

PC

Y. Cheng GMU CS571 Spring 2021



Process Creation
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Now, after process 
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Process Creation
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Challenge: how to prevent 
process from doing “OS 
kernel stuff”?
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Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)

• Low-level mechanism that implements the user-
kernel space separation

• Usually let processes run with no OS 
involvement
• Limit what processes can do
• Offer privileged operations through well-defined 

channels with help of OS
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Limited Direct Execution (LDE)
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Limited Direct Execution (LDE)
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User-level process
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mechanism
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What to limit?

• General memory access
• Disk I/O
• Certain x86 instructions
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How to limit?

• Need hardware support
• Add additional execution mode to CPU

• User mode: restricted, limited capabilities
• Kernel mode: privileged, not restricted

• Processes start in user mode
• OS starts in kernel mode
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LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do anything) 
if it’s not running?
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Taking Turns
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Taking Turns
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Question: when/how do we switch to OS?
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Exceptions
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Interrupt
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Interrupt
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System Call
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System Call
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System Call
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System Call
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Exception Handling
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Exception Handling: Implementation

• Goal: Processes and hardware should be able to 
call functions in the OS

• Corresponding OS functions should be:
• At well-known locations
• Safe from processes
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system call

Trap table

Use array of function pointers to locate OS functions
(Hardware knows where this is) 
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Use array of function pointers to locate OS functions
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How to handle variable number of system calls?
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Safe Transfers

• Only certain kernel functions should be callable
• Privileges should escalate at the moment of the 

call
• Read/write disk
• Kill processes
• Access all memory
• … 
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LDE: Remaining Challenges

1. What if process wants to do something 
privileged?

2. How can OS switch processes (or do 
anything) if it’s not running?
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Sharing (virtualizing) the CPU
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How does OS share… 

• CPU?

• Memory?

• Disk?
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How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)
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How does OS share… 

• CPU? (a: time sharing)

• Memory? (a: space sharing)

• Disk? (a: space sharing)
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Today

Goal: processes should not know they are sharing (each 
process will get its own virtual CPU)
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What to do with processes that are 
not running?
• A: Store context in OS struct

43Y. Cheng GMU CS571 Spring 2021



What to do with processes that are 
not running?
• A: Store context in OS struct

• Context:
• CPU registers
• Open file descriptors
• State (sleeping, running, etc.)
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Process State Transitions
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Process State Transitions
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Running

Blocked

I/O: initiateI/O: done

Ready

View process state with “ps xa”

Scheduled

Descheduled

Y. Cheng GMU CS571 Spring 2021

Process State Transitions



How to transition? (mechanism)
When to transition? (policy)
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Running

Blocked

I/O: initiateI/O: done

Ready
Scheduled

Descheduled
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Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
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Context Switch

• Problem: When to switch process contexts?
• Direct execution => OS can’t run while process 

runs

• Can OS do anything while it’s not running?
• A: it can’t

• Solution: Switch on interrupts
• But what interrupt?
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach
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• Special yield() system call
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call
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Cooperative Approach

• Switch contexts for syscall interrupt
• Special yield() system call

• Cooperative approach is a passive approach
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P1

Critiques?
What if P1 never calls yield()?
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Non-Cooperative Approach

• Switch contexts on timer (hardware) interrupt

• Set up before running any processes

• Hardware does not let processes prevent this
• Hardware/OS enforces process preemption
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach

83

tickOS

Y. Cheng GMU CS571 Spring 2021



Preemptive Approach
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Preemptive Approach
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Preemptive Approach
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Preemptive Approach

87

P1

Y. Cheng GMU CS571 Spring 2021



LDE Summary

• Smooth context switching makes each process 
think it has its own CPU (virtualization!)
• Limited direct execution makes processes fast
• Hardware provides a lot of OS support
• Limited direct execution
• Timer interrupt
• Automatic register saving
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