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Google File System (GFS)



MapReduce assumptions

« Commodity hardware
* Economies of scale!
« Commodity networking with less bisection bandwidth
« Commodity storage (hard disks) is cheap

e Fallures are common

» Replicated, distributed file system for data
storage



Fault tolerance

e |f a task crashes:

* Retry on another node
* Why this is okay?
* |f the same task repeatedly fails, end the job



Fault tolerance

e |f a task crashes:

* Retry on another node
* Why this is okay?
* |f the same task repeatedly fails, end the job

* [f a node crashes:

* Relaunch its current tasks on another node
» \What about task inputs?



Google file system (GFS)

« Goal: a global (distributed) file system that stores
data across many machines

* Need to handle 100’s TBs
» Google published details in 2003

» Open source implementation:
« Hadoop Distributed File System (HDFS)

e



Workload-driven design

* MapReduce workload characteristics
« Huge files (GBs)
« Almost all writes are appends
« Concurrent appends common
* High throughput is valuable
* Low latency is not



Example workloads: Bulk
Synchronous Processing (BSP)

Data Processors Shuffle Data Processors  Shuffle Data

N
!

L
|
®

m o mm o m e o e e e e R e s

\ | !
Super-step Super-step Super-step

*Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990
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MapReduce as a BSP system

Data Map  shuffle Data  Reduce Shuffle Data

o m mm mm mm o e o o =

S e e - — -
—

1
0

Y I !
Super-step Super-step Super-step

» Read entire dataset, do computation over it
« Batch processing

* Producer/consumer: many producers append work to
file concurrently; one consumer reads and does work
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Workload-driven design

* Build a global (distributed) file system that
Incorporates all these application properties

» Only supports features required by applications

 Avoid difficult local file system features, e.g.:
* rename dir
* links



Replication

GFS Server 1 GFS Server 2

A

e

A
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Replication

GFS Server 1 GFS Server 2

ACB C

e

CA B
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Resilience against failures
R

ACB C CA B
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Resilience against failures

GFS Server 1 GF

ACB C
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Data recovery

cA

GFS Server 1

Replicating A to maintain a replication factor of 2
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Data recovery

GFS Server GFS — ?

Replicating C to maintain a replication factor of 3
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Data recovery

GFS Server 1

cA

Machine may be dead forever, or it may come back
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Data recovery

GFS Server 1 GFS Server 2

Machine may be dead forever, or it may come back
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Data recovery

GFS Server 1 GFS Server 2

1

CB C

Y. Cheng

1
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C B C
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Data recovery

GFS Server 1 GFS Server 2

CB C C B C

Data Rebalancing
Deleting one A to maintain a replication factor of 2

Y. Cheng GMU CS571 Spring 2021
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Data recovery

GFS Server 1 GFS Server 2
B A

e

A B

YYYYYY



Data recovery

GFS Server 1 GFS Server 2

B A A B

Data Rebalancing
Deleting one C to maintain a replication factor of 3
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Data recovery

GFS Server 1 GFS Server 2

CB c A C A B

Question: how to maintain a global view of all data
distributed across machines?

Y. Cheng GMU CS571 Spring 2021
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GFS architecture

Master

Clients

Y. Cheng GMU CS571 Spring 2021

GFS Servers
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GFS architecture

Master
[metadata]

Clients

many
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GFS Servers
[data]

many
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GFS architecture

= .

[metadata]

i

GFS Server 1 GFS Server 2 GFS Server 3 GFS Server 4

I I
cB  cA  ca B
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Data chunks

 Break large GFS files into coarse-grained data
chunks (e.g., 64MB)

» GFS servers store physical data chunks in local
Linux file system

» Centralized master keeps track of mapping
between logical and physical chunks

Y. Cheng GMU CS571 Spring 2021
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Chunk map

Master

chunk map

logical

s2,85,s7
s2,59,s11

Y. Cheng

GMU CS571 Spring 2021
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GFS server s2

GFS server s2

Master

chunk map Local fs

chunks/924 => data1
chunks/521 => data2

logical

s2,85,57
s2,59,s11
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Client reads a chunk

Master Client

chunk map

s2,85,57
s2,59,s11

Y. Cheng GMU CS571 Spring 2021

GFS server s2

Local fs

chunks/924 => data1
chunks/521 => data2
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Client reads a chunk

Master Client

chunk map
|Ogica| 52,35,57

s2,85,57
s2,59,s11

Y. Cheng GMU CS571 Spring 2021

GFS server s2

Local fs

chunks/924 => data1
chunks/521 => data2
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Client reads a chunk

Master GFS server s2

chunk map Local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical
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Client reads a chunk

Client GFS server s2

Master

chunk map

: Local fs
tofios] read 924:
offset=0 chunks/924 => data1
s2,s5,87 SIPERIVIS N chunks/521 => data2

s2,59,s11
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Client reads a chunk

Master Client GFS server s2

chunk map Local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical
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Client reads a chunk

Client GFS server s2

Master

chunk map

: Local fs
tofios] read 924:
offset=1 VISl chunks/924 => data1
s2,s5,87 SIPERIVIS N chunks/521 => data2

s2,59,s11
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Client reads a chunk

Master Client GFS server s2

chunk map Local fs

chunks/924 => data1

S2,85,57
3O, chunks/521 => data2
s2,59,s11 >

logical
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File namespace

Master

GFS server s2

/ffoo/bar => 924,813
/var/log => 123,999

chunk map Local fs

chunks/924 => data1
chunks/521 => data2

logical

s2,85,57
s2,59,s11

path names mapped to logical names
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GFS architecture (original paper)

APPICAION | (g1 name, chunk index) | GFSmaster . /foo/bar
| GFS client File namespace _chunk 2ef0
(chunk handle,
chunk locations) Legend:
mmms)  Data messages
Instructions to chunkserver " Control messages
(chunk handle, byte range) Chupkser.ver state

= GFS chunkserver GFS chunkserver

’ Linux file system Linux file system ‘

gle.. Blg..

chunk data
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MapReduce+GFS: Put everything together

——————————————————————————

. M rn i
Client : aster node :

8 SRl Master

I . | .
= L i L
ChunksJ Chunks J Chunks J

GFS Iayer (managing data chunks)
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Stragglers

# tasks

=

Map task completion time distribution

Y. Cheng GMU CS571 Spring 2021
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Stragglers

# tasks

=

Map task completion time distribution

* Tail latency means some workers (always) finish
late

* Q: How can MapReduce work around this”?

 Hint: its approach to fault-tolerance provides the right
tool



Resilience against stragglers

* If a task is going slowly (i.e., straggler):
« Launch second copy of task on another node
» Take the output of whichever finishes first



More design

* Master failure

 Locality

 Task granularity



GFS usage at Google

« 200+ clusters

* Many clusters of 1000s of machines
* Pools of 1000s of clients

« 4+ PB filesystems

« 40 GB/s read/write load

* In the presence of frequent hardware failures

* Jeff Dean, LADIS 2009



MapReduce usage statistics over time

Aug, ‘04 Mar, ‘06 Sep,'07 Sep, 09

Number of jobs 29K
Average completion time (secs) 634
Machine years used 217
Input data read (TB) 3,288
Intermediate data (TB) 758
Output data written (TB) 193
Average worker machines 157

Y. Cheng GMU CS571 Spring 2021

171K 2,217K  3,467K

874 395 475
2,002 11,081 25,562
52,254 403,152 544,130
6,743 34,774 90,120
2970 14,018 57,520
268 394 488

* Jeff Dean, LADIS 2009
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MapReduce discussion

* What will likely serve as a performance
bottleneck for Google’s MapReduce back in

2004 (or even earlier)”? CPU? Memory? Disk?
Network”? Anything else?



MapReduce discussion

* What will likely serve as a performance
bottleneck for Google’s MapReduce back in

2004 (or even earlier)”? CPU? Memory? Disk?
Network”? Anything else?

 How does MapReduce reduce the effect of slow
network”



MapReduce discussion

* How does MapReduce jobs get good load
balance across worker machines?



MapReduce discussion
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Network File System (NFS)



Primary goal

» | ocal FS: processes on same machine access
shared files

* Network FS: processes on different machines
access shared files in same way

Y. Cheng GMU CS571 Spring 2021
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Sub-objectives

 Fast + simple crash recovery
» Both clients and file server may crash

* [ransparent access
e Can’t tell it’s over the network
 Normal UNIX semantics

» Reasonable performance

Y. Cheng GMU CS571 Spring 2021
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NFS agenda

* Architecture



NFS architecture

Client

File Server

Y. Cheng GMU CS571 Spring 2021

Client

Client
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NFS architecture

Client

File Server

Local FS

Y. Cheng GMU CS571 Spring 2021

Client

Client
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Main design decisions

* \WWhat functions to expose via RPC?

* Think of NFS as more of a protocol than a
particular file system implementation

* Many companies have implemented NFS:
» Oracle/Sun, NetApp, (Dell) EMC, IBM, etc.



Today’s lecture

« We're looking at NFSv2

* There iIs now an and with many
changes



General strategy: Export FS

Client

Local FS

!

Y. Cheng

GMU CS571 Spring 2021

Server

e
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General strategy: Export FS

read

Client

Local FS

!

Y. Cheng

GMU CS571 Spring 2021

Server

e
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General strategy: Export FS

Client Server

read

o
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e
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General strategy: Export FS

Client

Local FS

!

Y. Cheng
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Server

e
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General strategy: Export FS

Client

Local FS

!

Y. Cheng

mount
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Server

e
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/dev/sdc1 on /home/yue

mount yue@nfs-1:... /home/yue/571
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/dev/sdal on/

/dev/sdb1 on /backups

backups

A

571

/dev/sdc1 on /home/yue ‘/ \‘
proj1 proj2

yue@nfs-1:... on /home/yue/571
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General strategy: Export FS

Client

Local FS

!

Y. Cheng

GMU CS571 Spring 2021

Server

e
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General strategy: Export FS

Client

read

Local FS

!

Y. Cheng

GMU CS571 Spring 2021

Server

e
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General strategy: Export FS

Client

read

!

Y. Cheng GMU CS571 Spring 2021

Server
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NFS agenda

 Network API



Strategy 1

* Wrap regular UNIX system calls using RPC

open() on client calls open() on server
open() on server returns fd back to client

read(fd) on client calls read(fd) on server
read(fd) on server returns data back to client

Y. Cheng GMU CS571 Spring 2021
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File descriptors

Client

Local FS

!

Y. Cheng GMU CS571 Spring 2021

Server

e
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File descriptors

Client

Local FS

!

Y. Cheng GMU CS571 Spring 2021

Server

client fds

e
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File descriptors

Client

open() = 2

Local FS

!

Y. Cheng GMU CS571 Spring 2021

Server

client fds

e
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File descriptors

Client Server

client fds

[ ]
Local FS

1 e
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File descriptors

Client

read(2)

Local FS

!

Y. Cheng GMU CS571 Spring 2021

Server

client fds

e
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File descriptors

Client Server
client fds
read(2) -]

Local FS

!
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Strategy 1's problems

 What about crashes”?

int fd = open(“foo”, O _RDONLY);
read(fd, buf, MAX);

<
read(fd, buf, MAX);

crash!
read(fd, buf, MAX);

Imagine server crashes and reboots during reads...



Strategy 1's problems

 What about crashes”?

int fd = open(“foo”, O _RDONLY);
read(fd, buf, MAX);

<
read(fd, buf, MAX);

crash!

. Nice If this just looks
read(fd, buf, MAX); ike a slow read

/

Imagine server crashes and reboots during reads...
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Potential solutions

1. Run some crash recovery protocol upon
relboot
« Complex

2. Persist fds on server disk
e Slow
 \What if client crashes instead?

Y. Cheng GMU CS571 Spring 2021
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Strategy 2: Put all info in requests

» Use “stateless” protocol!
« Server maintains no state about clients
» Server still keeps other state, of course

Y. Cheng GMU CS571 Spring 2021
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Eliminate file descriptors



Eliminate file descriptors

Client

Local FS

!

Y. Cheng GMU CS571 Spring 2021

Server

client fds

e
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Eliminate file descriptors

Client

Local FS

!
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Server

e
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Strategy 2: Put all info in requests

» Use “stateless” protocol!
« Server maintains no state about clients
» Server still keeps other state, of course

* Need API change. One possibility:
pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);

» Specify path and offset each time. Server needs
not remember. Pros/cons?



Strategy 2: Put all info in requests

» Use “stateless” protocol!
« Server maintains no state about clients
» Server still keeps other state, of course

* Need API change. One possibility:
pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);

» Specify path and offset each time. Server needs
not remember. Pros/cons? Too many path lookups



Strategy 3: inode requests

pread(ehar—*path, buf, size, offset);
pwrite (ehar—*path, buf, size, offset);



Strategy 3: inode requests

inode = open(char *path);
pread(inode, buf, size, offset);
pwrite(inode, buf, size, offset);



Strategy 3: inode requests

inode = open(char *path);
pread(inode, buf, size, offset);
pwrite(inode, buf, size, offset);

This is pretty good! Any correctness problems?



Strategy 3: inode requests

inode = open(char *path);
pread(inode, buf, size, offset);
pwrite(inode, buf, size, offset);

This is pretty good! Any correctness problems?
 \What if file is deleted, and inode is reused?



Strategy 4: File handles

fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);

File handle = <volume ID, inode #, generation #>



Aside: Append?

fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);
append(fh, buf, size);

Would append() be a good idea”?

Problem: if our RPC library retries if no ACK or
return, what happens when append is retried?

Solutions??



TCP remembers messages

Sender Receiver
[send message] \
[recv message]
X [send ack]
[timeout]

[send message] TCP suppresses this
/ send ack]

Y. Cheng GMU CS571 Spring 2021 92
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Replica suppression is stateful

e TCP is stateful

* If server crashes, it forgets what RPC’s have been
executed!



Replica suppression is stateful

e TCP is stateful

* If server crashes, it forgets what RPC’s have been
executed!

 Solution: design API so that there is no harm if
executing a call more than once

« An API call that has this property is "idempotent”:
If f() is idempotent, then
- f() has the same effect as f(); f(); ... f(); f(
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pwrite is idempotent

file file

ABAA

— pwrite —* AABA



pwrite is idempotent

file file file
AAAA BAA . ABAA
AAAA — pwrite —* AABA —> pwrite —* AABA



pwrite is idempotent

file

— pwrite —*

file

BAA
AABA

— pwrite —*

— pwrite —*

file

ABAA
AABA

file

ABAA
AABA



How about append?



Append is NOT idempotent

file file

—> append—*



Append is NOT idempotent

file file file

AA
—> append—* — append—*



ldempotence

 [dempotent
* Any sort of read
* pwrite

* Not idempotent
e append

* What about these?
o mkdir
e creat



Strategy 4: File handles

fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);

File handle = <volume ID, inode #, generation #>

Y. Cheng GMU CS571 Spring 2021 102



NFS agenda

e Cache



Cache

* \We can cache data in three places
* Server memory

 Client memory
 Client disk

* How to make sure all versions are in sync?



Cache

Client Server Client

Local FS
Cache: A
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Cache

Client Server Client

NFS Local FS
Cache: A « Cache: A

read
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Cache

Client Server Client

Local FS NFS
Cache: A < Cache: A

read
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Cache

Client Server Client

Local FS NFS
Cache: A Cache: A
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Cache

Client Server Client

write

NFS Local FS NFS
Cache: B Cache: A Cache: A
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Cache

Client Server Client

NFS Local FS NFS
Cache: B Cache: A Cache: A

“Update visibility” problem: server doesn’t have latest
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Cache

Client Server Client

NFS Local FS NFS
Cache:B Iammdd Cache: B Cache: A
flush
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Cache

Client Server Client

NFS Local FS NFS
Cache: B Cache: B Cache: A
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Cache

Client Server Client

NFS Local FS NFS
Cache: B Cache: B Cache: A

“Stale cache” problem: client doesn’t have latest
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Cache

Client Server Client

NFS Local FS NFS
Cache: B Cache: B [ (Cache: B

read
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Problem 1: Update visibility

A client may buffer a write
* How can server and other clients see it?

 NFS solution: flush on fd close
* Not quite like UNIX



Problem 2: Stale cache

A client may have a cached copy that is obsolete

* How can we get the latest?
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* How can we get the latest?

* If we weren’t trying to be stateless, server could
push out update in a timely manner



Problem 2: Stale cache

A client may have a cached copy that is obsolete

* How can we get the latest?

* If we weren’t trying to be stateless, server could
push out update in a timely manner

 NFS solution: clients recheck if cache is current
pbefore using it



Stale cache solution

* Client caches metadata records when data was
fetched

» Before it is used, client does a stat request to
server
» Gets last modified timestamp
« Compares to cache
» Refetches if necessary



Measure then build

* NFS developers found stat accounted for 90%
of server requests

* Why? Because clients frequently recheck cache



Reducing stat calls

e Solution:; cache results of stat calls

* Why is this a terrible solution”?



Reducing stat calls

e Solution:; cache results of stat calls

* Why is this a terrible solution”?

« Make the stat cache entries expire after a given
time (say 3 seconds)

* Why is this better than putting expirations on the
regular cache?



Summary

 Robust APIs are often:
 Stateless: servers don’t remember clients
* [dempotent: doing things twice never hurts

e Supporting existing specs is a lot harder than
building from scratch!

» Caching is hard! Caching is harder in distributed
systems, especially with crashes.
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That’s all...

* Please make sure to complete the online
teaching evaluation form

 Evaluation opens 04/20 and closes 04/30

 Next week: final review



