
Distributed Systems:
Remote Procedure Call (RPC),

MapReduce
CS 571: Operating Systems (Spring 2021)

Lecture 11
Yue Cheng

Some material taken/derived from:
• Princeton COS-418 materials created by Michael Freedman and Wyatt Lloyd.
• MIT 6.824 by Robert Morris, Frans Kaashoek, and Nickolai Zeldovich.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

What is a distributed system?

• Multiple computers
• Connected by a network
• Doing something together

• A distributed system is many cooperating
computers that appear to users as a single service

2Y. Cheng GMU CS571 Spring 2021

Today’s outline
How can processes on different cooperating
computers exchange information?

1. Network sockets and raw messages

2. Remote procedure call

Y. Cheng GMU CS571 Spring 2021 3

How can large computing jobs be parallelized?

3. MapReduce

The problem of communication

• Process on Host A wants to talk to process on
Host B

• A and B must agree on the meaning of the bits being
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bits?

• How does receiver know which is the last bit?

• How many bits long is a number?

Y. Cheng GMU CS571 Spring 2021 4

The problem of communication

Y. Cheng GMU CS571 Spring 2021 5

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

The problem of communication

Y. Cheng GMU CS571 Spring 2021 6

• Re-implement every application for every new
underlying transmission medium?
• Change every application on any change to an

underlying transmission medium?

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

The problem of communication

Y. Cheng GMU CS571 Spring 2021 7

• Re-implement every application for every new
underlying transmission medium?
• Change every application on any change to an

underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Solution: Layering

Y. Cheng GMU CS571 Spring 2021 8

• Intermediate layers provide a set of abstractions for
applications and media

• New applications or media need only implement for
intermediate layer’s interface

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

Layering in the Internet

Y. Cheng GMU CS571 Spring 2021 9

• Physical: Moves bits between two
hosts connected by a physical link

Physical layer

Host

Layering in the Internet

Y. Cheng GMU CS571 Spring 2021 10

• Link: Enables end hosts to
exchange atomic messages with
each other

• Physical: Moves bits between two
hosts connected by a physical link

Link layer
Physical layer

Host

Layering in the Internet

Y. Cheng GMU CS571 Spring 2021 11

• Network: Deliver packets to
destinations on other (heterogeneous)
networks

• Link: Enables end hosts to exchange
atomic messages with each other

• Physical: Moves bits between two
hosts connected by a physical link

Network layer
Link layer

Physical layer

Host

Layering in the Internet

Y. Cheng GMU CS571 Spring 2021 12

• Transport: Provide end-to-end
communication between processes
on different hosts

• Network: Deliver packets to
destinations on other (heterogeneous)
networks

• Link: Enables end hosts to exchange
atomic messages with each other

• Physical: Moves bits between two
hosts connected by a physical link

Transport layer
Network layer

Link layer
Physical layer

Host

Layering in the Internet

Y. Cheng GMU CS571 Spring 2021 13

• Transport: Provide end-to-end
communication between processes
on different hosts

• Network: Deliver packets to
destinations on other (heterogeneous)
networks

• Link: Enables end hosts to exchange
atomic messages with each other

• Physical: Moves bits between two
hosts connected by a physical link

Applications

Transport layer
Network layer

Link layer
Physical layer

Host

Logical communication between layers

Y. Cheng GMU CS571 Spring 2021 14

• How to forge agreement on the meaning of the bits
exchanged between two hosts?

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter

Logical communication between layers

Y. Cheng GMU CS571 Spring 2021 15

• How to forge agreement on the meaning of the bits
exchanged between two hosts?

• Protocol: Rules that govern the format, contents,
and meaning of messages
• Each layer on a host interacts with its peer host’s

corresponding layer via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter

Physical communication

Y. Cheng GMU CS571 Spring 2021 16

• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter

Physical communication

Y. Cheng GMU CS571 Spring 2021 17

• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter

Communication between layers

Y. Cheng GMU CS571 Spring 2021 18

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate
with peer
• Higher layers’ headers, data encapsulated inside message

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

Communication between layers

Y. Cheng GMU CS571 Spring 2021 19

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate
with peer
• Higher layers’ headers, data encapsulated inside message

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H
Transport-layer message body

Communication between layers

Y. Cheng GMU CS571 Spring 2021 20

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate
with peer
• Higher layers’ headers, data encapsulated inside message

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body

Network socket-based communication

Y. Cheng GMU CS571 Spring 2021 21

• Socket: The interface the OS provides to the network
• Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(),
recv()

• e.g.: put(key,value)à message

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

Socket

Network sockets: Summary

• Principle of transparency: Hide that resource is
physically distributed across multiple computers
• Access resource same way as locally
• Users can’t tell where resource is physically located

• put(key,value)à message with sockets?

Y. Cheng GMU CS571 Spring 2021 22

Network sockets provide apps with point-to-point
communication between processes

Y. Cheng GMU CS571 Spring 2021 23

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

Y. Cheng GMU CS571 Spring 2021 24

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

Sockets don’t provide transparency

Takeaway: Socket programming still
not ideal (great)
• Lots for the programmer to deal with every time

• How to separate different requests on the same
connection?

• How to write bytes to the network / read bytes from the
network?
• What if Host A’s process is written in Go and Host B’s process

is in C++?

• What to do with those bytes?

• Still pretty painful… Have to worry a lot about the
network

Y. Cheng GMU CS571 Spring 2021 25

Solution: Another layer!

Y. Cheng GMU CS571 Spring 2021 26

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer

Today’s outline
How can processes on different cooperating
computers exchange information?

1. Network sockets and raw messages

2. Remote procedure call

Y. Cheng GMU CS571 Spring 2021 27

How can large computing jobs be parallelized?

3. MapReduce

Motivation: Why RPC?
• The typical programmer is trained to write single-

threaded code that runs in one place

• Goal: Easy-to-program network communication
that makes client-server communication
transparent

• Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

• Project 4-5 use Go RPC

Y. Cheng GMU CS571 Spring 2021 28

What’s the goal of RPC?

• Within a single program, running in a single
process, recall the well-known notion of a
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

Y. Cheng GMU CS571 Spring 2021 29

What’s the goal of RPC?

• Within a single program, running in a single
process, recall the well-known notion of a
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

Y. Cheng GMU CS571 Spring 2021 30

RPC’s Goal: make communication appear like a local
procedure call: transparency for procedure calls – way
less painful than sockets…

RPC issues

1. Heterogeneity
• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?

Y. Cheng GMU CS571 Spring 2021 31

RPC issues

1. Heterogeneity
• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
• What if messages get dropped?
• What if client, server, or network fails?

Y. Cheng GMU CS571 Spring 2021 32

RPC issues
1. Heterogeneity

• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
• What if messages get dropped?
• What if client, server, or network fails?

3. Performance
• Procedure call takes takes ≈ 10 cycles ≈ 3 ns
• RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

Y. Cheng GMU CS571 Spring 2021 33

RPC issues
1. Heterogeneity

• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
• What if messages get dropped?
• What if client, server, or network fails?

3. Performance
• Procedure call takes takes ≈ 10 cycles ≈ 3 ns
• RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

Y. Cheng GMU CS571 Spring 2021 34

Today’s lecture

Problem: Differences in data
representation
• Not an issue for local procedure calls

• For a remote procedure call, a remote machine
may:
• Run process written in a different language
• Represent data types using different sizes
• Use a different byte ordering (endianness)
• Represent floating point numbers differently
• Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary

Y. Cheng GMU CS571 Spring 2021 35

Problem: Differences in programming
support
• Language support varies:

• Many programming languages have no inbuilt way of
extracting values from complex types

• C, C++
• Effectively need sockets glue code underneath

• Some languages have support that enables RPC
• Python, Go
• Exploit type system for some help

Y. Cheng GMU CS571 Spring 2021 36

Solution: Interface Description
Language
• Mechanism to pass procedure parameters and return

values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

Y. Cheng GMU CS571 Spring 2021 37

Solution: Interface Description
Language
• Mechanism to pass procedure parameters and return

values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
• Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

• Client stub: Forwards local procedure call as a request to server

• Server stub: Dispatches RPC to its implementation

Y. Cheng GMU CS571 Spring 2021 38

A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)

Y. Cheng GMU CS571 Spring 2021 39

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)

2. Stub marshals parameters to a network message

Y. Cheng GMU CS571 Spring 2021 40

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 41

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

Server machine

Server OS

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS
proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 42

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 43

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 44

5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 45

6. Server function runs, returns a value

7. Server stub marshals the return value, sends message

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 46

7. Server stub marshals the return value, sends message

8. Server OS sends the reply back across the network

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 47

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

A day in the life of an RPC

Y. Cheng GMU CS571 Spring 2021 48

9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

The server stub is really two parts
• Dispatcher

• Receives a client’s RPC request
• Identifies appropriate server-side method to invoke

• Skeleton
• Unmarshals parameters to server-native types
• Calls the local server procedure
• Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
• Dispatcher and skeleton may be integrated

• Depends on implementation

Y. Cheng GMU CS571 Spring 2021 49

Today’s outline
How can processes on different cooperating
computers exchange information?

1. Network sockets and raw messages

2. Remote procedure call

Y. Cheng GMU CS571 Spring 2021 50

How can large computing jobs be parallelized?

3. MapReduce

Y. Cheng GMU CS571 Spring 2021 51

Applications
Web
apps

Data
processing

Data
storage

Emerging
apps?

Resource management
Compute
resources

Memory
resources

Storage
resources

Network
resources

Datacenter infrastructure

Y. Cheng GMU CS571 Spring 2021 52

Applications
Web
apps

Data
processing

Data
storage

Emerging
apps?

Resource management
Compute
resources

Memory
resources

Storage
resources

Network
resources

Datacenter architecture

Question: How to program these many computers?

Shared memory

Y. Cheng GMU CS571 Spring 2021 53

• Shared memory: multiple
processes to share data via
memory

• Applications must locate and
and map shared memory
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory

Shared memory vs. Message passing

Y. Cheng GMU CS571 Spring 2021 54

• Message passing: exchange
data explicitly via IPC

• Application developers define
protocol and exchanging
format, number of participants,
and each exchange

Client

send(msg)

MSG

Client

recv(msg)

MSG

MSG IPC

• Shared memory: multiple
processes to share data via
memory

• Applications must locate and
and map shared memory
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory

Shared memory vs. Message passing

• Easy to program; just
like a single multi-
threaded machines

• Hard to write high
perf. apps:
• Cannot control which

data is local or remote
(remote mem. access
much slower)

• Hard to mask failures

Y. Cheng GMU CS571 Spring 2021 55

• Message passing: can
write very high perf.
apps

• Hard to write apps:
• Need to manually

decompose the app,
and move data

• Need to manually
handle failures

Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of the
library

• Common in UNIX (e.g., Linux) OSes

Y. Cheng GMU CS571 Spring 2021 56

Shared memory: Pthread

Y. Cheng GMU CS571 Spring 2021 57

void *myThreadFun(void *vargp) {
sleep(1);
printf(“Hello world\n”);
return NULL;

}

int main() {
pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}

Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors,

implementers, and parallel programmers
• Used to create parallel programs based on message

passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and

Fortran
• De facto standard platform for the HPC community

Y. Cheng GMU CS571 Spring 2021 58

Message passing: MPI

Y. Cheng GMU CS571 Spring 2021 59

int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

Message passing: MPI

Y. Cheng GMU CS571 Spring 2021 60

int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

mpirun –n 4 –f host_file ./mpi_hello_world

MapReduce

61Y. Cheng GMU CS571 Spring 2021

The big picture (motivation)
• Datasets are too big to process using a single

computer

Y. Cheng GMU CS571 Spring 2021 62

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

Y. Cheng GMU CS571 Spring 2021 63

The big picture (motivation)
• Datasets are too big to process using a single

computer

• Good parallel processing engines are rare (back
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures

Y. Cheng GMU CS571 Spring 2021 64

Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write
distributed programs to process them
• Scale so large jobs can complete before failures

Y. Cheng GMU CS571 Spring 2021 65

Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be
imbued with the ability to write parallel, scalable,
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts

which problems it works for

Y. Cheng GMU CS571 Spring 2021 66

Application: Word Count

Y. Cheng GMU CS571 Spring 2021 67

cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word

Deal with multiple files?

1. Compute word counts from individual files

Y. Cheng GMU CS571 Spring 2021 68

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

Y. Cheng GMU CS571 Spring 2021 69

Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

Y. Cheng GMU CS571 Spring 2021 70

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

Y. Cheng GMU CS571 Spring 2021 71

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

Y. Cheng GMU CS571 Spring 2021 72

What if the data is too big to fit in one
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

Y. Cheng GMU CS571 Spring 2021 73

MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results

Y. Cheng GMU CS571 Spring 2021 74

MapReduce: Word Count

Y. Cheng GMU CS571 Spring 2021 75

map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

results += ParseInt(v);
Emit(AsString(result));

Word Count execution

Y. Cheng GMU CS571 Spring 2021 76

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce

Word Count execution

Y. Cheng GMU CS571 Spring 2021 77

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

quick, 1

ate, 1
mouse, 1

cow, 1

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1

fox, 1

the, 1

the, 1

Word Count execution

Y. Cheng GMU CS571 Spring 2021 78

the quick
brown fox

the fox
ate the
mouse

how now
brown
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduceShuffle
& Sort

the, 1
brown, 1
fox, 1
how, 1
now, 1
brown, 1
the, 1 fox, 1

the, 1

quick, 1

ate, 1
mouse, 1

cow, 1

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce data flows

Y. Cheng GMU CS571 Spring 2021 79

MapReduce processes
• Map workers write intermediate output

to local disk, separated by partitioning.
Once completed, tell master node

• Reduce worker told of location of map
task outputs, pulls their partition’s data
from each mapper, execute function
across data

• Note:
• “All-to-all” shuffle b/w mappers and

reducers
• Written to disk (“materialized”) b/w each

state
Y. Cheng GMU CS571 Spring 2021 80

Map

Map

Map

Map

Reduce

Reduce

Reduce
Shuffle
& Sort

Apache Hadoop

• An open-source implementation of Google’s
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File

System (HDFS)

Y. Cheng GMU CS571 Spring 2021 81

Y. Cheng GMU CS571 Spring 2021 82

Go RPC

83Y. Cheng GMU CS571 Spring 2021

Go RPCs

• Implementation in built-in library net/rpc

Y. Cheng GMU CS571 Spring 2021 84

Go RPCs

• Implementation in built-in library net/rpc

• Write stub receiver methods of the form

• func (t *T) MethodName(args T1, reply *T2) error

Y. Cheng GMU CS571 Spring 2021 85

Go RPCs

• Implementation in built-in library net/rpc

• Write stub receiver methods of the form

• func (t *T) MethodName(args T1, reply *T2) error

• Register receiver methods

Y. Cheng GMU CS571 Spring 2021 86

Go RPCs

• Implementation in built-in library net/rpc

• Write stub receiver methods of the form

• func (t *T) MethodName(args T1, reply *T2) error

• Register receiver methods

• Create a listener (i.e., server) that accepts
requests

Y. Cheng GMU CS571 Spring 2021 87

Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 88

type WordCountServer struct {
addr string

}

type WordCountRequest struct {
Input string

}

type WordCountReply struct {
Counts map[string]int

}

Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 89

type WordCountServer struct {
addr string

}

type WordCountRequest struct {
Input string

}

type WordCountReply struct {
Counts map[string]int

}

func (*WordCountServer) Compute(
request WordCountRequest,
reply *WordCountReply) error {

counts := make(map[string]int)
input := request.Input
tokens := strings.Fields(input)
for _, t := range tokens {

counts[t] += 1
}
reply.Counts = counts
return nil

}

Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 90

type WordCountServer struct {
addr string

}

type WordCountRequest struct {
Input string

}

type WordCountReply struct {
Counts map[string]int

}

func (*WordCountServer) Compute(
request WordCountRequest,
reply *WordCountReply) error {

counts := make(map[string]int)
input := request.Input
tokens := strings.Fields(input)
for _, t := range tokens {

counts[t] += 1
}
reply.Counts = counts
return nil

}

Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 91

func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}

Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 92

func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}

Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 93

func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}

Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 94

func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}

WordCount client

Y. Cheng GMU CS571 Spring 2021 95

func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}

WordCount client

Y. Cheng GMU CS571 Spring 2021 96

func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}

WordCount client

Y. Cheng GMU CS571 Spring 2021 97

func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}

WordCount client

Y. Cheng GMU CS571 Spring 2021 98

func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}

WordCount client-server

Y. Cheng GMU CS571 Spring 2021 99

func main() {
serverAddr := "localhost:8888"
server := WordCountServer{serverAddr}
server.listen()
input1 := "hello I am good hello bye bye bye bye good night hello"
wordcount, err := makeRequest(input1, serverAddr)
checkError(err)
fmt.Printf("Result: %v\n", wordcount)

}

WordCount client-server

Y. Cheng GMU CS571 Spring 2021 100

func main() {
serverAddr := "localhost:8888"
server := WordCountServer{serverAddr}
server.listen()
input1 := "hello I am good hello bye bye bye bye good night hello"
wordcount, err := makeRequest(input1, serverAddr)
checkError(err)
fmt.Printf("Result: %v\n", wordcount)

}

Result: map[hello:3 I:1 am:1 good:2 bye:4 night:1]

Is this synchronous or asynchronous?

Y. Cheng GMU CS571 Spring 2021 101

func makeRequest(input string, serverAddr string) (map[string]int, error)
{

client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}

func makeRequest(input string, serverAddr string) chan Result {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}

return ch
}

Making client asynchronous

Y. Cheng GMU CS571 Spring 2021 102

Making client asynchronous

Y. Cheng GMU CS571 Spring 2021 103

ch := make(chan Result)
go func() {

err := client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

ch <- Result{nil, err} // something went wrong
} else {

ch <- Result{reply.Counts, nil} // success
}

}()

func makeRequest(input string, serverAddr string) chan Result {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}

return ch
}

Making client asynchronous

Y. Cheng GMU CS571 Spring 2021 104

func makeRequest(input string, serverAddr string) *rpc.Call {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
return client.Go("WordCountServer.Compute", args, &reply, nil)

}

Making client asynchronous

Y. Cheng GMU CS571 Spring 2021 105

func makeRequest(input string, serverAddr string) *rpc.Call {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
return client.Go("WordCountServer.Compute", args, &reply, nil)

}

call := makeRequest(...)
<-call.Done
checkError(call.Error)
handleReply(call.Reply)

Next lecture

• Google File System (GFS) and Network File
System (NFS)

• Read the GFS paper

Y. Cheng GMU CS571 Spring 2021 106

