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What is a distributed system?

• Multiple computers
• Connected by a network
• Doing something together

• A distributed system is many cooperating 
computers that appear to users as a single service
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Today’s outline
How can processes on different cooperating 
computers exchange information?

1. Network sockets and raw messages

2. Remote procedure call
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How can large computing jobs be parallelized?

3. MapReduce



The problem of communication

• Process on Host A wants to talk to process on 
Host B

• A and B must agree on the meaning of the bits being 
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bits?

• How does receiver know which is the last bit?

• How many bits long is a number?

Y. Cheng GMU CS571 Spring 2021 4



The problem of communication
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The problem of communication
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• Re-implement every application for every new 
underlying transmission medium?
• Change every application on any change to an 

underlying transmission medium?
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The problem of communication
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• Re-implement every application for every new 
underlying transmission medium?
• Change every application on any change to an 

underlying transmission medium?

• No! But how does the Internet design avoid this?
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Solution: Layering
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• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface

Applications
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Layering in the Internet
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• Physical: Moves bits between two 
hosts connected by a physical link

Physical layer

Host



Layering in the Internet
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• Link: Enables end hosts to 
exchange atomic messages with 
each other

• Physical: Moves bits between two 
hosts connected by a physical link

Link layer
Physical layer

Host



Layering in the Internet
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• Network: Deliver packets to 
destinations on other (heterogeneous) 
networks

• Link: Enables end hosts to exchange 
atomic messages with each other

• Physical: Moves bits between two 
hosts connected by a physical link

Network layer
Link layer

Physical layer

Host



Layering in the Internet
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• Transport: Provide end-to-end 
communication between processes 
on different hosts

• Network: Deliver packets to 
destinations on other (heterogeneous) 
networks

• Link: Enables end hosts to exchange 
atomic messages with each other

• Physical: Moves bits between two 
hosts connected by a physical link
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Layering in the Internet
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• Transport: Provide end-to-end 
communication between processes 
on different hosts

• Network: Deliver packets to 
destinations on other (heterogeneous) 
networks

• Link: Enables end hosts to exchange 
atomic messages with each other

• Physical: Moves bits between two 
hosts connected by a physical link

Applications

Transport layer
Network layer

Link layer
Physical layer

Host



Logical communication between layers
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• How to forge agreement on the meaning of the bits 
exchanged between two hosts?
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Logical communication between layers
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• How to forge agreement on the meaning of the bits 
exchanged between two hosts?

• Protocol: Rules that govern the format, contents, 
and meaning of messages
• Each layer on a host interacts with its peer host’s 

corresponding layer via the protocol interface
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Physical communication
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• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application
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Physical communication
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• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application
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Communication between layers
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• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate 
with peer
• Higher layers’ headers, data encapsulated inside message 

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message
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• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate 
with peer
• Higher layers’ headers, data encapsulated inside message 

• Lower layers don’t generally inspect higher layers’ headers
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Communication between layers
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• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate 
with peer
• Higher layers’ headers, data encapsulated inside message 

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body



Network socket-based communication
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• Socket: The interface the OS provides to the network
• Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), 
recv()

• e.g.: put(key,value)à message

Application layer

Transport layer
Network layer

Link layer
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Host A

Process

Application layer
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Host B

Socket

Process

Socket



Network sockets: Summary

• Principle of transparency: Hide that resource is 
physically distributed across multiple computers
• Access resource same way as locally
• Users can’t tell where resource is physically located

• put(key,value)à message with sockets?
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Network sockets provide apps with point-to-point 
communication between processes
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// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);
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// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

Sockets don’t provide transparency



Takeaway: Socket programming still 
not ideal (great)
• Lots for the programmer to deal with every time

• How to separate different requests on the same 
connection?

• How to write bytes to the network / read bytes from the 
network?
• What if Host A’s process is written in Go and Host B’s process 

is in C++?

• What to do with those bytes?

• Still pretty painful… Have to worry a lot about the 
network
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Solution: Another layer!

Y. Cheng GMU CS571 Spring 2021 26

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

Socket

RPC Layer RPC Layer



Today’s outline
How can processes on different cooperating 
computers exchange information?

1. Network sockets and raw messages

2. Remote procedure call
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How can large computing jobs be parallelized?

3. MapReduce



Motivation: Why RPC?
• The typical programmer is trained to write single-

threaded code that runs in one place

• Goal: Easy-to-program network communication 
that makes client-server communication 
transparent

• Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

• Project 4-5 use Go RPC
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What’s the goal of RPC?

• Within a single program, running in a single 
process, recall the well-known notion of a 
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

Y. Cheng GMU CS571 Spring 2021 29



What’s the goal of RPC?

• Within a single program, running in a single 
process, recall the well-known notion of a 
procedure call:
• Caller pushes arguments onto stack,

• jumps to address of callee function

• Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller
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RPC’s Goal: make communication appear like a local 
procedure call: transparency for procedure calls – way 
less painful than sockets…



RPC issues

1. Heterogeneity
• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?
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RPC issues

1. Heterogeneity
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• Server must dispatch to the required function
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2. Failure
• What if messages get dropped?
• What if client, server, or network fails?
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RPC issues
1. Heterogeneity

• Client needs to rendezvous with the server
• Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
• What if messages get dropped?
• What if client, server, or network fails?

3. Performance
• Procedure call takes takes ≈ 10 cycles ≈ 3 ns
• RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower
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Today’s lecture



Problem: Differences in data 
representation
• Not an issue for local procedure calls

• For a remote procedure call, a remote machine 
may:
• Run process written in a different language 
• Represent data types using different sizes
• Use a different byte ordering (endianness)
• Represent floating point numbers differently
• Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary
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Problem: Differences in programming 
support
• Language support varies:

• Many programming languages have no inbuilt way of 
extracting values from complex types

• C, C++
• Effectively need sockets glue code underneath

• Some languages have support that enables RPC
• Python, Go
• Exploit type system for some help
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Solution: Interface Description 
Language
• Mechanism to pass procedure parameters and return 

values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types
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Solution: Interface Description 
Language
• Mechanism to pass procedure parameters and return 

values in a machine-independent way

• Programmer may write an interface description in the IDL
• Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
• Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

• Client stub: Forwards local procedure call as a request to server

• Server stub: Dispatches RPC to its implementation
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A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)
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Client machine

Client process
k = add(3, 5)

Client stub (RPC library)



A day in the life of an RPC
1. Client calls stub function (pushes parameters onto stack)

2. Stub marshals parameters to a network message
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Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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2. Stub marshals parameters to a network message

3. OS sends a network message to the server

Server machine

Server OS

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS
proc: add | int: 3 | int: 5



A day in the life of an RPC
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3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



A day in the life of an RPC
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5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS



A day in the life of an RPC
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6. Server function runs, returns a value

7. Server stub marshals the return value, sends message

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



A day in the life of an RPC
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7. Server stub marshals the return value, sends message

8. Server OS sends the reply back across the network

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



A day in the life of an RPC
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8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8



A day in the life of an RPC
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9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



The server stub is really two parts
• Dispatcher

• Receives a client’s RPC request
• Identifies appropriate server-side method to invoke

• Skeleton
• Unmarshals parameters to server-native types
• Calls the local server procedure
• Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
• Dispatcher and skeleton may be integrated

• Depends on implementation 
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Today’s outline
How can processes on different cooperating 
computers exchange information?

1. Network sockets and raw messages

2. Remote procedure call
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How can large computing jobs be parallelized?

3. MapReduce
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Applications
Web 
apps

Data 
processing

Data 
storage

Emerging 
apps?

Resource management
Compute 
resources

Memory 
resources

Storage 
resources

Network 
resources

Datacenter infrastructure
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Applications
Web 
apps

Data 
processing

Data 
storage

Emerging 
apps?

Resource management
Compute 
resources

Memory 
resources

Storage 
resources

Network 
resources

Datacenter architecture

Question: How to program these many computers?



Shared memory

Y. Cheng GMU CS571 Spring 2021 53

• Shared memory: multiple 
processes to share data via 
memory

• Applications must locate and 
and map shared memory 
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory



Shared memory vs. Message passing
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• Message passing: exchange 
data explicitly via IPC

• Application developers define 
protocol and exchanging 
format, number of participants, 
and each exchange  

Client

send(msg)

MSG

Client

recv(msg)

MSG

MSG IPC

• Shared memory: multiple 
processes to share data via 
memory

• Applications must locate and 
and map shared memory 
regions to exchange data

Client

send(msg)

Client

recv(msg)

Shared
Memory



Shared memory vs. Message passing

• Easy to program; just 
like a single multi-
threaded machines

• Hard to write high 
perf. apps:
• Cannot control which 

data is local or remote 
(remote mem. access 
much slower)

• Hard to mask failures
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• Message passing: can 
write very high perf. 
apps

• Hard to write apps:
• Need to manually 

decompose the app, 
and move data

• Need to manually 
handle failures



Shared memory: Pthread

• A POSIX standard (IEEE 1003.1c) API for thread 
creation and synchronization

• API specifies behavior of the thread library, 
implementation is up to development of the 
library

• Common in UNIX (e.g., Linux) OSes
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Shared memory: Pthread
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void *myThreadFun(void *vargp) {
sleep(1);
printf(“Hello world\n”);
return NULL;

}

int main() {
pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}



Message passing: MPI

• MPI – Message Passing Interface
• Library standard defined by a committee of vendors, 

implementers, and parallel programmers 
• Used to create parallel programs based on message 

passing

• Portable: one standard, many implementations
• Available on almost all parallel machines in C and 

Fortran
• De facto standard platform for the HPC community
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Message passing: MPI
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int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}



Message passing: MPI
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int main(int argc, char **argv) {
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, *world_rank);

// Print off a hello world message
printf(“Hello world from rank %d out of %d processors\n”,

world_rank, workld_size);

// Finalize the MPI environment
MPI_Finalize();

}

mpirun –n 4 –f host_file ./mpi_hello_world



MapReduce
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The big picture (motivation)
• Datasets are too big to process using a single 

computer
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The big picture (motivation)
• Datasets are too big to process using a single 

computer

• Good parallel processing engines are rare (back 
then in the late 90s)
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The big picture (motivation)
• Datasets are too big to process using a single 

computer

• Good parallel processing engines are rare (back 
then in the late 90s)

• Want a parallel processing framework that:
• is general (works for many problems)
• is easy to use (no locks, no need to explicitly handle 

communication, no race conditions)
• can automatically parallelize tasks
• can automatically handle machine failures
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Context (Google circa 2000)

• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware
• Young company, expensive hardware not practical

• Only a few expert programmers can write 
distributed programs to process them
• Scale so large jobs can complete before failures

Y. Cheng GMU CS571 Spring 2021 65



Context (Google circa 2000)
• Starting to deal with massive datasets
• But also addicted to cheap, unreliable hardware

• Young company, expensive hardware not practical
• Only a few expert programmers can write distributed 

programs to process them
• Scale so large jobs can complete before failures

• Key question: how can every Google engineer be 
imbued with the ability to write parallel, scalable, 
distributed, fault-tolerant code?
• Solution: abstract out the redundant parts
• Restriction: relies on job semantics, so restricts 

which problems it works for
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Application: Word Count
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cat data.txt
| tr –s ‘[[:punct:][:space:]]’ ‘\n’
| sort | uniq -c

SELECT count(word), word FROM data
GROUP BY word



Deal with multiple files?

1. Compute word counts from individual files
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output
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Deal with multiple files?

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished
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What if the data is too big to fit in one 
computer?
1. In parallel, send to worker:
• Compute word counts from individual files
• Collect results, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates
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MapReduce: Programming interface

• map(k1, v1) à list(k2, v2)
• Apply function to (k1, v1) pair and produce set of 

intermediate pairs (k2, v2)

• reduce(k2, list(v2)) à list(k3, v3)
• Apply aggregation (reduce) function to values
• Output results
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MapReduce: Word Count
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map(key, value):
for each word w in value:

EmitIntermediate(w, “1”);

reduce(key, values):
int result = 0;
for each v in values:

results += ParseInt(v);
Emit(AsString(result));



Word Count execution
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the quick 
brown fox

the fox 
ate the 
mouse

how now 
brown 
cow

Input Map

Map

Map

Map

Reduce

Reduce

OutputReduce



Word Count execution
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Word Count execution
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MapReduce data flows
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MapReduce processes
• Map workers write intermediate output 

to local disk, separated by partitioning. 
Once completed, tell master node

• Reduce worker told of location of map 
task outputs, pulls their partition’s data 
from each mapper, execute function 
across data

• Note: 
• “All-to-all” shuffle b/w mappers and 

reducers
• Written to disk (“materialized”) b/w each 

state
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Apache Hadoop 

• An open-source implementation of Google’s 
MapReduce framework
• Hadoop MapReduce atop Hadoop Distributed File 

System (HDFS)
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Go RPC
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Go RPCs

• Implementation in built-in library net/rpc
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Go RPCs

• Implementation in built-in library net/rpc

• Write stub receiver methods of the form

• func (t *T) MethodName(args T1, reply *T2) error
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Go RPCs

• Implementation in built-in library net/rpc

• Write stub receiver methods of the form

• func (t *T) MethodName(args T1, reply *T2) error

• Register receiver methods
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Go RPCs

• Implementation in built-in library net/rpc

• Write stub receiver methods of the form

• func (t *T) MethodName(args T1, reply *T2) error

• Register receiver methods

• Create a listener (i.e., server) that accepts 
requests
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type WordCountServer struct {
addr string

}

type WordCountRequest struct {
Input string

}

type WordCountReply struct {
Counts map[string]int

}
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type WordCountServer struct {
addr string

}

type WordCountRequest struct {
Input string

}

type WordCountReply struct {
Counts map[string]int

}

func (*WordCountServer) Compute(
request WordCountRequest,
reply *WordCountReply) error {

counts := make(map[string]int)
input := request.Input
tokens := strings.Fields(input)
for _, t := range tokens {

counts[t] += 1
}
reply.Counts = counts
return nil

}



Writing a WordCount RPC server in Go

Y. Cheng GMU CS571 Spring 2021 90

type WordCountServer struct {
addr string

}

type WordCountRequest struct {
Input string

}

type WordCountReply struct {
Counts map[string]int

}

func (*WordCountServer) Compute(
request WordCountRequest,
reply *WordCountReply) error {

counts := make(map[string]int)
input := request.Input
tokens := strings.Fields(input)
for _, t := range tokens {

counts[t] += 1
}
reply.Counts = counts
return nil

}
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func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}
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func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}
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func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}
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func (server *WordCountServer) listen() {
rpc.Register(server)
listener, err := net.Listen("tcp", server.addr)
checkError(err)
go func() {

rpc.Accept(listener)
}()

}
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func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}
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func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}
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func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}
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func makeRequest(input string, serverAddr string) (map[string]int, error) {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}
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func main() {
serverAddr := "localhost:8888"
server := WordCountServer{serverAddr}
server.listen()
input1 := "hello I am good hello bye bye bye bye good night hello"
wordcount, err := makeRequest(input1, serverAddr)
checkError(err)
fmt.Printf("Result: %v\n", wordcount)

}
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func main() {
serverAddr := "localhost:8888"
server := WordCountServer{serverAddr}
server.listen()
input1 := "hello I am good hello bye bye bye bye good night hello"
wordcount, err := makeRequest(input1, serverAddr)
checkError(err)
fmt.Printf("Result: %v\n", wordcount)

}

Result: map[hello:3 I:1 am:1 good:2 bye:4 night:1]



Is this synchronous or asynchronous?
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func makeRequest(input string, serverAddr string) (map[string]int, error) 
{

client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
err = client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

return nil, err
}
return reply.Counts, nil

}



func makeRequest(input string, serverAddr string) chan Result {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}

return ch
}

Making client asynchronous
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ch := make(chan Result)
go func() {

err := client.Call("WordCountServer.Compute", args, &reply)
if err != nil {

ch <- Result{nil, err} // something went wrong
} else {

ch <- Result{reply.Counts, nil} // success
}

}()

func makeRequest(input string, serverAddr string) chan Result {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}

return ch
}
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func makeRequest(input string, serverAddr string) *rpc.Call {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
return client.Go("WordCountServer.Compute", args, &reply, nil)

}
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func makeRequest(input string, serverAddr string) *rpc.Call {
client, err := rpc.Dial("tcp", serverAddr)
checkError(err)
args := WordCountRequest{input}
reply := WordCountReply{make(map[string]int)}
return client.Go("WordCountServer.Compute", args, &reply, nil)

}

call := makeRequest(...)
<-call.Done
checkError(call.Error)
handleReply(call.Reply)



Next lecture

• Google File System (GFS) and Network File 
System (NFS)

• Read the GFS paper
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