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File System Abstraction
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What is a File?

• File: Array of bytes
• Ranges of bytes can be read/written

• File system (FS) consists of many files

• Files need names so programs can choose the 
right one
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File Names

• Three types of names (abstractions)
• inode (low-level names)
• path (human readable)
• file descriptor (runtime state)
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Inodes

• Each file has exactly one inode number

• Inodes are unique (at a given time) within a FS

• Numbers may be recycled after deletes
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Inodes

• Each file has exactly one inode number

• Inodes are unique (at a given time) within a FS

• Numbers may be recycled after deletes

• Show inodes via stat
• $ stat <file or dir>
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‘stat’ Example
PROMPT>: stat test.dat

File: ‘test.dat’  Size: 5     Blocks: 8     IO Block: 4096   regular
file

Device: 803h/2051d Inode: 119341128   Links: 1

Access: (0664/-rw-rw-r--)  Uid: ( 1001/     yue)   Gid: ( 1001/     yue)

Context: unconfined_u:object_r:user_home_t:s0

Access: 2015-12-17 04:12:47.935716294 -0500

Modify: 2014-12-12 19:25:32.669625220 -0500

Change: 2014-12-12 19:25:32.669625220 -0500 

Birth: -
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Path (multiple directories)

8

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs
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Path (multiple directories)

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs
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Path (multiple directories)
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<“bar”, “12”><“foo”, “10”>

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs
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Path (multiple directories)

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

• Directory tree: reads for 
getting final inode called 
traversal

11

[traverse /bar/foo/bar.txt]
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File Naming

• Directories and files can 
have the same name as 
long as they are in 
different locations of the 
file-system tree

• .txt, .c, etc.
• Naming convention
• In UNIX-like OS, no 

enforcement for extension 
name
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Special Directory Entries
prompt> ls –al

total 216

drwxr-xr-x  19 yue staff 646 Nov 23 16:28 .

drwxr-xr-x+ 40 yue staff 1360 Nov 15 01:41 ..

-rw-r--r--@  1 yue staff 1064 Aug 29 21:48 common.h

-rwxr-xr-x   1 yue staff 9356 Aug 30 14:03 cpu

-rw-r--r--@  1 yue staff 258 Aug 29 21:48 cpu.c

-rwxr-xr-x   1 yue staff 9348 Sep  6 12:12 cpu_bound

-rw-r--r-- 1 yue staff 245 Sep  5 13:10 cpu_bound.c

…
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File System Interfaces
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Creating Files

• UNIX system call: open()

int fd = open(char *path, int flag, mode_t mode);

-OR-

int fd = open(char *path, int flag);
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File Descriptor (fd)

• open() returns a file descriptor (fd)
• A fd is an integer
• Private per process

• An opaque handle that gives caller the power to 
perform certain operations

• Think of a fd as a pointer to an object of the file
• By owning such an object, you can call other 

“methods” to access the file
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open() Example
int fd1 = open(“file.txt”, O_CREAT);  // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2);                   // return 5
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open() Example
int fd1 = open(“file.txt”, O_CREAT);  // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2);                   // return 4
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offset = 0
inode = …

fd

location = …
size = …

inode

fd table

0
1
2
3
4
5
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open() Example
int fd1 = open(“file.txt”, O_CREAT);  // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2);                   // return 4
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offset = 8
inode = …

fd

location = …
size = …

inode

fd table

0
1
2
3
4
5
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open() Example
int fd1 = open(“file.txt”, O_CREAT);  // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2);                   // return 4
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offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

fd table

0
1
2
3
4
5
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open() Example
int fd1 = open(“file.txt”, O_CREAT);  // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2);                   // return 5
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fd table

0
1
2
3
4

offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

5
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UNIX File Read and Write APIs
int fd = open(char *path, int flag, mode_t mode);

-OR-

int fd = open(char *path, int flag);

ssize_t sz = read(int fd, void *buf, size_t count);

ssize_t sz = write(int fd, void *buf, size_t count);

int ret = close(int fd);
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Reading and Writing Files
prompt> echo hello > file.txt

prompt> cat file.txt

hello

prompt>
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Reading and Writing Files
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prompt> strace cat file.txt

... 

open("file.txt", O_RDONLY)         = 3
read(3, "hello\n", 65536)          = 6

write(1, "hello\n", 6)             = 6

read(3, "", 65536)                 = 0

close(3)                           = 0

...
prompt>



prompt> strace cat file.txt

... 

open("file.txt", O_RDONLY)         = 3
read(3, "hello\n", 65536)          = 6

write(1, "hello\n", 6)             = 6

read(3, "", 65536)                 = 0

close(3)                           = 0

...
prompt>

Reading and Writing Files

25

Open the file with read 
only mode 
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prompt> strace cat file.txt

... 

open("file.txt", O_RDONLY)         = 3
read(3, "hello\n", 65536)          = 6

write(1, "hello\n", 6)             = 6

read(3, "", 65536)                 = 0

close(3)                           = 0

...
prompt>

Reading and Writing Files

26

Open the file with read 
only mode 

Read content from file
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prompt> strace cat file.txt

... 

open("file.txt", O_RDONLY)         = 3
read(3, "hello\n", 65536)          = 6

write(1, "hello\n", 6)             = 6

read(3, "", 65536)                 = 0

close(3)                           = 0

...
prompt>

Reading and Writing Files

27

Open the file with read 
only mode 

Read content from file

Write string to std
output fd 1
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prompt> strace cat file.txt

... 

open("file.txt", O_RDONLY)         = 3
read(3, "hello\n", 65536)          = 6

write(1, "hello\n", 6)             = 6

read(3, "", 65536)                 = 0

close(3)                           = 0

...
prompt>

Reading and Writing Files

28

cat tries to read more 
but reaches EOF

Write string to std
output fd 1

Open the file with read 
only mode 

Read content from file
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prompt> strace cat file.txt

... 

open("file.txt", O_RDONLY)         = 3
read(3, "hello\n", 65536)          = 6

write(1, "hello\n", 6)             = 6

read(3, "", 65536)                 = 0

close(3)                           = 0

...
prompt>

Reading and Writing Files

29

cat done with file ops 
and closes the file 

cat tries to read more 
but reaches EOF

Write string to std
output fd 1

Open the file with read 
only mode 

Read content from file
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Non-Sequential File Operations
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off_t offset = lseek(int fd, off_t offset, int whence);
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Non-Sequential File Operations

31

off_t offset = lseek(int fd, off_t offset, int whence);

whence: 
• If whence is SEEK_SET, the offset is set to offset bytes
• If whence is SEEK_CUR, the offset is set to its current 

location plus offset bytes
• If whence is SEEK_END, the offset is set to the size of the 

file plus offset bytes

Y. Cheng GMU CS571 Spring 2021



Non-Sequential File Operations

32

off_t offset = lseek(int fd, off_t offset, int whence);

whence: 
• If whence is SEEK_SET, the offset is set to offset bytes
• If whence is SEEK_CUR, the offset is set to its current 

location plus offset bytes
• If whence is SEEK_END, the offset is set to the size of the 

file plus offset bytes

Note: Calling lseek() does not perform a disk seek!
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Writing Immediately with fsync()
int fd = fsync(int fd);

• fsync(fd) forces buffers to flush to disk, and (usually) 
tells the disk to flush its write cache too
• To make the data durable and persistent

• Write buffering improves performance
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Renaming Files
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prompt> mv file.txt new_name.txt
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Renaming Files
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prompt> strace mv file.txt new_name.txt

... 

rename("file.txt", "new_name.txt")   = 0

...

prompt>
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Renaming Files

36

prompt> strace mv file.txt new_name.txt

... 

rename("file.txt", "new_name.txt")   = 0

...

prompt>

System call rename()
atomically renames a 

file
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File Renaming Example
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prompt> vim file.txt

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);
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File Renaming Example
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prompt> vim file.txt

… vim editing session …

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file (editing…)
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File Renaming Example

39

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file
fsync(fd);               // make data durable
close(fd);  // close tmp file
rename(“.file.txt.swp”, “file.txt”);// change name and replacing old file 

Using vim to edit a file and then save it

prompt> vim file.txt

… vim editing session …

prompt> :wq
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Deleting Files
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prompt> rm file.txt
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Deleting Files

41

prompt> strace rm file.txt

... 

unlink("file.txt")          = 0

...

prompt>
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Deleting Files
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prompt> strace rm file.txt

... 

unlink("file.txt")          = 0

...

prompt>

System call unlink() is 
called to delete a file
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Deleting Files

43

prompt> strace rm file.txt

... 

unlink("file.txt")          = 0

...

prompt>

System call unlink() is 
called to delete a file

Directories are deleted when unlink() is called

Q: File descriptors are deleted when ???
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Demo: Hard Links vs. Symbolic Links
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File System Implementation
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File System Implementation

• On-disk structures
• How do we represent files and directories?

• File system operations (internally)
• How on-disk structures get touched when 

performing FS operations

• File system locality & data layout policies
• How data layout impacts locality for on-disk FS?
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On-Disk Structures
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On-Disk Structures

• Common file system structures
• Data block
• inode table
• Directories
• Data bitmap
• inode bitmap
• Superblock
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On-Disk Structure: Empty Disk
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On-Disk Structure: Data Blocks
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On-Disk Structures

• Common file system structures
• Data block
• inode table
• Directories
• Data bitmap
• inode bitmap
• Superblock
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On-Disk Structure: Inodes

52
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On-Disk Structure: Inodes
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Inode Block

• Inodes are typically 128 or 
256 bytes (depends on the file 
system)

• 16—32 inodes per inode block

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31
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inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes
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Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]
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inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes
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Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

file or directory
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inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes
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Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

user and 
permissions
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inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes
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Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

size in bytes 
and blocks
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inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes
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Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

access time 
and create time
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inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes
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Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

how many links
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inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes
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Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

addrs of N data 
blocks
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On-Disk Structure: Inodes

61

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

Inode Block

Each inode points to a file 
stored on disk, as one or 
multiple data blocks
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On-Disk Structures

• Common file system structures
• Data block
• Inode table
• Directories
• Data bitmap
• Inode bitmap
• Superblock
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On-Disk Structure: Directories

• Common directory design: just store directory 
entries in files

• Different file systems vary

• Various data structures (formats) could be used
• Lists
• B-trees
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On-Disk Structures

• Common file system structures
• Data block
• inode table
• Directories
• Data bitmap
• inode bitmap
• Superblock
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Allocation

• How does file system find free data blocks or 
free inodes?
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Allocation

• How does file system find free data blocks or 
free inodes?

• Free list
• Bitmaps

• What are the tradeoffs?
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Free List
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Bitmap

68

…
0 1 2 n-1

bit[i] =

!
"
# 1 Þ object[i] in use

0 Þ object[i] free

Each bit of the bitmap is used to indicate whether the 
corresponding object/block is free (0) or in-use (1)
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Allocation

• How does file system find free data blocks or 
free inodes?

• Free list
• Bitmaps

• What are the tradeoffs?
• Free list: Cannot get contiguous space easily
• Bitmap: Easy to allocate contiguous space for files
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On-Disk Structure: Data Bitmaps
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Data bitmap
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On-Disk Structure: Inode Bitmaps
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Inode bitmap
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On-Disk Structures

• Common file system structures
• Data block
• Inode table
• Directories
• Data bitmap
• Inode bitmap
• Superblock
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On-Disk Structure: Superblock

• Need to know basic file system configuration 
and runtime status, such as:

• Block size
• How many inodes are there
• How much free space

• Store all these metadata info in a superblock
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On-Disk Structure: Superblock
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On-Disk Structure: Superblock
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On-Disk Structure Overview
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File System Operations
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

read

read

[traverse]
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

read

read

read

read

[traverse]
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

read

read

read

read

[traverse]

foo inode: we have permission
foo data: bar doesn’t exist
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

read

read

read

read
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

read

read

read

read

read
write

[allocate inode]
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

read

read

read

read

read
write

read 
write

[populate inode]
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Basic File System Operations
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create /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

read

read

read

read

read
write

read 
write

write
write

[add bar to /foo]
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Basic File System Operations
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write to /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

bar 
data
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Basic File System Operations
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write to /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

bar 
data

read

[block full? yes]
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Basic File System Operations
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write to /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

bar 
data

read

read
write

[allocate block]
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Basic File System Operations
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write to /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

bar 
data

read

read
write

write

[point to block]
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Basic File System Operations
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write to /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

bar 
data

read

read
write

write

write

[point to block]
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Basic File System Operations
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write to /foo/bar

data 
bitmap

inode
bitmap

root 
inode

foo 
inode

bar 
inode

root 
data

foo 
data

bar 
data

read

read
write

write

write

[point to block]

dir blocks file
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Locality & Data Layout
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Review: Locality Types
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …
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Review: Locality Types
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …
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Spatial Locality Temporal Locality



Locality Usefulness in the Context of 
Disk-based File Systems
• What types of locality are useful for a cache?

• What types of locality are useful for a disk?
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Locality Usefulness in the Context of 
Disk-based File Systems
• What types of locality are useful for a cache?

• Possibly, both spatial & temporal locality

• What types of locality are useful for a disk?
• Spatial locality, since a disk sucks in random I/Os but 

can provide reasonably good sequential performance
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Order Matters Now for FS on Disk
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …
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Order Matters Now for FS on Disk
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Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …
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Fast Slow



Policy: Choose Inode, Data Blocks

99Y. Cheng GMU CS571 Spring 2021



Bad File Layout
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inode

0

12

3
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Better File Layout
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inode

0 1 2 3
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Best File Layout
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inode

0 1 2 3
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Recap on Disks

103Y. Cheng GMU CS571 Spring 2021



Properties of A Single Disk

• A single disk is slow
• Kind of Okay sequential I/O performance
• Really bad for random I/O
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Properties of A Single Disk

• A single disk is slow
• Kind of Okay sequential I/O performance
• Really bad for random I/O

• The storage capacity of a single disk is limited
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Properties of A Single Disk 

• A single disk is slow
• Kind of Okay sequential I/O performance
• Really bad for random I/O

• The storage capacity of a single disk is limited

• A single disk is not reliable
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RAID: Redundant Array of 
Inexpensive Disks
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Wish List for a Disk

• Wish it to be faster
• I/O is always the performance bottleneck
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Wish List for a Disk

• Wish it to be faster
• I/O is always the performance bottleneck

• Wish it to be larger
• More and more data needs to be stored
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Wish List for a Disk

• Wish it to be faster
• I/O is always the performance bottleneck

• Wish it to be larger
• More and more data needs to be stored

• Wish it to be more reliable
• We don’t want our valuable data to be gone
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Only One Disk?

• Sometimes we want many disks
• For higher performance
• For larger capacity
• For better reliability

• Challenge: Most file systems work on only one 
disk
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Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks

112

Application

File System

RAID Logical Disk
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Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks
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Application

File System

RAID Logical Disk

RAID is 
• Transparent
• Deployable
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Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks
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Application

File System

RAID Logical Disk

RAID is 
• Transparent
• Deployable

Logical disks gives 
• Performance
• Capacity
• Reliability
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Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks

115

Application

File System

RAID Logical Disk

RAID is 
• Transparent
• Deployable

Logical disks gives 
• Performance
• Capacity
• Reliability

A AB B
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Why Inexpensive Disks?

• Economies of scale! Cheap disks are popular

• You can often get many commodity hardware 
components for the same price as a few 
expensive components
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Why Inexpensive Disks?

• Economies of scale! Cheap disks are popular

• You can often get many commodity hardware 
components for the same price as a few 
expensive components

• Strategy: Write software to build high-quality 
logical devices from many cheap devices

• Tradeoff: To compensate poor properties of cheap 
devices
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General Strategy

Build fast and large disks from smaller ones
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RAID

Disk Disk

0 100 200

0 100 0 100
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General Strategy

Build fast and large disks from smaller ones
Add more disks for reliability++!
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RAID

Disk Disk

0 100 200

0 100 0 100
Disk Disk

0 100 0 100
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RAID Metrics

• Performance
• How long does each workload take?

• Capacity
• How much space can apps use?

• Reliability
• How many disks can we safely lose?
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RAID Metrics

• Performance
• How long does each workload take?

• Capacity
• How much space can apps use?

• Reliability
• How many disks can we safely lose?
• Assume fail-stop model!
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RAID Levels

122Y. Cheng

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P



RAID Level 0

123

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P
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RAID-0: Striping

• No redundancy

• Serves as upper bound for 
• Performance
• Capacity

Logical blocks

124

0 1 2 3 4 5

0 2 4 1 3 5

Disk 0 Disk 1
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4 Disks
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4 Disks

126

stripe:
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How to Map?

127

• Given logical address A:
• Disk = …
• Offset = …
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How to Map?

128

• Given logical address A:
• Disk = A % disk_count
• Offset = A / disk_count

Y. Cheng GMU CS571 Spring 2021



Mapping Example: Find Block 13

129

• Given logical address 13:
• Disk = 13 % 4 = 1
• Offset = 13 / 4 = 3

0
1
2
3

Offset
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Chunk Size = 1
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Chunk Size = 1

131

Chunk Size = 2

Y. Cheng



Chunk Size = 1

132

Chunk Size = 2
In all following examples, we assume chunk size of 1

Y. Cheng



RAID-0 Analysis

1. What is capacity?

2. How many disks can fail?

3. Throughput?

4. Latency?
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RAID-0 Analysis

1. What is capacity?  N * C

2. How many disks can fail?  0

3. Throughput?  N * S and N * R

4. Latency?  D
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RAID Level 1

135

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P
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RAID-1: Mirroring

• RAID-1 keeps two copies of each block

136

0 1 2 3

0 1 2 0 1 2

Disk 0 Disk 1
3 3

Logical blocks
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Assumption

• Assume disks are fail-stop
• Two states

• They work or they don’t
• We know when they don’t work
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4 Disks
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4 Disks

139

How many disks can fail?

Y. Cheng GMU CS571 Spring 2021



RAID-1 Analysis
1. What is capacity?  N/2 * C

2. How many disks can fail?  1 or maybe N / 2

3. Throughput? 
• Seq read: N/2 * S
• Seq write: N/2 * S
• Rand read: N * R
• Rand write: N/2 * R

4. Latency?  D
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RAID Level 4

141

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P
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RAID-4
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Capacity
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RAID-4
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Capacity
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RAID-0
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RAID-4
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Capacity

R
el

ia
bi

lit
y

RAID-0

RAID-1

RAID-4
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RAID-4: Strategy

• Use parity disk

• In algebra, if an equation has N variables, and 
N-1 are known, you can also solve for the 
unknown

• Treat the sectors/blocks across disks in a stripe 
as an equation
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RAID-4: Strategy

• Use parity disk

• In algebra, if an equation has N variables, and 
N-1 are known, you can also solve for the 
unknown

• Treat the sectors/blocks across disks in a stripe 
as an equation

• A failed disk is like an unknown in that equation
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5 Disks
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Example
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stripe:

(parity)
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Example
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stripe:

(parity)

4 3 0 2
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Example

150

stripe:

(parity)

4 3 0 2 9

Y. Cheng GMU CS571 Spring 2021



Example
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stripe:

(parity)

X 3 0 2 9
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Example
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stripe:

(parity)

4 3 0 2 9
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Parity Function: XOR Example
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Parity Function: XOR Example

154

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number
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Parity Function: XOR Example

155

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe:
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Parity Function: XOR Example

156

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe: X
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Parity Function: XOR Example

157

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Block0 = XOR(10,11,10,11) = 00

X

Y. Cheng GMU CS571 Spring 2021



Parity Function: XOR Example

158

XOR function: 
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Block0 = XOR(10,11,10,11) = 00

Y. Cheng GMU CS571 Spring 2021



RAID-4 Analysis
1. What is capacity?  (N-1) * C

2. How many disks can fail?  1

3. Throughput?  
• Seq read: (N-1) * S
• Seq write: (N-1) * S
• Rand read: (N-1) * R
• Rand write: R/2

4. Latency?  D, 2D
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RAID-4 Analysis: Random Write

160

Random write to 4, 13, and respective parity blocks

Small write problem (for parity-based RAIDs): 
Parity disk serializes all random writes; each logical I/O 

generates two physical I/Os (one read and one write for 
parity P1)
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RAID Level 5

161

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P
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RAID-5: Rotating Parity

162

RAID-5 works almost identically to RAID-4, except 
that it rotates the parity block across drives
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RAID-5 Analysis
1. What is capacity?  (N-1) * C

2. How many disks can fail?  1

3. Throughput?  
• Seq read: (N-1) * S
• Seq write: (N-1) * S
• Rand read: N * R
• Rand write: ???

4. Latency?  D, 2D
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RAID-5: Random Write

164

Random write to Block 10 on Disk 0

Write
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RAID-5: Random Write

165

Random write to Block 10 on Disk 0
1. Read Block 10

1. Read
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RAID-5: Random Write
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Random write to Block 10 on Disk 0
1. Read Block 10

2. Read the Parity P2

1. Read 2. Read
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RAID-5: Random Write

167

Random write to Block 10 on Disk 0
1. Read Block 10

2. Read the Parity P2
3. Write new data in Block 10

1. Read 2. Read

3. Write
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RAID-5: Random Write

168

Random write to Block 10 on Disk 0
1. Read Block 10

2. Read the Parity P2
3. Write new data in Block 10

4. Write new parity P2

1. Read 2. Read

3. Write
4. Write
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RAID-5: Random Write

169

Generally, for a large number of random read/write requests, 
RAID-5 will be able to keep all disks busy: thus N * R

Each random (RAID-5) writes generates 4 physical I/O operations: 
thus N * R / 4

Write 1
Write 1 

touches P2Write 2
Write 2 

touches P0

Performance 
reasoning

Y. Cheng GMU CS571 Spring 2021

… Write N
Write N touches P3



RAID-5 Analysis
1. What is capacity?  (N-1) * C

2. How many disks can fail?  1

3. Throughput?  
• Seq read: (N-1) * S
• Seq write: (N-1) * S
• Rand read: N * R
• Rand write: N * R/4

4. Latency?  D, 2D
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Summary: All RAID’s

Reliability Capacity
RAID-0 0 C * N
RAID-1 1 or N/2 C * N/2
RAID-4 1 N-1
RAID-5 1 N-1
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Summary: All RAID’s

Seq Read Seq Write Rand Read Rand Write
RAID-0 N * S N * S N * R N * R
RAID-1 N/2 * S N/2 * S N * R N/2 * R
RAID-4 (N-1) * S (N-1) * S (N-1) * R R/2
RAID-5 (N-1) * S (N-1) * S N * R N/4 * R
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Please Read the Textbook!

Please do read the textbook chapter “RAID” 
to gain a deeper understanding of the 
various analyses covered in lecture.
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