
Persistence:
File Systems and RAID
CS 571: Operating Systems (Spring 2021)

Lecture 10
Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

File System Abstraction

2Y. Cheng GMU CS571 Spring 2021

What is a File?

• File: Array of bytes
• Ranges of bytes can be read/written

• File system (FS) consists of many files

• Files need names so programs can choose the
right one

3Y. Cheng GMU CS571 Spring 2021

File Names

• Three types of names (abstractions)
• inode (low-level names)
• path (human readable)
• file descriptor (runtime state)

4Y. Cheng GMU CS571 Spring 2021

Inodes

• Each file has exactly one inode number

• Inodes are unique (at a given time) within a FS

• Numbers may be recycled after deletes

5Y. Cheng GMU CS571 Spring 2021

Inodes

• Each file has exactly one inode number

• Inodes are unique (at a given time) within a FS

• Numbers may be recycled after deletes

• Show inodes via stat
• $ stat <file or dir>

6Y. Cheng GMU CS571 Spring 2021

‘stat’ Example
PROMPT>: stat test.dat

File: ‘test.dat’ Size: 5 Blocks: 8 IO Block: 4096 regular
file

Device: 803h/2051d Inode: 119341128 Links: 1

Access: (0664/-rw-rw-r--) Uid: (1001/ yue) Gid: (1001/ yue)

Context: unconfined_u:object_r:user_home_t:s0

Access: 2015-12-17 04:12:47.935716294 -0500

Modify: 2014-12-12 19:25:32.669625220 -0500

Change: 2014-12-12 19:25:32.669625220 -0500

Birth: -

7Y. Cheng GMU CS571 Spring 2021

Path (multiple directories)

8

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

Y. Cheng GMU CS571 Spring 2021

Path (multiple directories)

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

9Y. Cheng GMU CS571 Spring 2021

Path (multiple directories)

10

<“bar”, “12”><“foo”, “10”>

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

Y. Cheng GMU CS571 Spring 2021

Path (multiple directories)

• A directory is a file
• Associated with an inode

• Contains a list of <user-
readable name, low-level name>
pairs

• Directory tree: reads for
getting final inode called
traversal

11

[traverse /bar/foo/bar.txt]

Y. Cheng GMU CS571 Spring 2021

File Naming

• Directories and files can
have the same name as
long as they are in
different locations of the
file-system tree

• .txt, .c, etc.
• Naming convention
• In UNIX-like OS, no

enforcement for extension
name

12Y. Cheng GMU CS571 Spring 2021

Special Directory Entries
prompt> ls –al

total 216

drwxr-xr-x 19 yue staff 646 Nov 23 16:28 .

drwxr-xr-x+ 40 yue staff 1360 Nov 15 01:41 ..

-rw-r--r--@ 1 yue staff 1064 Aug 29 21:48 common.h

-rwxr-xr-x 1 yue staff 9356 Aug 30 14:03 cpu

-rw-r--r--@ 1 yue staff 258 Aug 29 21:48 cpu.c

-rwxr-xr-x 1 yue staff 9348 Sep 6 12:12 cpu_bound

-rw-r--r-- 1 yue staff 245 Sep 5 13:10 cpu_bound.c

…

13Y. Cheng GMU CS571 Spring 2021

File System Interfaces

14Y. Cheng GMU CS571 Spring 2021

Creating Files

• UNIX system call: open()

int fd = open(char *path, int flag, mode_t mode);

-OR-

int fd = open(char *path, int flag);

15Y. Cheng GMU CS571 Spring 2021

File Descriptor (fd)

• open() returns a file descriptor (fd)
• A fd is an integer
• Private per process

• An opaque handle that gives caller the power to
perform certain operations

• Think of a fd as a pointer to an object of the file
• By owning such an object, you can call other

“methods” to access the file

16Y. Cheng GMU CS571 Spring 2021

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 5

17Y. Cheng GMU CS571 Spring 2021

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2); // return 4

18

offset = 0
inode = …

fd

location = …
size = …

inode

fd table

0
1
2
3
4
5

Y. Cheng GMU CS571 Spring 2021

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 3

int fd3 = dup(fd2); // return 4

19

offset = 8
inode = …

fd

location = …
size = …

inode

fd table

0
1
2
3
4
5

Y. Cheng GMU CS571 Spring 2021

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 4

20

offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

fd table

0
1
2
3
4
5

Y. Cheng GMU CS571 Spring 2021

open() Example
int fd1 = open(“file.txt”, O_CREAT); // return 3

read(fd1, buf, 8);

int fd2 = open(“file.txt”, O_WRONLY); // return 4

int fd3 = dup(fd2); // return 5

21

fd table

0
1
2
3
4

offset = 8
inode = …

fd

location = …
size = …

inode

offset = 0
inode = …

5

Y. Cheng GMU CS571 Spring 2021

UNIX File Read and Write APIs
int fd = open(char *path, int flag, mode_t mode);

-OR-

int fd = open(char *path, int flag);

ssize_t sz = read(int fd, void *buf, size_t count);

ssize_t sz = write(int fd, void *buf, size_t count);

int ret = close(int fd);

22Y. Cheng GMU CS571 Spring 2021

Reading and Writing Files
prompt> echo hello > file.txt

prompt> cat file.txt

hello

prompt>

23Y. Cheng GMU CS571 Spring 2021

Reading and Writing Files

24Y. Cheng GMU CS571 Spring 2021

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

25

Open the file with read
only mode

Y. Cheng GMU CS571 Spring 2021

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

26

Open the file with read
only mode

Read content from file

Y. Cheng GMU CS571 Spring 2021

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

27

Open the file with read
only mode

Read content from file

Write string to std
output fd 1

Y. Cheng GMU CS571 Spring 2021

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

28

cat tries to read more
but reaches EOF

Write string to std
output fd 1

Open the file with read
only mode

Read content from file

Y. Cheng GMU CS571 Spring 2021

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...
prompt>

Reading and Writing Files

29

cat done with file ops
and closes the file

cat tries to read more
but reaches EOF

Write string to std
output fd 1

Open the file with read
only mode

Read content from file

Y. Cheng GMU CS571 Spring 2021

Non-Sequential File Operations

30

off_t offset = lseek(int fd, off_t offset, int whence);

Y. Cheng GMU CS571 Spring 2021

Non-Sequential File Operations

31

off_t offset = lseek(int fd, off_t offset, int whence);

whence:
• If whence is SEEK_SET, the offset is set to offset bytes
• If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes
• If whence is SEEK_END, the offset is set to the size of the

file plus offset bytes

Y. Cheng GMU CS571 Spring 2021

Non-Sequential File Operations

32

off_t offset = lseek(int fd, off_t offset, int whence);

whence:
• If whence is SEEK_SET, the offset is set to offset bytes
• If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes
• If whence is SEEK_END, the offset is set to the size of the

file plus offset bytes

Note: Calling lseek() does not perform a disk seek!

Y. Cheng GMU CS571 Spring 2021

Writing Immediately with fsync()
int fd = fsync(int fd);

• fsync(fd) forces buffers to flush to disk, and (usually)
tells the disk to flush its write cache too
• To make the data durable and persistent

• Write buffering improves performance

33Y. Cheng GMU CS571 Spring 2021

Renaming Files

34

prompt> mv file.txt new_name.txt

Y. Cheng GMU CS571 Spring 2021

Renaming Files

35

prompt> strace mv file.txt new_name.txt

...

rename("file.txt", "new_name.txt") = 0

...

prompt>

Y. Cheng GMU CS571 Spring 2021

Renaming Files

36

prompt> strace mv file.txt new_name.txt

...

rename("file.txt", "new_name.txt") = 0

...

prompt>

System call rename()
atomically renames a

file

Y. Cheng GMU CS571 Spring 2021

File Renaming Example

37

prompt> vim file.txt

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

Y. Cheng GMU CS571 Spring 2021

File Renaming Example

38

prompt> vim file.txt

… vim editing session …

Using vim to edit a file and then save it

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file (editing…)

Y. Cheng GMU CS571 Spring 2021

File Renaming Example

39

int fd = open(“.file.txt.swp”,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);

write(fd, buffer, size); // write out new version of file
fsync(fd); // make data durable
close(fd); // close tmp file
rename(“.file.txt.swp”, “file.txt”);// change name and replacing old file

Using vim to edit a file and then save it

prompt> vim file.txt

… vim editing session …

prompt> :wq

Y. Cheng GMU CS571 Spring 2021

Deleting Files

40

prompt> rm file.txt

Y. Cheng GMU CS571 Spring 2021

Deleting Files

41

prompt> strace rm file.txt

...

unlink("file.txt") = 0

...

prompt>

Y. Cheng GMU CS571 Spring 2021

Deleting Files

42

prompt> strace rm file.txt

...

unlink("file.txt") = 0

...

prompt>

System call unlink() is
called to delete a file

Y. Cheng GMU CS571 Spring 2021

Deleting Files

43

prompt> strace rm file.txt

...

unlink("file.txt") = 0

...

prompt>

System call unlink() is
called to delete a file

Directories are deleted when unlink() is called

Q: File descriptors are deleted when ???

Y. Cheng GMU CS571 Spring 2021

Demo: Hard Links vs. Symbolic Links

44Y. Cheng GMU CS571 Spring 2021

File System Implementation

45Y. Cheng GMU CS571 Spring 2021

File System Implementation

• On-disk structures
• How do we represent files and directories?

• File system operations (internally)
• How on-disk structures get touched when

performing FS operations

• File system locality & data layout policies
• How data layout impacts locality for on-disk FS?

46Y. Cheng GMU CS571 Spring 2021

On-Disk Structures

47Y. Cheng GMU CS571 Spring 2021

On-Disk Structures

• Common file system structures
• Data block
• inode table
• Directories
• Data bitmap
• inode bitmap
• Superblock

48Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Empty Disk

49Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Data Blocks

50
Y. Cheng GMU CS571 Spring 2021

On-Disk Structures

• Common file system structures
• Data block
• inode table
• Directories
• Data bitmap
• inode bitmap
• Superblock

51Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Inodes

52
Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Inodes

53

Inode Block

• Inodes are typically 128 or
256 bytes (depends on the file
system)

• 16—32 inodes per inode block

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

Y. Cheng GMU CS571 Spring 2021

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes

54

Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]
InodeY. Cheng GMU CS571 Spring 2021

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes

55

Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

file or directory

Y. Cheng GMU CS571 Spring 2021 Inode

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes

56

Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

user and
permissions

Y. Cheng GMU CS571 Spring 2021 Inode

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes

57

Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

size in bytes
and blocks

Y. Cheng GMU CS571 Spring 2021 Inode

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes

58

Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

access time
and create time

Y. Cheng GMU CS571 Spring 2021 Inode

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes

59

Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

how many links

Y. Cheng GMU CS571 Spring 2021 Inode

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

On-Disk Structure: Inodes

60

Inode Block

type
uid
rwx
size

blocks
time

ctime
links_count

addrs[N]

addrs of N data
blocks

Y. Cheng GMU CS571 Spring 2021 Inode

On-Disk Structure: Inodes

61

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

Inode Block

Each inode points to a file
stored on disk, as one or
multiple data blocks

Y. Cheng GMU CS571 Spring 2021

On-Disk Structures

• Common file system structures
• Data block
• Inode table
• Directories
• Data bitmap
• Inode bitmap
• Superblock

62Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Directories

• Common directory design: just store directory
entries in files

• Different file systems vary

• Various data structures (formats) could be used
• Lists
• B-trees

63Y. Cheng GMU CS571 Spring 2021

On-Disk Structures

• Common file system structures
• Data block
• inode table
• Directories
• Data bitmap
• inode bitmap
• Superblock

64Y. Cheng GMU CS571 Spring 2021

Allocation

• How does file system find free data blocks or
free inodes?

65Y. Cheng GMU CS571 Spring 2021

Allocation

• How does file system find free data blocks or
free inodes?

• Free list
• Bitmaps

• What are the tradeoffs?

66Y. Cheng GMU CS571 Spring 2021

Free List

67Y. Cheng GMU CS571 Spring 2021

Bitmap

68

…
0 1 2 n-1

bit[i] =

!
"
1 Þ object[i] in use

0 Þ object[i] free

Each bit of the bitmap is used to indicate whether the
corresponding object/block is free (0) or in-use (1)

Y. Cheng GMU CS571 Spring 2021

Allocation

• How does file system find free data blocks or
free inodes?

• Free list
• Bitmaps

• What are the tradeoffs?
• Free list: Cannot get contiguous space easily
• Bitmap: Easy to allocate contiguous space for files

69Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Data Bitmaps

70

Data bitmap

Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Inode Bitmaps

71

Inode bitmap

Y. Cheng GMU CS571 Spring 2021

On-Disk Structures

• Common file system structures
• Data block
• Inode table
• Directories
• Data bitmap
• Inode bitmap
• Superblock

72Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Superblock

• Need to know basic file system configuration
and runtime status, such as:

• Block size
• How many inodes are there
• How much free space

• Store all these metadata info in a superblock

73Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Superblock

74Y. Cheng GMU CS571 Spring 2021

On-Disk Structure: Superblock

75Y. Cheng GMU CS571 Spring 2021

On-Disk Structure Overview

76Y. Cheng GMU CS571 Spring 2021

File System Operations

77Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

78

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

79

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

read

read

[traverse]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

80

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

read

read

read

read

[traverse]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

81

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

read

read

read

read

[traverse]

foo inode: we have permission
foo data: bar doesn’t exist

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

82

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

read

read

read

read

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

83

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

read

read

read

read

read
write

[allocate inode]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

84

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

read

read

read

read

read
write

read
write

[populate inode]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

85

create /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

read

read

read

read

read
write

read
write

write
write

[add bar to /foo]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

86

write to /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

87

write to /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

read

[block full? yes]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

88

write to /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

read

read
write

[allocate block]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

89

write to /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

read

read
write

write

[point to block]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

90

write to /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

read

read
write

write

write

[point to block]

Y. Cheng GMU CS571 Spring 2021

Basic File System Operations

91

write to /foo/bar

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data

read

read
write

write

write

[point to block]

dir blocks file

Y. Cheng GMU CS571 Spring 2021

Locality & Data Layout

92Y. Cheng GMU CS571 Spring 2021

Review: Locality Types

93

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Y. Cheng GMU CS571 Spring 2021

Review: Locality Types

94

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Y. Cheng GMU CS571 Spring 2021

Spatial Locality Temporal Locality

Locality Usefulness in the Context of
Disk-based File Systems
• What types of locality are useful for a cache?

• What types of locality are useful for a disk?

95Y. Cheng GMU CS571 Spring 2021

Locality Usefulness in the Context of
Disk-based File Systems
• What types of locality are useful for a cache?

• Possibly, both spatial & temporal locality

• What types of locality are useful for a disk?
• Spatial locality, since a disk sucks in random I/Os but

can provide reasonably good sequential performance

96Y. Cheng GMU CS571 Spring 2021

Order Matters Now for FS on Disk

97

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Y. Cheng GMU CS571 Spring 2021

Order Matters Now for FS on Disk

98

Workload A

Time

Ad
dr …

Workload B

Time

Ad
dr …

Y. Cheng GMU CS571 Spring 2021

Fast Slow

Policy: Choose Inode, Data Blocks

99Y. Cheng GMU CS571 Spring 2021

Bad File Layout

100

inode

0

12

3

Y. Cheng GMU CS571 Spring 2021

Better File Layout

101

inode

0 1 2 3

Y. Cheng GMU CS571 Spring 2021

Best File Layout

102

inode

0 1 2 3

Y. Cheng GMU CS571 Spring 2021

Recap on Disks

103Y. Cheng GMU CS571 Spring 2021

Properties of A Single Disk

• A single disk is slow
• Kind of Okay sequential I/O performance
• Really bad for random I/O

104Y. Cheng GMU CS571 Spring 2021

Properties of A Single Disk

• A single disk is slow
• Kind of Okay sequential I/O performance
• Really bad for random I/O

• The storage capacity of a single disk is limited

105Y. Cheng GMU CS571 Spring 2021

Properties of A Single Disk

• A single disk is slow
• Kind of Okay sequential I/O performance
• Really bad for random I/O

• The storage capacity of a single disk is limited

• A single disk is not reliable

106Y. Cheng GMU CS571 Spring 2021

RAID: Redundant Array of
Inexpensive Disks

107Y. Cheng GMU CS571 Spring 2021

Wish List for a Disk

• Wish it to be faster
• I/O is always the performance bottleneck

108Y. Cheng GMU CS571 Spring 2021

Wish List for a Disk

• Wish it to be faster
• I/O is always the performance bottleneck

• Wish it to be larger
• More and more data needs to be stored

109Y. Cheng GMU CS571 Spring 2021

Wish List for a Disk

• Wish it to be faster
• I/O is always the performance bottleneck

• Wish it to be larger
• More and more data needs to be stored

• Wish it to be more reliable
• We don’t want our valuable data to be gone

110Y. Cheng GMU CS571 Spring 2021

Only One Disk?

• Sometimes we want many disks
• For higher performance
• For larger capacity
• For better reliability

• Challenge: Most file systems work on only one
disk

111Y. Cheng GMU CS571 Spring 2021

Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks

112

Application

File System

RAID Logical Disk

Y. Cheng GMU CS571 Spring 2021

Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks

113

Application

File System

RAID Logical Disk

RAID is
• Transparent
• Deployable

Y. Cheng GMU CS571 Spring 2021

Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks

114

Application

File System

RAID Logical Disk

RAID is
• Transparent
• Deployable

Logical disks gives
• Performance
• Capacity
• Reliability

Y. Cheng GMU CS571 Spring 2021

Solution: RAID

RAID: Redundant Array of Inexpensive Disks

Build a logical disk from many physical disks

115

Application

File System

RAID Logical Disk

RAID is
• Transparent
• Deployable

Logical disks gives
• Performance
• Capacity
• Reliability

A AB B

Y. Cheng GMU CS571 Spring 2021

Why Inexpensive Disks?

• Economies of scale! Cheap disks are popular

• You can often get many commodity hardware
components for the same price as a few
expensive components

116Y. Cheng GMU CS571 Spring 2021

Why Inexpensive Disks?

• Economies of scale! Cheap disks are popular

• You can often get many commodity hardware
components for the same price as a few
expensive components

• Strategy: Write software to build high-quality
logical devices from many cheap devices

• Tradeoff: To compensate poor properties of cheap
devices

117Y. Cheng GMU CS571 Spring 2021

General Strategy

Build fast and large disks from smaller ones

118

RAID

Disk Disk

0 100 200

0 100 0 100

Y. Cheng GMU CS571 Spring 2021

General Strategy

Build fast and large disks from smaller ones
Add more disks for reliability++!

119

RAID

Disk Disk

0 100 200

0 100 0 100
Disk Disk

0 100 0 100

Y. Cheng GMU CS571 Spring 2021

RAID Metrics

• Performance
• How long does each workload take?

• Capacity
• How much space can apps use?

• Reliability
• How many disks can we safely lose?

120Y. Cheng GMU CS571 Spring 2021

RAID Metrics

• Performance
• How long does each workload take?

• Capacity
• How much space can apps use?

• Reliability
• How many disks can we safely lose?
• Assume fail-stop model!

121Y. Cheng GMU CS571 Spring 2021

RAID Levels

122Y. Cheng

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P

RAID Level 0

123

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P

Y. Cheng

RAID-0: Striping

• No redundancy

• Serves as upper bound for
• Performance
• Capacity

Logical blocks

124

0 1 2 3 4 5

0 2 4 1 3 5

Disk 0 Disk 1
Y. Cheng GMU CS571 Spring 2021

4 Disks

125Y. Cheng GMU CS571 Spring 2021

4 Disks

126

stripe:

Y. Cheng GMU CS571 Spring 2021

How to Map?

127

• Given logical address A:
• Disk = …
• Offset = …

Y. Cheng GMU CS571 Spring 2021

How to Map?

128

• Given logical address A:
• Disk = A % disk_count
• Offset = A / disk_count

Y. Cheng GMU CS571 Spring 2021

Mapping Example: Find Block 13

129

• Given logical address 13:
• Disk = 13 % 4 = 1
• Offset = 13 / 4 = 3

0
1
2
3

Offset

Y. Cheng GMU CS571 Spring 2021

Chunk Size = 1

130Y. Cheng GMU CS571 Spring 2021

Chunk Size = 1

131

Chunk Size = 2

Y. Cheng

Chunk Size = 1

132

Chunk Size = 2
In all following examples, we assume chunk size of 1

Y. Cheng

RAID-0 Analysis

1. What is capacity?

2. How many disks can fail?

3. Throughput?

4. Latency?

133Y. Cheng GMU CS571 Spring 2021

RAID-0 Analysis

1. What is capacity? N * C

2. How many disks can fail? 0

3. Throughput? N * S and N * R

4. Latency? D

134Y. Cheng GMU CS571 Spring 2021

RAID Level 1

135

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P

Y. Cheng

RAID-1: Mirroring

• RAID-1 keeps two copies of each block

136

0 1 2 3

0 1 2 0 1 2

Disk 0 Disk 1
3 3

Logical blocks

Y. Cheng GMU CS571 Spring 2021

Assumption

• Assume disks are fail-stop
• Two states

• They work or they don’t
• We know when they don’t work

137Y. Cheng GMU CS571 Spring 2021

4 Disks

138Y. Cheng GMU CS571 Spring 2021

4 Disks

139

How many disks can fail?

Y. Cheng GMU CS571 Spring 2021

RAID-1 Analysis
1. What is capacity? N/2 * C

2. How many disks can fail? 1 or maybe N / 2

3. Throughput?
• Seq read: N/2 * S
• Seq write: N/2 * S
• Rand read: N * R
• Rand write: N/2 * R

4. Latency? D

140Y. Cheng GMU CS571 Spring 2021

RAID Level 4

141

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P

Y. Cheng

RAID-4

142

Capacity

R
el

ia
bi

lit
y

Y. Cheng GMU CS571 Spring 2021

RAID-4

143

Capacity

R
el

ia
bi

lit
y

RAID-0

RAID-1

Y. Cheng GMU CS571 Spring 2021

RAID-4

144

Capacity

R
el

ia
bi

lit
y

RAID-0

RAID-1

RAID-4

Y. Cheng GMU CS571 Spring 2021

RAID-4: Strategy

• Use parity disk

• In algebra, if an equation has N variables, and
N-1 are known, you can also solve for the
unknown

• Treat the sectors/blocks across disks in a stripe
as an equation

145Y. Cheng GMU CS571 Spring 2021

RAID-4: Strategy

• Use parity disk

• In algebra, if an equation has N variables, and
N-1 are known, you can also solve for the
unknown

• Treat the sectors/blocks across disks in a stripe
as an equation

• A failed disk is like an unknown in that equation
146Y. Cheng GMU CS571 Spring 2021

5 Disks

147Y. Cheng GMU CS571 Spring 2021

Example

148

stripe:

(parity)

Y. Cheng GMU CS571 Spring 2021

Example

149

stripe:

(parity)

4 3 0 2

Y. Cheng GMU CS571 Spring 2021

Example

150

stripe:

(parity)

4 3 0 2 9

Y. Cheng GMU CS571 Spring 2021

Example

151

stripe:

(parity)

X 3 0 2 9

Y. Cheng GMU CS571 Spring 2021

Example

152

stripe:

(parity)

4 3 0 2 9

Y. Cheng GMU CS571 Spring 2021

Parity Function: XOR Example

153Y. Cheng GMU CS571 Spring 2021

Parity Function: XOR Example

154

XOR function:
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

Y. Cheng GMU CS571 Spring 2021

Parity Function: XOR Example

155

XOR function:
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Y. Cheng GMU CS571 Spring 2021

Parity Function: XOR Example

156

XOR function:
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe: X

Y. Cheng GMU CS571 Spring 2021

Parity Function: XOR Example

157

XOR function:
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Block0 = XOR(10,11,10,11) = 00

X

Y. Cheng GMU CS571 Spring 2021

Parity Function: XOR Example

158

XOR function:
• P = 0: The number of 1 in a stripe must be an even number
• P = 1: The number of 1 in a stripe must be an odd number

stripe:

Block0 = XOR(10,11,10,11) = 00

Y. Cheng GMU CS571 Spring 2021

RAID-4 Analysis
1. What is capacity? (N-1) * C

2. How many disks can fail? 1

3. Throughput?
• Seq read: (N-1) * S
• Seq write: (N-1) * S
• Rand read: (N-1) * R
• Rand write: R/2

4. Latency? D, 2D

159Y. Cheng GMU CS571 Spring 2021

RAID-4 Analysis: Random Write

160

Random write to 4, 13, and respective parity blocks

Small write problem (for parity-based RAIDs):
Parity disk serializes all random writes; each logical I/O

generates two physical I/Os (one read and one write for
parity P1)

Y. Cheng GMU CS571 Spring 2021

RAID Level 5

161

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

C C C C

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

P P

P

P

P P P

(g) RAID 6: P ! Q redundancy.

PP P

P
PPP P

P
P
P

P
P

Y. Cheng

RAID-5: Rotating Parity

162

RAID-5 works almost identically to RAID-4, except
that it rotates the parity block across drives

Y. Cheng GMU CS571 Spring 2021

RAID-5 Analysis
1. What is capacity? (N-1) * C

2. How many disks can fail? 1

3. Throughput?
• Seq read: (N-1) * S
• Seq write: (N-1) * S
• Rand read: N * R
• Rand write: ???

4. Latency? D, 2D

163Y. Cheng GMU CS571 Spring 2021

RAID-5: Random Write

164

Random write to Block 10 on Disk 0

Write

Y. Cheng GMU CS571 Spring 2021

RAID-5: Random Write

165

Random write to Block 10 on Disk 0
1. Read Block 10

1. Read

Y. Cheng GMU CS571 Spring 2021

RAID-5: Random Write

166

Random write to Block 10 on Disk 0
1. Read Block 10

2. Read the Parity P2

1. Read 2. Read

Y. Cheng GMU CS571 Spring 2021

RAID-5: Random Write

167

Random write to Block 10 on Disk 0
1. Read Block 10

2. Read the Parity P2
3. Write new data in Block 10

1. Read 2. Read

3. Write

Y. Cheng GMU CS571 Spring 2021

RAID-5: Random Write

168

Random write to Block 10 on Disk 0
1. Read Block 10

2. Read the Parity P2
3. Write new data in Block 10

4. Write new parity P2

1. Read 2. Read

3. Write
4. Write

Y. Cheng GMU CS571 Spring 2021

RAID-5: Random Write

169

Generally, for a large number of random read/write requests,
RAID-5 will be able to keep all disks busy: thus N * R

Each random (RAID-5) writes generates 4 physical I/O operations:
thus N * R / 4

Write 1
Write 1

touches P2Write 2
Write 2

touches P0

Performance
reasoning

Y. Cheng GMU CS571 Spring 2021

… Write N
Write N touches P3

RAID-5 Analysis
1. What is capacity? (N-1) * C

2. How many disks can fail? 1

3. Throughput?
• Seq read: (N-1) * S
• Seq write: (N-1) * S
• Rand read: N * R
• Rand write: N * R/4

4. Latency? D, 2D

170Y. Cheng GMU CS571 Spring 2021

Summary: All RAID’s

Reliability Capacity
RAID-0 0 C * N
RAID-1 1 or N/2 C * N/2
RAID-4 1 N-1
RAID-5 1 N-1

171Y. Cheng GMU CS571 Spring 2021

Summary: All RAID’s

Seq Read Seq Write Rand Read Rand Write
RAID-0 N * S N * S N * R N * R
RAID-1 N/2 * S N/2 * S N * R N/2 * R
RAID-4 (N-1) * S (N-1) * S (N-1) * R R/2
RAID-5 (N-1) * S (N-1) * S N * R N/4 * R

172Y. Cheng GMU CS571 Spring 2021

Please Read the Textbook!

Please do read the textbook chapter “RAID”
to gain a deeper understanding of the
various analyses covered in lecture.

173Y. Cheng GMU CS571 Spring 2021

