

Persistence: File Systems and RAID

CS 571: Operating Systems (Spring 2021)

Lecture 10

Yue Cheng

Some material taken/derived from:

Wisconsin CS-537 materials by Remzi Arpaci-Dusseau.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

File System Abstraction

What is a File?

- File: Array of bytes
 - Ranges of bytes can be read/written
- File system (FS) consists of many files
- Files need names so programs can choose the right one

File Names

- Three types of names (abstractions)
 - inode (low-level names)
 - path (human readable)
 - file descriptor (runtime state)

Inodes

• Each file has exactly one inode number

• Inodes are unique (at a given time) within a FS

Numbers may be recycled after deletes

Inodes

• Each file has exactly one inode number

- Inodes are unique (at a given time) within a FS
- Numbers may be recycled after deletes
- Show inodes via stat
 - \$ stat <file or dir>

'stat' Example

```
PROMPT>: stat test.dat

File: 'test.dat' Size: 5 Blocks: 8 IO Block: 4096 regular file

Device: 803h/2051d Inode: 119341128 Links: 1

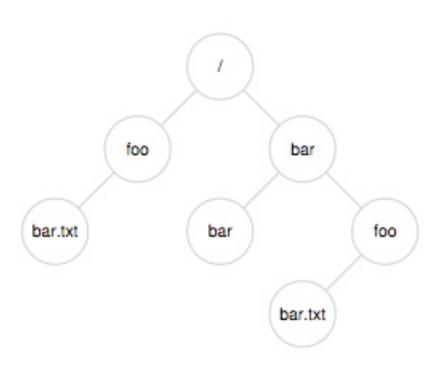
Access: (0664/-rw-rw-r--) Uid: (1001/ yue) Gid: (1001/ yue)

Context: unconfined_u:object_r:user_home_t:s0

Access: 2015-12-17 04:12:47.935716294 -0500

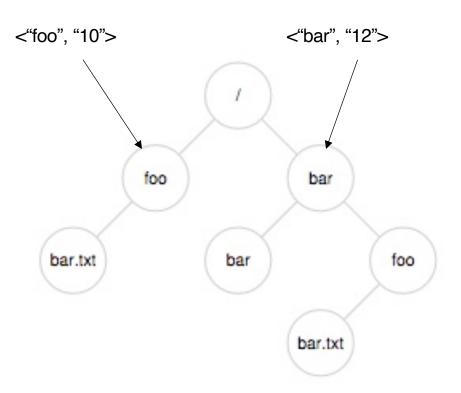
Modify: 2014-12-12 19:25:32.669625220 -0500

Change: 2014-12-12 19:25:32.669625220 -0500


Birth: -
```

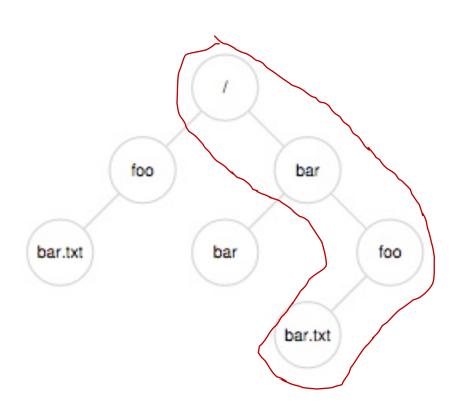
- A directory is a file
 - Associated with an inode

 Contains a list of <userreadable name, low-level name> pairs


- A directory is a file
 - Associated with an inode

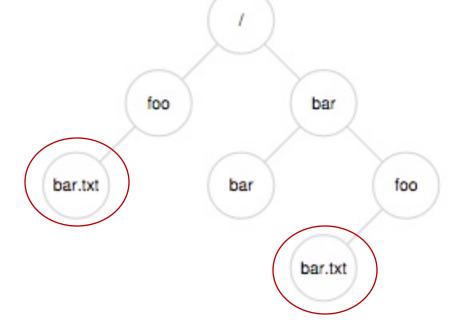
 Contains a list of <userreadable name, low-level name> pairs

- A directory is a file
 - Associated with an inode


 Contains a list of <userreadable name, low-level name> pairs

- A directory is a file
 - Associated with an inode

 Contains a list of <userreadable name, low-level name> pairs


 Directory tree: reads for getting final inode called traversal

[traverse /bar/foo/bar.txt]

File Naming

 Directories and files can have the same name as long as they are in different locations of the file-system tree

- .txt, .c, etc.
 - Naming convention
 - In UNIX-like OS, no enforcement for extension name

Special Directory Entries

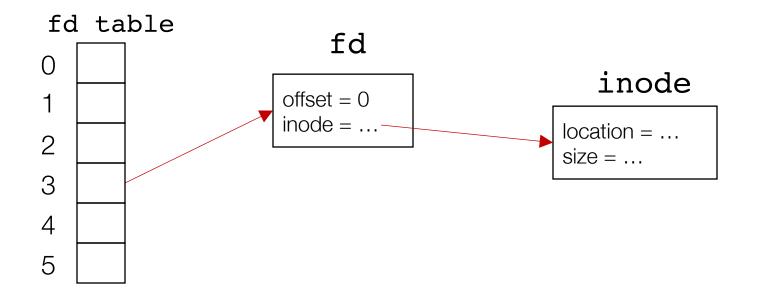
```
prompt> ls -al
total 216
                           646 Nov 23 16:28
drwxr-xr-x 19 yue
                   staff
drwxr-xr-x+ 40 yue staff
                          1360 Nov 15 01:41
                   staff
                          1064 Aug 29 21:48 common.h
-rw-r--r--a 1 yue
                   staff
            1 yue
                          9356 Aug 30 14:03 cpu
-rwxr-xr-x
                   staff 258 Aug 29 21:48 cpu.c
            1 yue
-rw-r--r--a
            1 yue staff
                          9348 Sep 6 12:12 cpu_bound
-rwxr-xr-x
            1 yue
                   staff 245 Sep 5 13:10 cpu_bound.c
-rw-r--r--
• • •
```

File System Interfaces

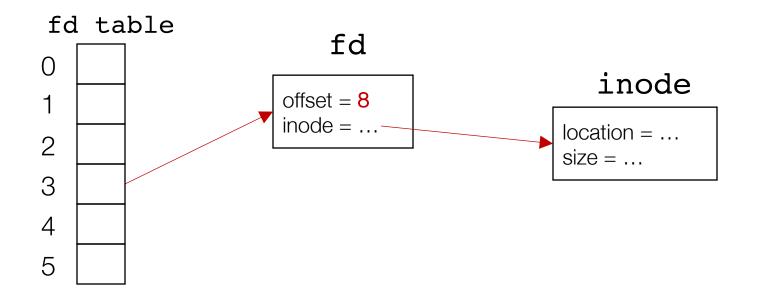
Creating Files

• UNIX system call: open()

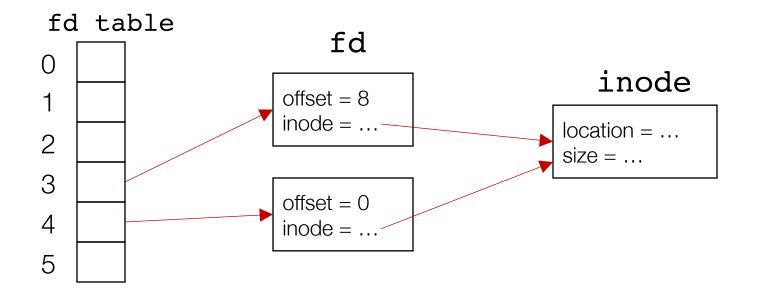
```
int fd = open(char *path, int flag, mode_t mode);
-OR-
int fd = open(char *path, int flag);
```


File Descriptor (fd)

- open() returns a file descriptor (fd)
 - A fd is an integer
 - Private per process


- An opaque handle that gives caller the power to perform certain operations
- Think of a fd as a pointer to an object of the file
 - By owning such an object, you can call other "methods" to access the file

```
int fd1 = open("file.txt", O_CREAT); // return 3
read(fd1, buf, 8);
int fd2 = open("file.txt", O_WRONLY); // return 4
int fd3 = dup(fd2); // return 5
```


```
int fd1 = open("file.txt", O_CREAT); // return 3
```



```
int fd1 = open("file.txt", O_CREAT); // return 3
read(fd1, buf, 8);
```



```
int fd1 = open("file.txt", O_CREAT); // return 3
read(fd1, buf, 8);
int fd2 = open("file.txt", O_WRONLY); // return 4
```



```
int fd1 = open("file.txt", O_CREAT); // return 3
read(fd1, buf, 8);
int fd2 = open("file.txt", O_WRONLY); // return 4
int fd3 = dup(fd2);
                                            // return 5
       fd table
                              fd
      ()
                                                   inode
                          offset = 8
                          inode = ...
                                                 location = ...
      2
                                                 size = ...
      3
                          offset = 0
                          inode = ...
      5
```

UNIX File Read and Write APIs

```
int fd = open(char *path, int flag, mode t mode);
-OR-
int fd = open(char *path, int flag);
ssize t sz = read(int fd, void *buf, size t count);
ssize t sz = write(int fd, void *buf, size t count);
int ret = close(int fd);
```

```
prompt> echo hello > file.txt
prompt> cat file.txt
hello
prompt>
```

prompt>

```
prompt> strace cat file.txt
...
open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6
write(1, "hello\n", 6) = 6
read(3, "", 65536) = 0
close(3) = 0
...
```

Open the file with read only mode

```
prompt> strace cat file.txt
...
open("file.txt", O_RDONLY) = 3
read(3, "hello\n", 65536) = 6
write(1, "hello\n", 6) = 6
read(3, "", 65536) = 0
close(3) = 0
...
prompt>
```

```
Open the file with read only mode

Read content from file

read(3, "hello\n", 65536)

write(1, "hello\n", 6)

read(3, "", 65536)

close(3)

prompt> strace cat file.txt

...

open("file.txt", O_RDONLY)

read(3, "hello\n", 65536)

close(3)

prompt>
```

```
Open the file with read only mode

Read content from file

Write string to std output fd 1

read(3, "hello\n", 65536)

read(3, "", 65536)
```

```
Open the file with read only mode

Read content from file

Write string to std output fd 1

cat tries to read more but reaches EOF

Open("file.txt", O_RDONLY) = 3

read(3, "hello\n", 65536) = 6

write(1, "hello\n", 6) = 6

read(3, "", 65536) = 0

close(3) = 0

...

prompt>
```

```
prompt> strace cat file.txt
Open the file with read
          only mode
                       open("file.txt", O_RDONLY)
Read content from file
                       read(3, "hello\n", 65536)
   Write string to std
                       write(1, "hello\n", 6)
         output fd 1
                       read(3, "", 65536)
                                                                   0
cat tries to read more
                       close(3)
                                                                   0
     but reaches EOF
                       prompt>
cat done with file ops
```

and closes the file

Non-Sequential File Operations

```
off_t offset = lseek(int fd, off_t offset, int whence);
```

Non-Sequential File Operations

```
off_t offset = lseek(int fd, off_t offset, int whence);
```

whence:

- If whence is SEEK_SET, the offset is set to offset bytes
- If whence is SEEK_CUR, the offset is set to its current location plus offset bytes
- If whence is SEEK_END, the offset is set to the size of the file plus offset bytes

Non-Sequential File Operations

```
off_t offset = lseek(int fd, off_t offset, int whence);
```

whence:

- If whence is SEEK_SET, the offset is set to offset bytes
- If whence is SEEK_CUR, the offset is set to its current location plus offset bytes
- If whence is SEEK_END, the offset is set to the size of the file plus offset bytes

Note: Calling lseek() does not perform a disk seek!

Writing Immediately with fsync()

```
int fd = fsync(int fd);
```

- fsync(fd) forces buffers to flush to disk, and (usually) tells the disk to flush its write cache too
 - To make the data durable and persistent
- Write buffering improves performance

Renaming Files

prompt> mv file.txt new_name.txt

Renaming Files

```
prompt> strace mv file.txt new_name.txt
...
rename("file.txt", "new_name.txt") = 0
...
prompt>
```

Renaming Files

```
System call rename() atomically renames a file file file file.txt", "new_name.txt") = 0

...

prompt> strace mv file.txt new_name.txt

rename("file.txt", "new_name.txt") = 0

...

prompt>
```

File Renaming Example

```
prompt> vim file.txt
```

```
int fd = open(".file.txt.swp",0_WRONLY|0_CREAT|0_TRUNC,S_IRUSR|S_IWUSR);
```

Using vim to edit a file and then save it

File Renaming Example

```
prompt> vim file.txt
... vim editing session ...
```

```
int fd = open(".file.txt.swp",0_WRONLY|0_CREAT|0_TRUNC,S_IRUSR|S_IWUSR);
write(fd, buffer, size); // write out new version of file (editing...)
```

Using vim to edit a file and then save it

File Renaming Example

```
prompt> vim file.txt
... vim editing session ...
prompt> :WQ
```

Using vim to edit a file and then save it

prompt> rm file.txt

```
prompt> strace rm file.txt
...
unlink("file.txt") = 0
...
prompt>
```

System call unlink() is called to delete a file

```
prompt> strace rm file.txt
...
unlink("file.txt") = 0
...
prompt>
```

```
System call unlink() is called to delete a file unlink("file.txt") = 0

...

prompt> strace rm file.txt

...

unlink("file.txt") = 0
```

Directories are deleted when unlink() is called

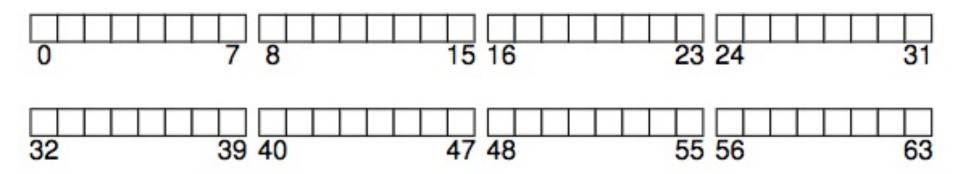
Q: File descriptors are deleted when ???

Demo: Hard Links vs. Symbolic Links

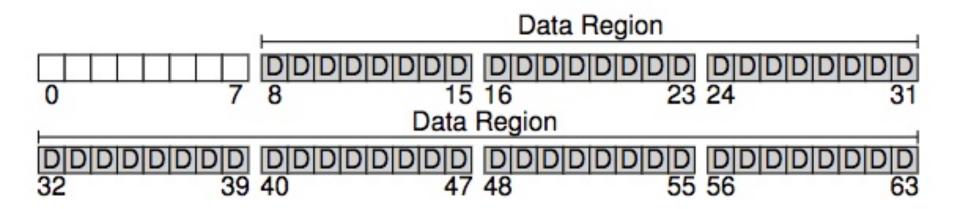
File System Implementation

File System Implementation

- On-disk structures
 - How do we represent files and directories?

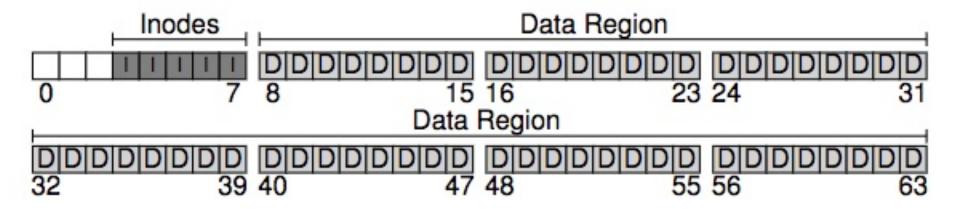

- File system operations (internally)
 - How on-disk structures get touched when performing FS operations
- File system locality & data layout policies
 - How data layout impacts locality for on-disk FS?

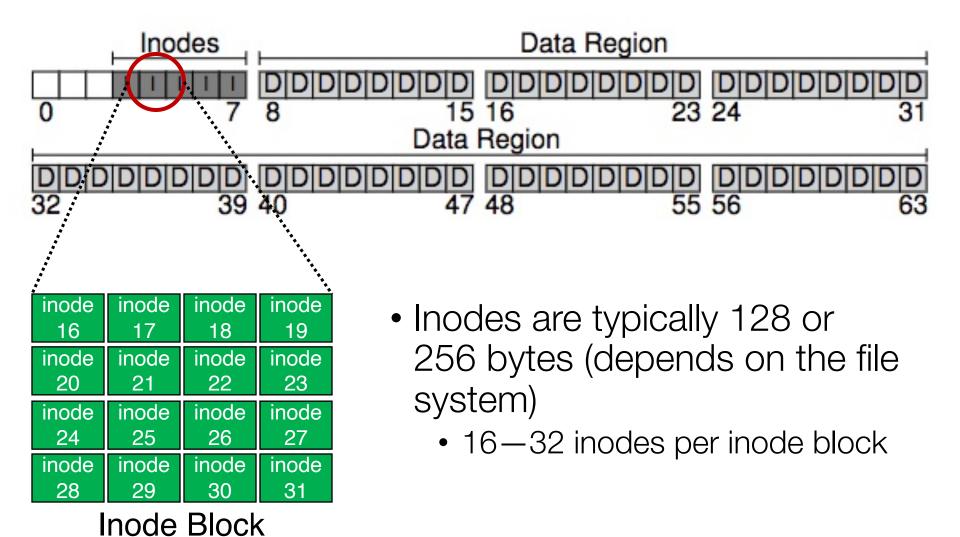
On-Disk Structures

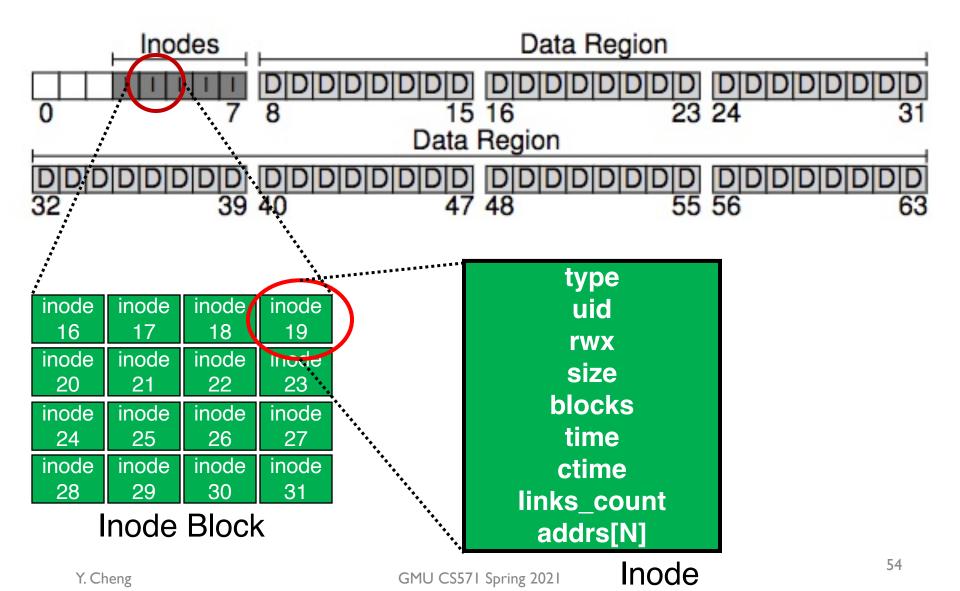

On-Disk Structures

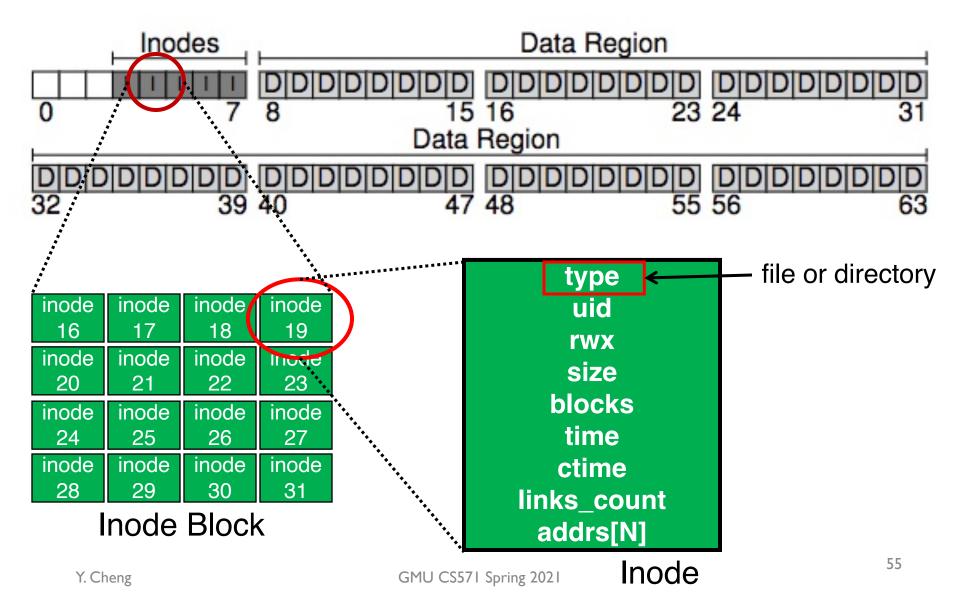
- Common file system structures
 - Data block
 - inode table
 - Directories
 - Data bitmap
 - inode bitmap
 - Superblock

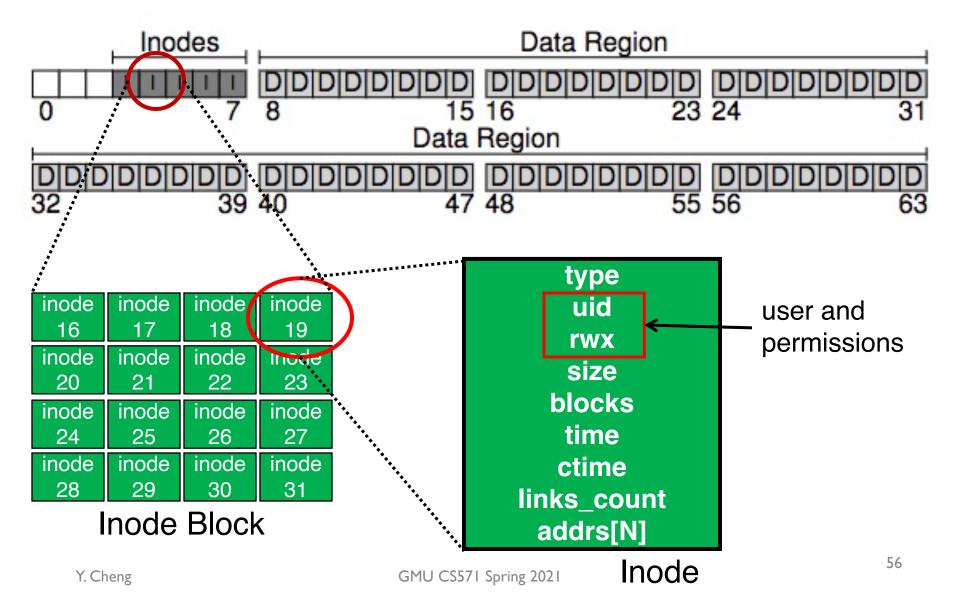
On-Disk Structure: Empty Disk

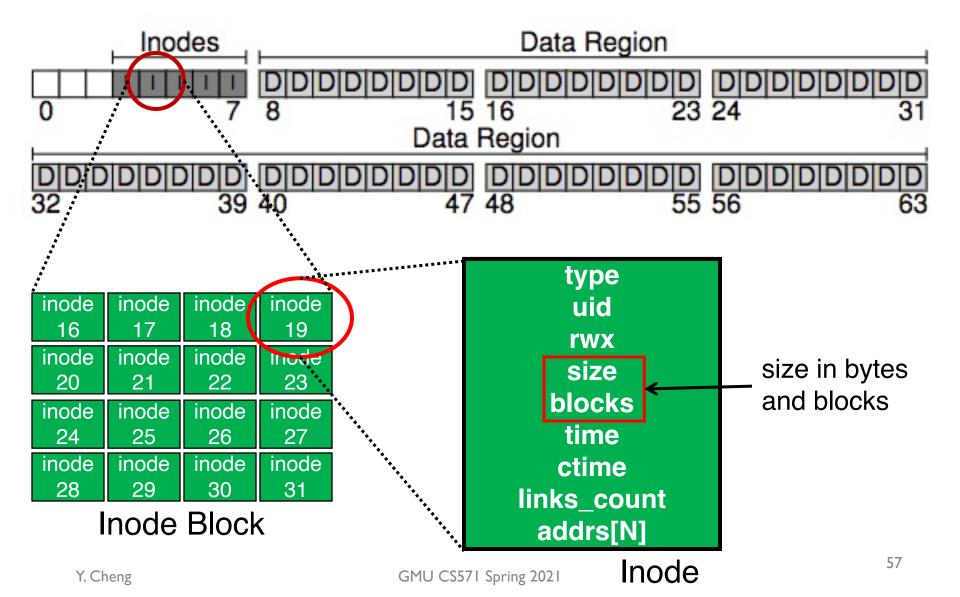


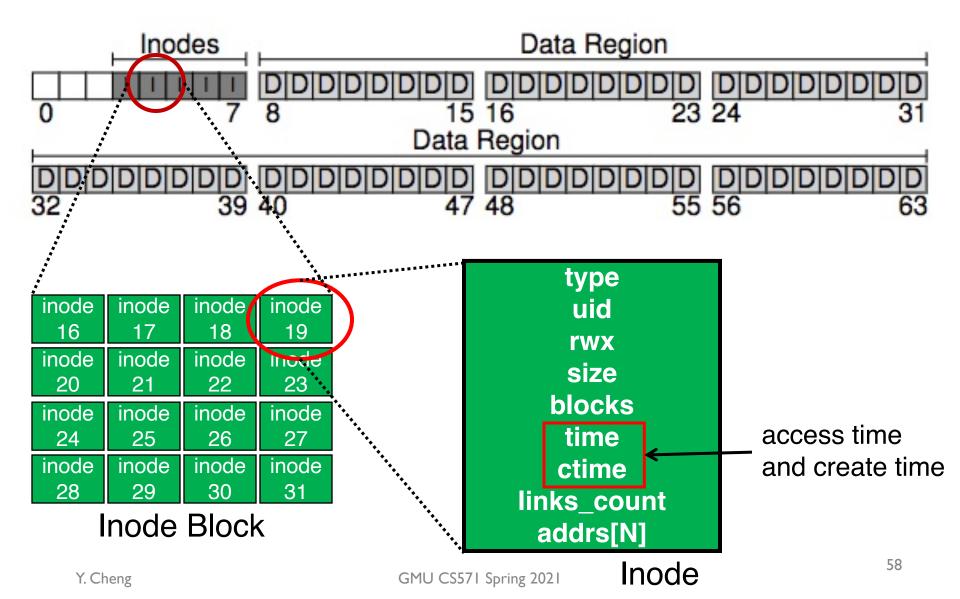

On-Disk Structure: Data Blocks

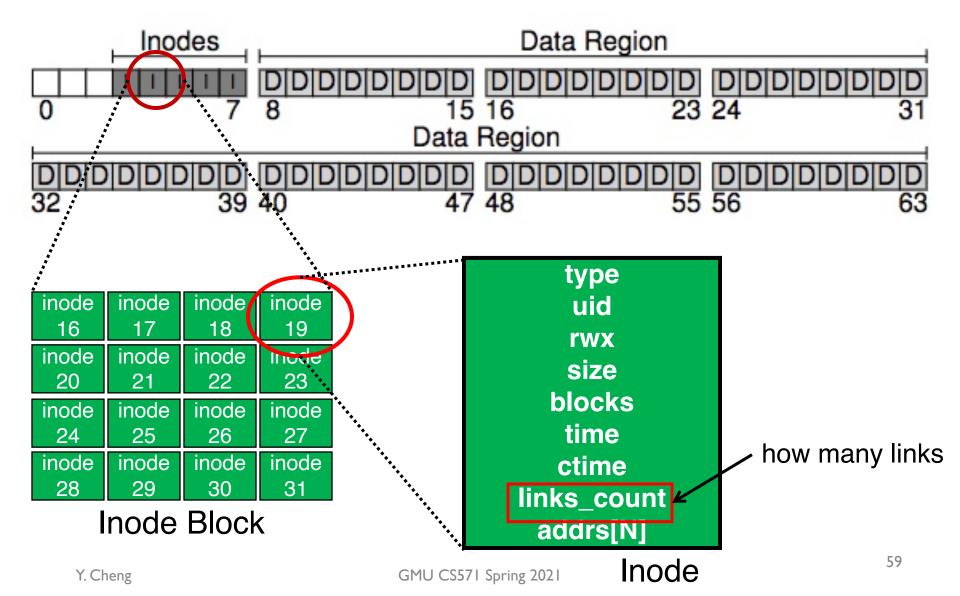


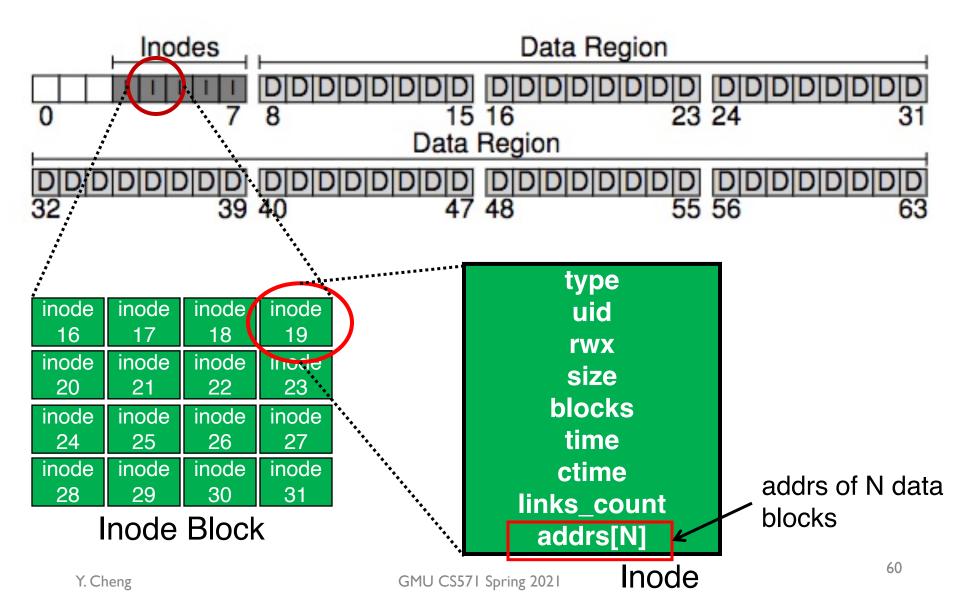

On-Disk Structures

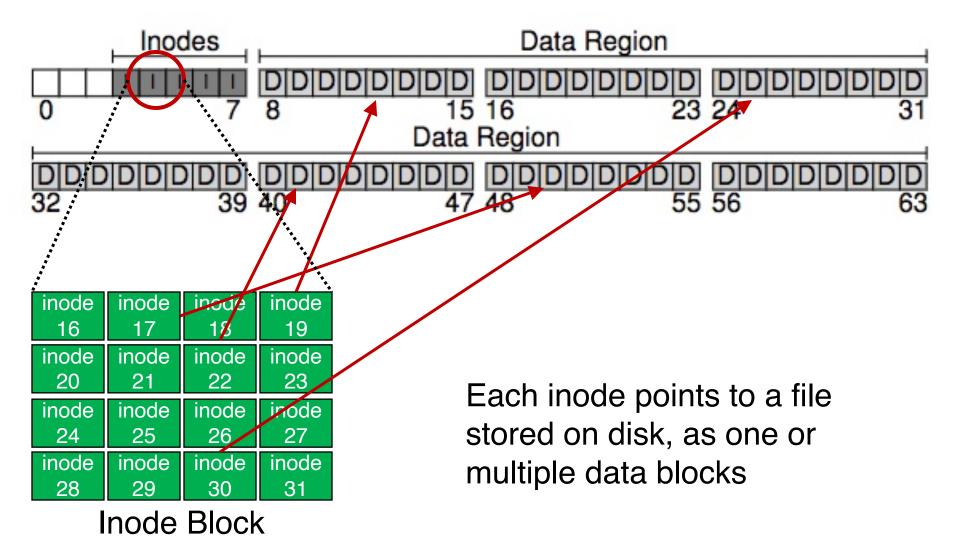

- Common file system structures
 - Data block
 - inode table
 - Directories
 - Data bitmap
 - inode bitmap
 - Superblock











On-Disk Structures

- Common file system structures
 - Data block
 - Inode table
 - Directories
 - Data bitmap
 - Inode bitmap
 - Superblock

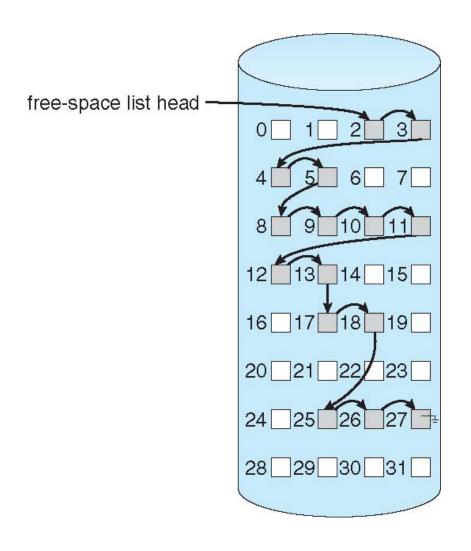
On-Disk Structure: Directories

- Common directory design: just store directory entries in files
 - Different file systems vary
- Various data structures (formats) could be used
 - Lists
 - B-trees

On-Disk Structures

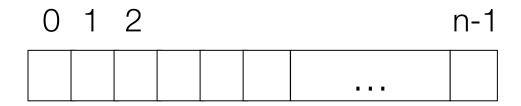
- Common file system structures
 - Data block
 - inode table
 - Directories
 - Data bitmap
 - inode bitmap
 - Superblock

Allocation


 How does file system find free data blocks or free inodes?

Allocation

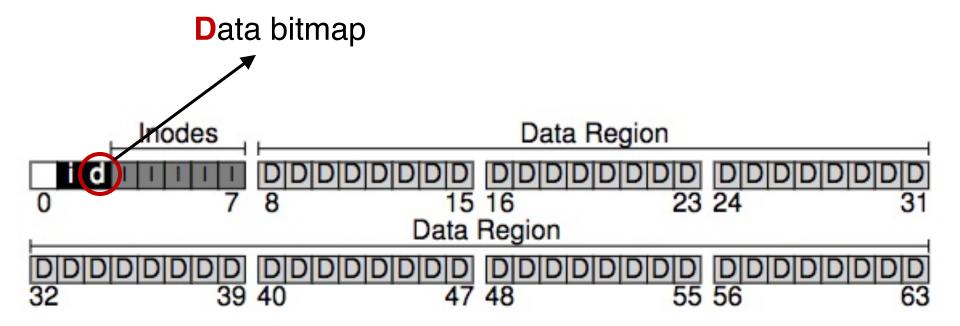
- How does file system find free data blocks or free inodes?
 - Free list
 - Bitmaps


What are the tradeoffs?

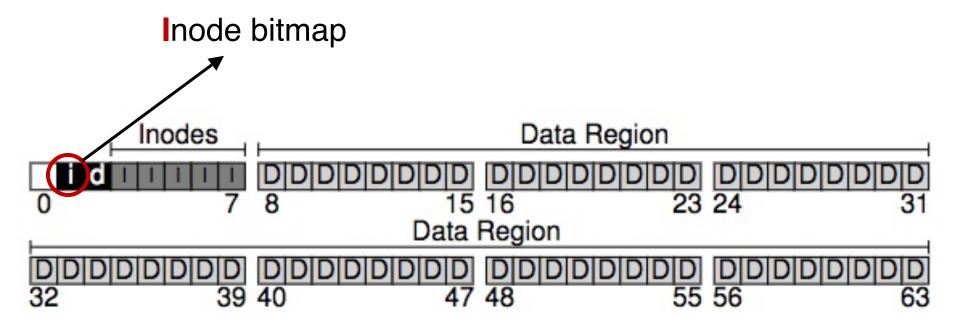
Free List

Bitmap

Each bit of the bitmap is used to indicate whether the corresponding object/block is free (0) or in-use (1)


$$bit[i] = \begin{cases} 1 \Rightarrow object[i] \text{ in use} \\ 0 \Rightarrow object[i] \text{ free} \end{cases}$$

Allocation

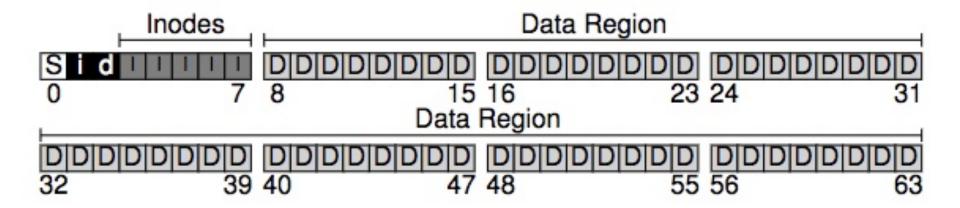

- How does file system find free data blocks or free inodes?
 - Free list
 - Bitmaps

- What are the tradeoffs?
 - Free list: Cannot get contiguous space easily
 - Bitmap: Easy to allocate contiguous space for files

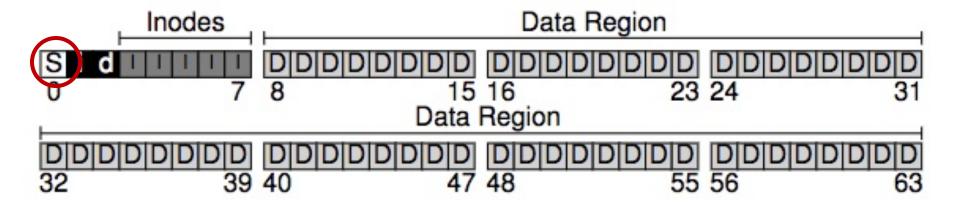
On-Disk Structure: Data Bitmaps

On-Disk Structure: Inode Bitmaps

On-Disk Structures


- Common file system structures
 - Data block
 - Inode table
 - Directories
 - Data bitmap
 - Inode bitmap
 - Superblock

On-Disk Structure: Superblock


- Need to know basic file system configuration and runtime status, such as:
 - Block size
 - How many inodes are there
 - How much free space

Store all these metadata info in a superblock


On-Disk Structure: Superblock

On-Disk Structure: Superblock

On-Disk Structure Overview

File System Operations

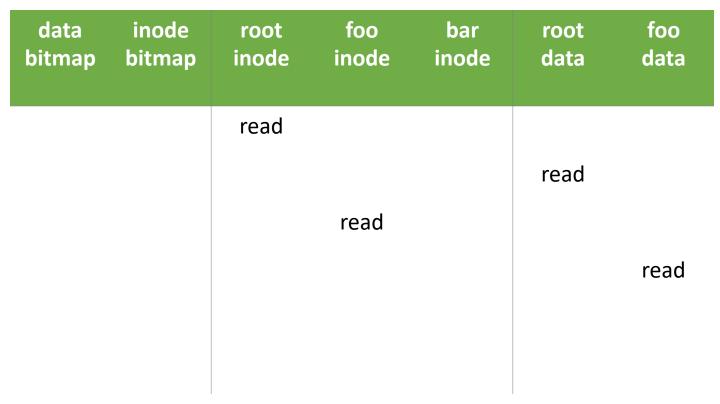
create /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data

create /foo/bar

[traverse]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read			read	


create /foo/bar

[traverse]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read			read	
			read			read
						reau

create /foo/bar

[traverse]

foo inode: we have permission

foo data: bar doesn't exist

create /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read				
					read	
			read			
						read

create /foo/bar

[allocate inode]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read			read	
			read			read
	read write					

create /foo/bar

[populate inode]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read			1	
					read	
			read			
						read
	read write					
				read write		

create /foo/bar

[add bar to /foo]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read				
					read	
			read			
						read
	read write					
				read write		
			write			
						write

write to /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data

write to /foo/bar

[block full? yes]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
				read			

write to /foo/bar

[allocate block]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
read write				read			

write to /foo/bar

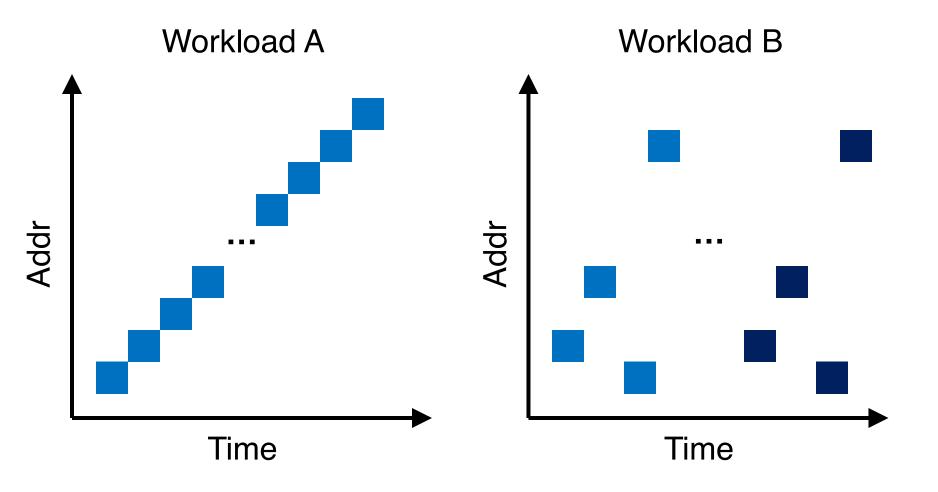
[point to block]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
read write				read			
				write			

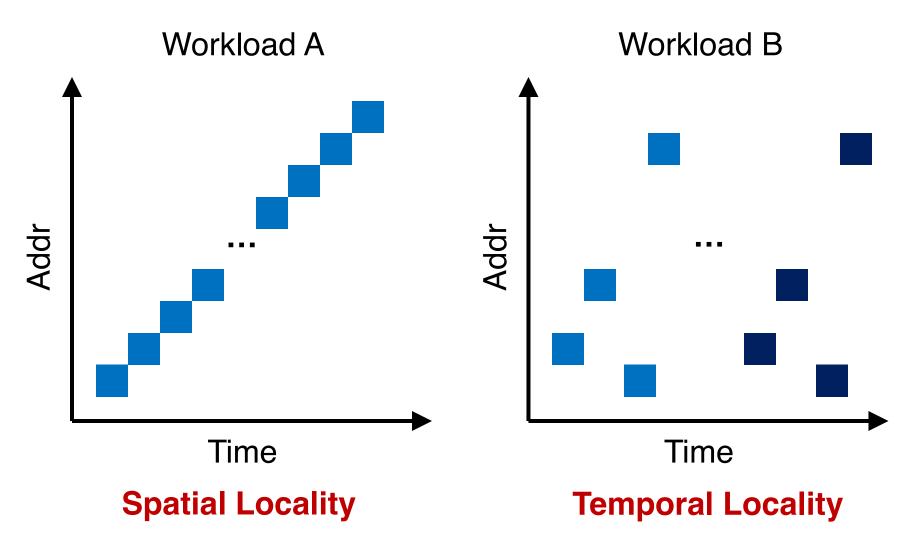
write to /foo/bar

[point to block]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
read write				read			
				write			write


write to /foo/bar

[point to block]

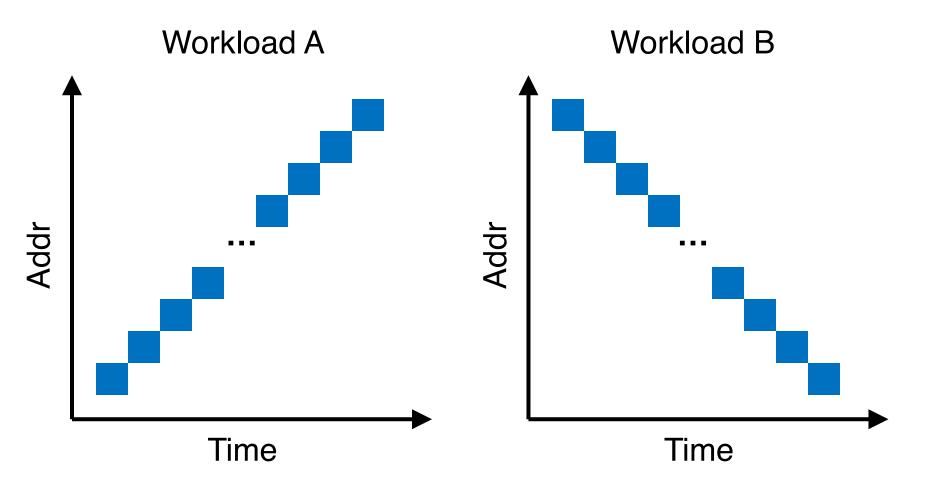

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
					dir blocks		file
read write				read			
wiite				write			
							write

Locality & Data Layout

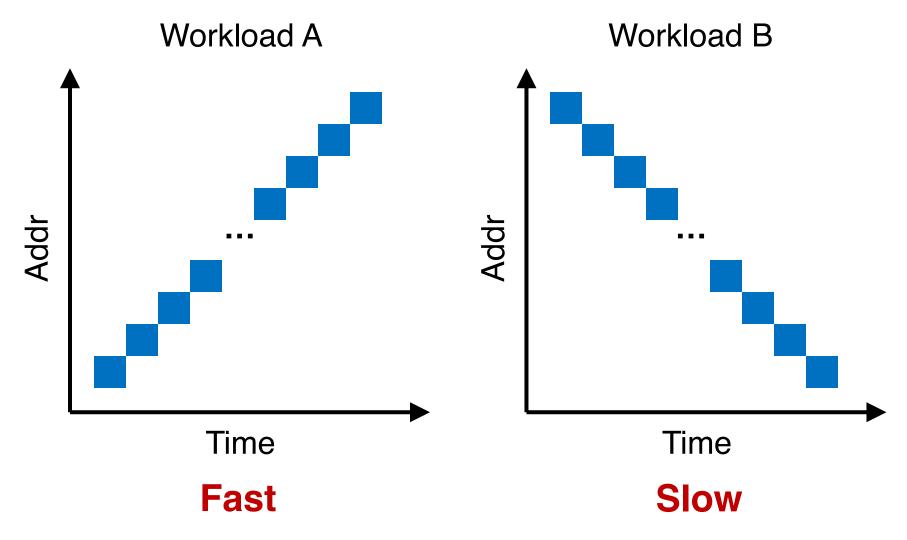
Review: Locality Types

Review: Locality Types

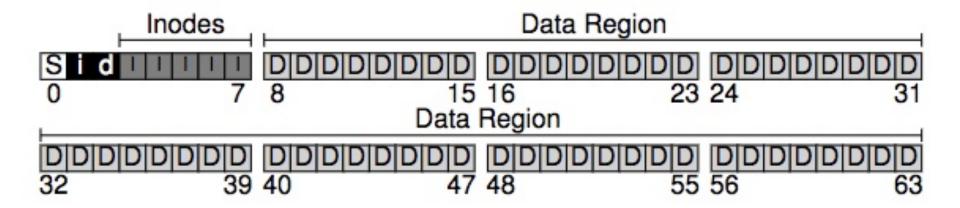
Locality Usefulness in the Context of Disk-based File Systems

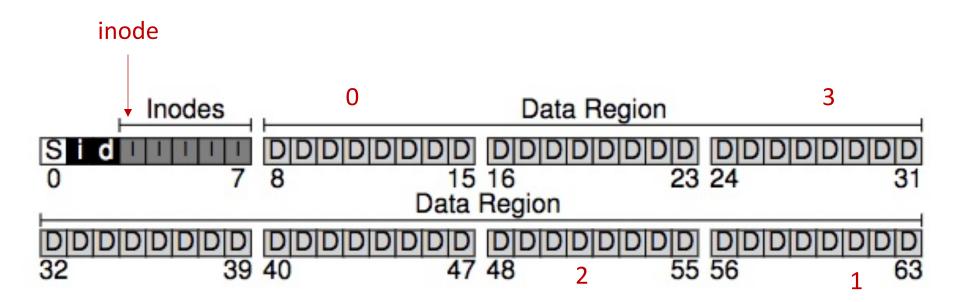

What types of locality are useful for a cache?

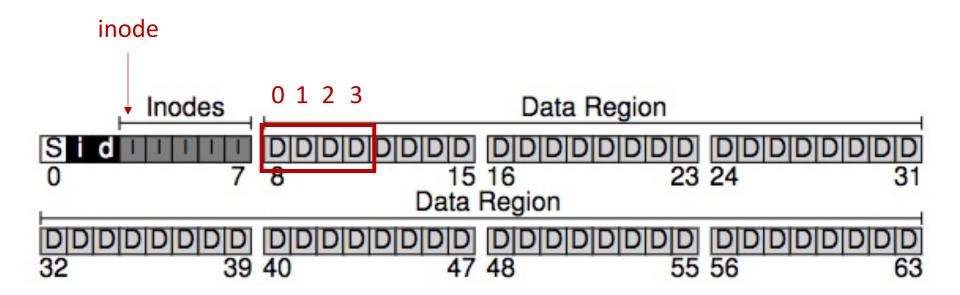
What types of locality are useful for a disk?

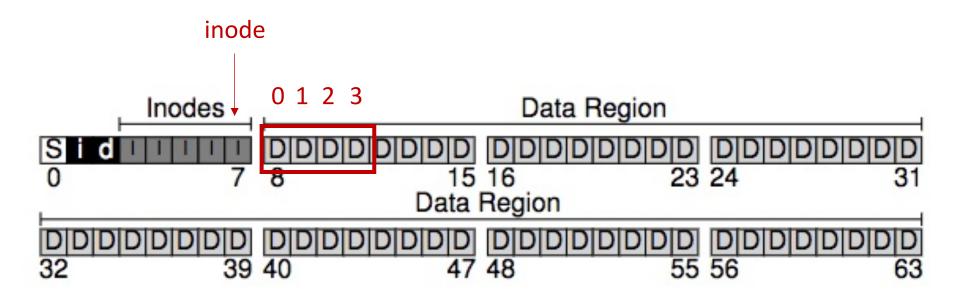

Locality Usefulness in the Context of Disk-based File Systems

- What types of locality are useful for a cache?
 - Possibly, both spatial & temporal locality
- What types of locality are useful for a disk?
 - Spatial locality, since a disk sucks in random I/Os but can provide reasonably good sequential performance


Order Matters Now for FS on Disk


Order Matters Now for FS on Disk


Policy: Choose Inode, Data Blocks


Bad File Layout

Better File Layout

Best File Layout

Recap on Disks

Properties of A Single Disk

- A single disk is slow
 - Kind of Okay sequential I/O performance
 - Really bad for random I/O

Properties of A Single Disk

- A single disk is slow
 - Kind of Okay sequential I/O performance
 - Really bad for random I/O

The storage capacity of a single disk is limited

Properties of A Single Disk

- A single disk is slow
 - Kind of Okay sequential I/O performance
 - Really bad for random I/O

- The storage capacity of a single disk is limited
- A single disk is not reliable

RAID: Redundant Array of Inexpensive Disks

Wish List for a Disk

- Wish it to be faster
 - I/O is always the performance bottleneck

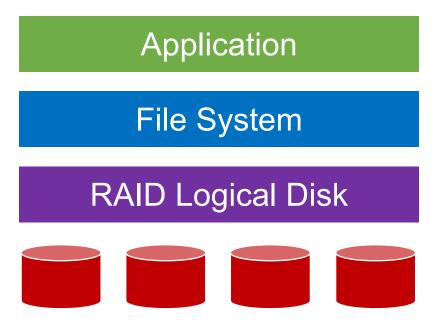
Wish List for a Disk

- Wish it to be faster
 - I/O is always the performance bottleneck

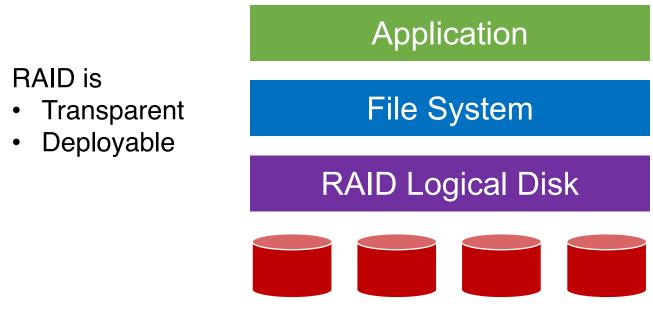
- Wish it to be larger
 - More and more data needs to be stored

Wish List for a Disk

- Wish it to be faster
 - I/O is always the performance bottleneck


- Wish it to be larger
 - More and more data needs to be stored

- Wish it to be more reliable
 - We don't want our valuable data to be gone


Only One Disk?

- Sometimes we want many disks
 - For higher performance
 - For larger capacity
 - For better reliability
- Challenge: Most file systems work on only one disk

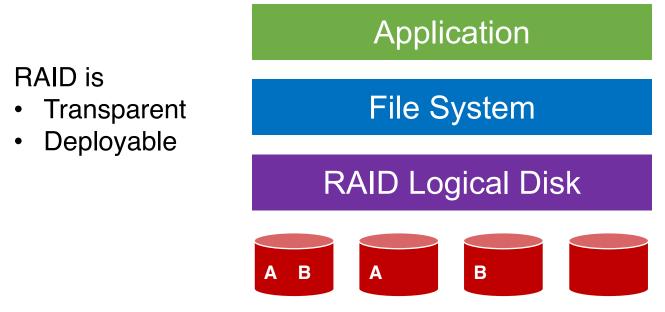
RAID: Redundant Array of Inexpensive Disks

RAID: Redundant Array of Inexpensive Disks

RAID: Redundant Array of Inexpensive Disks

RAID is

• Transparent


• Deployable

RAID Logical Disk

Logical disks gives

- Performance
- Capacity
- Reliability

RAID: Redundant Array of Inexpensive Disks

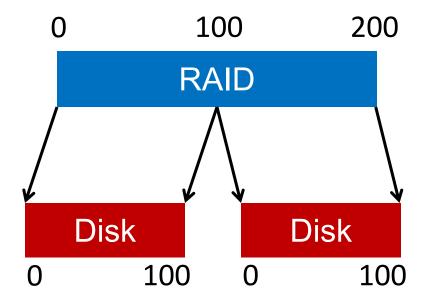
Logical disks gives

- Performance
- Capacity
- Reliability

Why Inexpensive Disks?

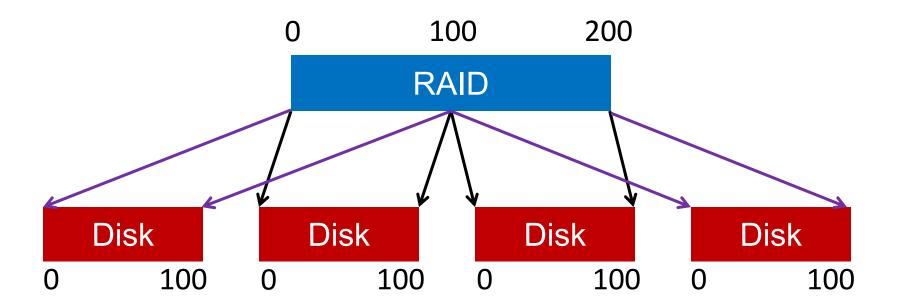
• Economies of scale! Cheap disks are popular

 You can often get many commodity hardware components for the same price as a few expensive components


Why Inexpensive Disks?

• Economies of scale! Cheap disks are popular

- You can often get many commodity hardware components for the same price as a few expensive components
- Strategy: Write software to build high-quality logical devices from many cheap devices
 - Tradeoff: To compensate poor properties of cheap devices


General Strategy

Build fast and large disks from smaller ones

General Strategy

Build fast and large disks from smaller ones Add more disks for reliability++!

RAID Metrics

- Performance
 - How long does each workload take?

- Capacity
 - How much space can apps use?
- Reliability
 - How many disks can we safely lose?

RAID Metrics

- Performance
 - How long does each workload take?
- Capacity
 - How much space can apps use?

- Reliability
 - How many disks can we safely lose?
 - Assume fail-stop model!

RAID Levels

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

RAID Level 0

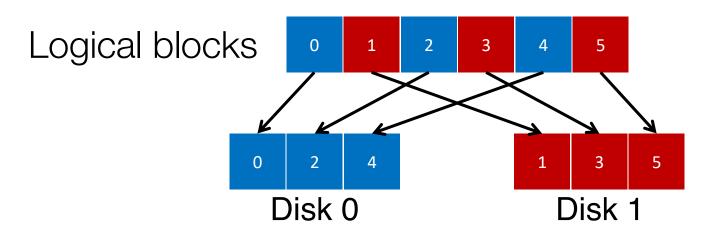
(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.



(f) RAID 5: block-interleaved distributed parity.

RAID-0: Striping

No redundancy

- Serves as upper bound for
 - Performance
 - Capacity

4 Disks

Disk 0	Disk 1	Disk 2	Disk 3	
0	1	2	3	
4	5	6	7	
8	9	10	11	
12	13	14	15	

4 Disks

	Disk 0	Disk 1	Disk 2	Disk 3
_	0	1	2	3
stripe:	4	5	6	7
	8	9	10	11
	12	13	14	15

How to Map?

- Given logical address A:
 - Disk = ...
 - Offset = ...

Di	sk 0	Disk 1	Disk 2	Disk 3
	0	1	2	3
	4	5	6	7
	8	9	10	11
	12	13	14	15

How to Map?

- Given logical address A:
 - Disk = A % disk count
 - Offset = A / disk_count

Di	sk 0	Disk 1	Disk 2	Disk 3
	0	1	2	3
	4	5	6	7
	8	9	10	11
	12	13	14	15

Mapping Example: Find Block 13

- Given logical address 13:
 - Disk = 13 % 4 = 1
 - Offset = 13 / 4 = 3

	Disk 0	Disk 1	Disk 2	Disk 3
Offset ()	0	1	2	3
1	4	5	6	7
2	8	9	10	11
3	12	(13)	14	15

Chunk Size = 1

Disk 0	Disk 1	Disk 2	Disk 3
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Chunk Size = 1

Disk 0	Disk 1	Disk 2	Disk 3
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Chunk Size = 2

	Disk 0	Disk 1	Disk 2	Disk 3	
	0	2	4	6	chunk size:
	1	3	5	7	2 blocks
	8	10	12	14	
Y. (Cheng 9	11	13	15	131

Chunk Size = 1

Disk 0	Disk 1	Disk 2	Disk 3
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

In all following examples, we assume chunk size of 1

Chunk Size = 2

D	isk 0	Disk 1	Disk 2	Disk 3	
	0	2	4	6	chunk size:
	1	3	5	7	2 blocks
	8	10	12	14	
Y. Cheng	9	11	13	15	132

RAID-0 Analysis

1. What is capacity?

- 2. How many disks can fail?
- 3. Throughput?

4. Latency?

RAID-0 Analysis

- 1. What is capacity? N * C
- 2. How many disks can fail? 0
- 3. Throughput? N * S and N * R

4. Latency? D

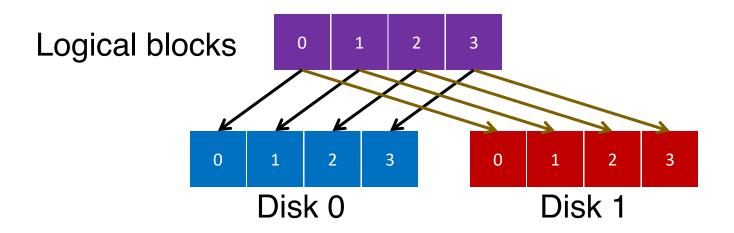
RAID Level 1

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.


(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

RAID-1: Mirroring

• RAID-1 keeps two copies of each block

Assumption

- Assume disks are fail-stop
 - Two states
 - They work or they don't
 - We know when they don't work

4 Disks

Disl	< 0 I	Disk 1	Disk 2	Disk 3
0		0	1	1
2		2	3	3
4		4	5	5
6		6	7	7

4 Disks

Disk 0	Disk 1	Disk 2	Disk 3	
0	0	1	1	
2	2	3	3	
4	4	5	5	
6	6	7	7	

How many disks can fail?

RAID-1 Analysis

- 1. What is capacity? N/2 * C
- 2. How many disks can fail? 1 or maybe N / 2
- 3. Throughput?
 - Seq read: N/2 * S
 - Seq write: N/2 * S
 - Rand read: N * R
 - Rand write: N/2 * R
- 4. Latency? D

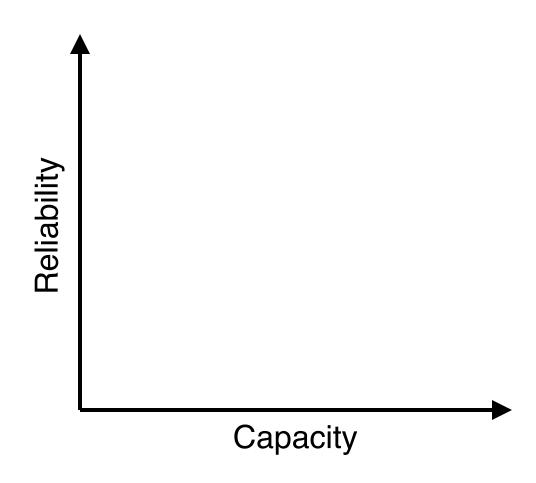
RAID Level 4

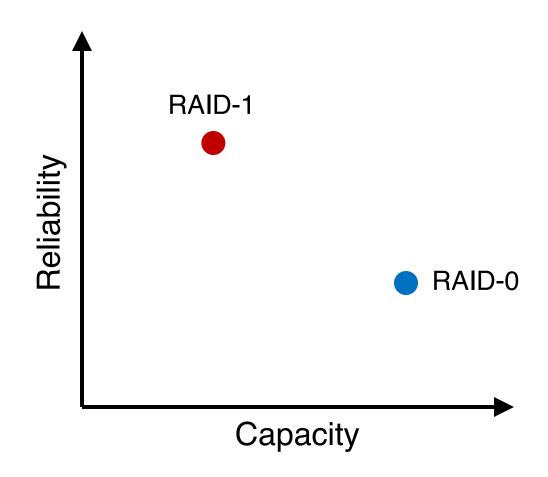
(a) RAID 0: non-redundant striping.

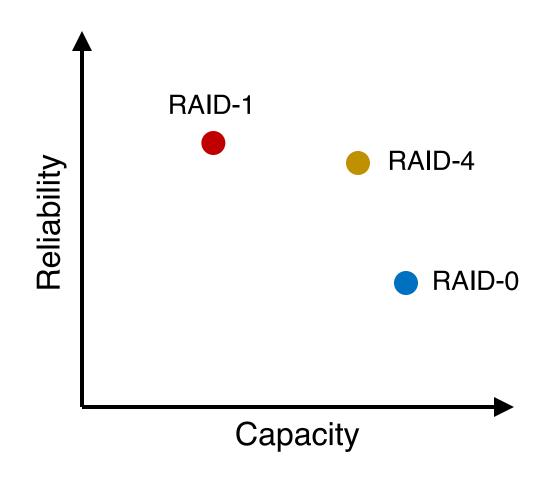
(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.


(e) RAID 4: block-interleaved parity.


(f) RAID 5: block-interleaved distributed parity.


RAID-4

RAID-4

RAID-4

RAID-4: Strategy

Use parity disk

 In algebra, if an equation has N variables, and N-1 are known, you can also solve for the unknown

 Treat the sectors/blocks across disks in a stripe as an equation

RAID-4: Strategy

Use parity disk

 In algebra, if an equation has N variables, and N-1 are known, you can also solve for the unknown

 Treat the sectors/blocks across disks in a stripe as an equation

A failed disk is like an unknown in that equation

5 Disks

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
4	5	6	7	P1
8	9	10	11	P2
12	13	14	15	P3

	Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
stripe:					
					(parity)

	Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
stripe:	4	3	0	2	

(parity)

	Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
stripe:	4	3	0	2	9
					(parity)

_1	Disk 0	Disk 1	Disk 2	Disk
stripe:	Χ	3	0	2

(parity)

Disk 4

9

	Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
stripe:	4	3	0	2	9
					(parity)

C0	C1	C2	C3	P
0	0	1	1	XOR(0,0,1,1) = 0
0	1	0	0	XOR(0,1,0,0) = 1

C0	C1	C2	C3	P
0	0	1	1	XOR(0,0,1,1) = 0
0	1	0	0	XOR(0,1,0,0) = 1

- P = 0: The number of 1 in a stripe must be an even number
- P = 1: The number of 1 in a stripe must be an odd number

	Block0	Block1	Block2	Block3	Parity
stripe:	00	10	11	10	11
	10	01	00	01	10

- P = 0: The number of 1 in a stripe must be an even number
- P = 1: The number of 1 in a stripe must be an odd number

	Block0	Block1	Block2	Block3	Parity
stripe:	X	10	11	10	11
	10	01	00	01	10

- P = 0: The number of 1 in a stripe must be an even number
- P = 1: The number of 1 in a stripe must be an odd number

$$Block0 = XOR(10,11,10,11) = 00$$

- P = 0: The number of 1 in a stripe must be an even number
- P = 1: The number of 1 in a stripe must be an odd number

	Block0	Block1	Block2	Block3	Parity
stripe:	00	10	11	10	11
	10	01	00	01	10

Block
$$0 = XOR(10,11,10,11) = 00$$

- P = 0: The number of 1 in a stripe must be an even number
- P = 1: The number of 1 in a stripe must be an odd number

RAID-4 Analysis

- 1. What is capacity? (N-1) * C
- 2. How many disks can fail? 1
- 3. Throughput?
 - Seq read: (N-1) * S
 - Seq write: (N-1) * S
 - Rand read: (N-1) * R
 - Rand write: R/2
- 4. Latency? D, 2D

RAID-4 Analysis: Random Write

Random write to 4, 13, and respective parity blocks

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
*4	5	6	7	+P1
8	9	10	11	P2
12	*13	14	15	+P3

Small write problem (for parity-based RAIDs):
Parity disk serializes all random writes; each logical I/O
generates two physical I/Os (one read and one write for parity P1)

RAID Level 5

(a) RAID 0: non-redundant striping.

(b) RAID 1: mirrored disks.

(c) RAID 2: memory-style error-correcting codes.

(d) RAID 3: bit-interleaved parity.

(e) RAID 4: block-interleaved parity.

(f) RAID 5: block-interleaved distributed parity.

RAID-5: Rotating Parity

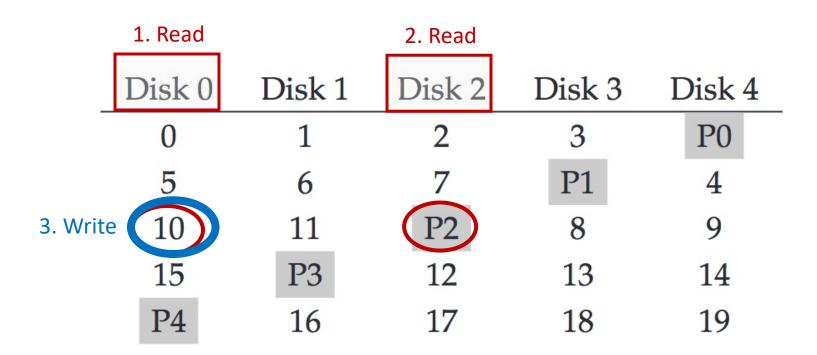
Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
5	6	7	P1	4
10	11	P2	8	9
15	P3	12	13	14
P4	16	17	18	19

RAID-5 works almost identically to RAID-4, except that it rotates the parity block across drives

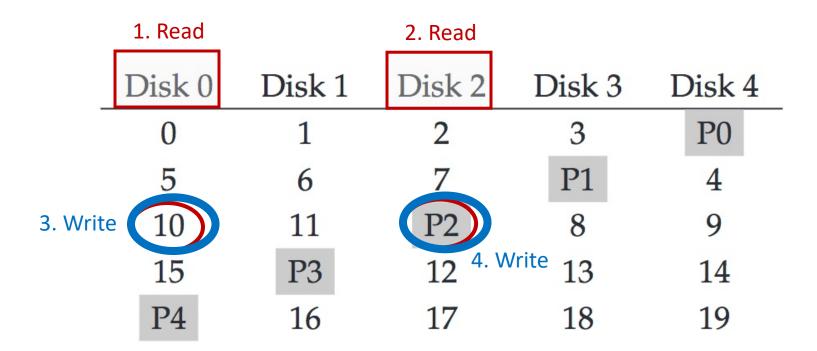
RAID-5 Analysis

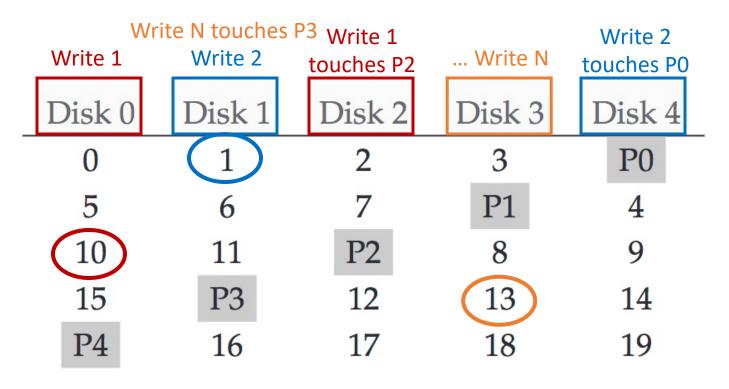

- 1. What is capacity? (N-1) * C
- 2. How many disks can fail? 1
- 3. Throughput?
 - Seq read: (N-1) * S
 - Seq write: (N-1) * S
 - Rand read: N * R
 - Rand write: ???
- 4. Latency? D, 2D

Write				
Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
5	6	7	P1	4
10	11	P2	8	9
15	P3	12	13	14
P4	16	17	18	19


	1. Read				
]	Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
	0	1	2	3	P0
	5	6	7	P1	4
	10	11	P2	8	9
	15	P3	12	13	14
	P4	16	17	18	19

Random write to Block 10 on Disk 0


1. Read Block 10


- 1. Read Block 10
- 2. Read the Parity P2

- 1. Read Block 10
- 2. Read the Parity P2
- 3. Write new data in Block 10

- 1. Read Block 10
- 2. Read the Parity P2
- 3. Write new data in Block 10
 - 4. Write new parity P2

Performance reasoning

Generally, for a large number of random read/write requests, RAID-5 will be able to keep all disks busy: thus **N** * **R**

Each random (RAID-5) writes generates 4 physical I/O operations:

thus N * R / 4

RAID-5 Analysis

- 1. What is capacity? (N-1) * C
- 2. How many disks can fail? 1
- 3. Throughput?
 - Seq read: (N-1) * S
 - Seq write: (N-1) * S
 - Rand read: N * R
 - Rand write: N * R/4
- 4. Latency? D, 2D

Summary: All RAID's

	Reliability	Capacity
RAID-0	0	C * N
RAID-1	1 or N/2	C * N/2
RAID-4	1	N-1
RAID-5	1	N-1

Summary: All RAID's

	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	N * S	N * S	N * R	N * R
RAID-1	N/2 * S	N/2 * S	N * R	N/2 * R
RAID-4	(N-1) * S	(N-1) * S	(N-1) * R	R/2
RAID-5	(N-1) * S	(N-1) * S	N * R	N/4 * R

Please Read the Textbook!

Please do read the textbook chapter "RAID" to gain a deeper understanding of the various analyses covered in lecture.