
Introduction
CS 571: Operating Systems (Spring 2021)

Lecture 1

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



Introduction

• Instructor
• Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
• Email: yuecheng@gmu.edu
• Office hours: Wednesday 1:30pm-2:30pm 
• Research interests: Distributed and storage systems, 

serverless and cloud computing, operating systems
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Introduction
• Instructor
• Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
• Email: yuecheng@gmu.edu
• Office hours: Wednesday 1:30 – 2:30 pm 
• Research interests: Distributed and storage systems, 

serverless and cloud computing, operating systems

• Graduate teaching assistant
• Michael Crawshaw
• Email: mcrawsha@masonlive.gmu.edu
• Office hours: 

• Monday 1:30 – 2:30 pm + Thursday 2:30 – 3:30 pm
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Administrivia
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• Required textbook
• Operating Systems: Three Easy Pieces, 
By Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau

• Recommended textbook
• Operating Systems Principles & Practices
By T. Anderson and M. Dahlin

• Prerequisites are enforced!!
• CS 310 Data Structures 
• CS 367 Computer Systems & Programming
• CS 465 Computer Systems Architecture
• Be comfortable with C programming language

• Class web page
• https://tddg.github.io/cs571-spring21/
• Class materials will all be available on the class web page
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Administrivia (cont.)

• Syllabus
• https://cs.gmu.edu/media/syllabi/Spring2021/CS_571ChengY.html

• Grading
• 50% projects 
• 10% homework
• 20% midterm exam
• 20% final exam

• Reminders
• Honor code
• Late policy: 15% deducted each day. No credit after 3 

days 
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Course schedule

• Materials, assignments, due dates
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Course format

• (Review) + lecture + (worksheets and/or demos)
• A short overview of the previous lecture to make sure 

the old content is not completely forgotten
• Worksheet practices to make sure the lecture is well 

understood
• Demos to help you gain a better understanding of the 

materials taught
• e.g., OSTEP demos/simulators, tools

• We will also cover a few seminal research papers on 
the way
• ARC, MapReduce
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Course projects

• Goals: 
1. To gain hands-on systems programming 

experience with C
2. To gain experience building practical distributed 

systems using Go
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Course projects
• Goals: 

1. To gain hands-on systems programming experience 
with C

2. To gain experience building practical distributed systems 
using Go

• Five + one coding projects
• Project 0a (C warm-up): Linux utilities
• Project 0b: Intro to Go
• Project 1: Implement a Linux shell
• Project 2: Implement and analyze a suite of caching 

policies
• Project 3: Implement a user-level green thread library 
• Project 4: Implement a MapReduce framework using Go
• Project 5 (extra credits): Implement a Mason Distributed 

File System (MDFS) using Go
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Course projects
• Goals: 

1. To gain hands-on systems programming experience
2. To gain experience hacking a moderately sized system 

codebase (OS/161)

• Five + one coding projects (50%+3%+7%)
• Project 0a (C warm-up): Linux utilities – 5%
• Project 0b: Intro to Go – 5%
• Project 1: Implement a Linux shell – 10%
• Project 2: Implement and analyze a suite of caching policies –

10%+3%
• Project 3: Implement a user-level green thread library – 10%
• Project 4: Implement a MapReduce framework using Go – 10%
• Project 5 (extra credits): Implement a Mason Distributed File 

System (MDFS) using Go – 7%
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Homework assignments

• Three written homework assignments
• Assignment 0 (getting you prepared: 0%)
• Assignment 1 before the midterm (5%)
• Assignment 2 after the midterm (5%)
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Getting help
• My office hours
• Wednesday 1:30 pm – 2:30 pm, on Zoom

• Michael’s office hours
• Monday 1:30 – 2:30 pm + Thursday 2:30 – 3:30 pm

• Piazza
• Good place to ask and answer questions

• About project and materials from lectures
• No anonymous posts or questions
• You are highly encouraged to answer questions

posted by your classmates
• Setting expectation: Michael and I will 

monitor/respond to Piazza 1-2 times per day in a 
burst of activity
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What is an OS?
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What is an OS?

• OS manages resources
• Memory, CPU, storage, network
• Data (file systems, I/O)

• Provides low-level abstractions to applications
• Files
• Processes, threads
• Virtual machines (VMs), containers
• …
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OS abstracts away low-level details
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OS abstracts away low-level details
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OS abstracts away low-level details
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What happens when a program runs?

• A running program executes instructions
1. The processor fetches an instruction from memory
2. Decode: Understand which instruction it is
3. Execute
4. The processor moves on to the next instruction and

so on
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How does a running program interact 
with the OS?
• System calls allow a user application to tell the 

OS what to do
• OS provides interfaces (APIs)
• Hundreds of system calls (for Linux)

• Run programs
• Access memory
• Access devices
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Virtualization

• OS virtualizes physical resources
• Gives illusion of private resources
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Virtualizing the CPU

• OS creates and manages many virtual CPUs
• Turning a single CPU into seemingly infinite number 

of CPUs
• Allowing many programs to seemingly run at once 

(concurrently)
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Demo
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Virtualizing memory

• The physical memory is an array of bytes
• A program keeps (most of) its data in memory
• Read memory (load): Access an address to fetch the

data
• Write memory (store): Store the data to a given 

address
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Demo
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Virtualizing memory (cont.)

• Each process access its own private virtual 
address space
• OS maps address space onto the physical memory
• A memory reference from a running program does 

not affect the address space of other processes
• Physical memory is a shared resource managed by

OS
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Concurrency

• OS is juggling many things at once
• First running one process, then another, and so forth

• Multi-threaded programs also have concurrency 
problem
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Demo
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Persistence

• Main memory (DRAM) is volatile
• How to persist data?
• Hardware: I/O devices such as hard disk drives 

(HDDs)
• Software: File systems
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Advanced topics – Distributed systems
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Design goals

• Build up abstraction
• Make the system easy to use

• Provide high performance
• Minimize the overhead of OS
• Virtualization w/o excessive overhead

• Protection between applications
• Isolation: Bad behavior of one does not harm others

and the OS itself
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Why do you take this course?

33Y. Cheng GMU CS571 Spring 2021



General learning goals

34

1. Grasp basic knowledge about Operating 
Systems and Computer Systems software

2. Learn important systems concepts in general
• Multi-processing/threading
• Concurrency and synchronization
• Scheduling
• Caching, memory, storage
• RPC, MapReduce
• And more…

3. Gain hands-on experience in 
writing/hacking/designing moderately large 
systems software

Y. Cheng GMU CS571 Spring 2021



Why do you take this course?

• The OS concepts are everywhere
• Fundamental OS techniques broadly generalize to 

widely-used systems technique
• Scheduling
• Concurrency
• Memory management

• Caching
• … 
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What is a process?
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What is a process?

• Programs are code (static entity)
• Processes are running programs

• Java analogy
• class -> “program”
• object -> “process”

38Y. Cheng GMU CS571 Spring 2021



What is in a process?
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Process

What things change as a program runs?
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What is in a process?
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Process

What things change as a program runs?

Code
Heap

…
Stack

memory
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What is in a process?
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Process

What things change as a program runs?

Code
Heap

…
Stack

memory
EAX
PC
SP
BP

registers
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What is in a process?
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Process

What things change as a program runs?

Code
Heap

…
Stack

memory
EAX
PC
SP
BP

registers

FDs
I/O
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Peeking inside

• Processes share code, but each has its own 
“context”
• CPU
• Instruction pointer (Program Counter)
• Stack pointer

• Memory
• Set of memory addresses (“address space”)
• cat /proc/<PID>/maps

• Disk
• Set of file descriptors
• cat /proc/<PID>/fdinfo/*
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• Principal events that cause process creation
• System initialization
• Execution of a process creation system call by a 

running process
• User request to create a process
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Process creation
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Process creation
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Process creation
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PC
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Process creation (cont.)
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• Parent process creates children processes, 
which, in turn create other processes, forming a 
tree (hierarchy) of processes
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An example process tree
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How to view process tree in Linux?

• % ps auxf
• ‘f’ is the option to show the process tree

• % pstree
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Process creation (cont.)
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• Parent process creates children processes, 
which, in turn create other processes, forming a 
tree (hierarchy) of processes

• Questions:
• Will the parent and child execute concurrently?
• How will the address space of the child be related to 

that of the parent? 
• Will the parent and child share some resources?
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Process creation in Linux
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• Each process has a process identifier (pid)
• The parent executes fork() system call to spawn 

a child
• The child process has a separate copy of the 

parent’s address space
oBoth the parent and the child continue execution at 

the instruction following the fork() system call
oThe return value for the fork() system call is 

o zero value for the new (child) process
o non-zero pid for the parent process

oTypically, a process can execute a system call like
execvp() to load a binary file into memory 
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Process creation in Linux

53

• Each process has a process identifier (pid)
• The parent executes fork() system call to spawn 

a child
• The child process has a separate copy of the 

parent’s address space
oBoth the parent and the child continue execution at 

the instruction following the fork() system call
oThe return value for the fork() system call is 

o zero value for the new (child) process
o non-zero pid for the parent process

oTypically, a process can execute a system call like
execvp() to load a binary file into memory 

This is the pid of the child process
Simply the return value of fork() 
in the context of the new child 
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The man page of fork()

http://man7.org/linux/man-pages/man2/fork.2.html
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A new system call: execvp()

• execvp() effectively reboots a process to run a 
different program from scratch 
• execvp() has many variants (execle, execlp,

and so forth. Type man execvp to see all of 
them) 
• We generally use execvp() in this course
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void main () {
int pid; 

pid = fork();
if  (pid < 0) {/* error_msg */}
else if (pid == 0) {  /* child process */

execl(“/bin/ls”, “ls”, NULL); /* execute ls */
} else {                    /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
exit(0);

}
return;

}
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Example program with fork()
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while (1) {
type_prompt();  
read_command(cmd); 
pid = fork();
if  (pid < 0) {/* error_msg */}
else if (pid == 0) { /* child process */

execute_command(cmd);
} else {                   /* parent process */

wait(NULL);
}

}
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A Very simple shell using fork()
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What happens to the value of number?

More example: fork 1
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Results

./forkexample1 

Running the fork example
The initial value of number is 7
PID is 2137 
PID is 0 

In the child, the number is 49 -- PID is 0
In the parent, the number is 7
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Further more example: fork 2

What happens to the value of number?
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Results
./forkexample2 

Running the fork example
The initial value of number is 7
PID is 2164 
PID is 0 

In the child, the number is 49 -- PID is 0
In the child, the number is 49 -- PID is 0

In the parent, the number is 7
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execl (or execvp) vs. fork
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Results
./execlexample
Running the execl example
PID is 2179 
PID is 0 

In the execl child,   PID is 0

Running the fork example
The initial value of number is 7
PID is 2180 
PID is 0 

In the child, the number is 49 -- PID is 0
In the child, the number is 49 -- PID is 0

In the parent, the number is 7
In the parent, done waiting
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forkexample2
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Today’s demo code

• You can fork it here: https://github.com/remzi-
arpacidusseau/ostep-code
• Three easy pieces: under intro/
• Process-related: under cpu-api/
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Assignment and project

• Assignment 0 (0%): 
• Please sign-up for 
• Please sign-up for Piazza
• Please finish the go programming exercise by Week 

11 

• Project 0 (10%)
• Project 0a due next Friday, 02/05, end of day
• Project 0b due (tentatively) on 04/09 – to familiarize 

yourself with Go
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