
Introduction
CS 571: Operating Systems (Spring 2021)

Lecture 1

Yue Cheng

Some material taken/derived from:
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Introduction

• Instructor
• Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
• Email: yuecheng@gmu.edu
• Office hours: Wednesday 1:30pm-2:30pm
• Research interests: Distributed and storage systems,

serverless and cloud computing, operating systems

2Y. Cheng GMU CS571 Spring 2021

http://cs.gmu.edu/~yuecheng
mailto:yuecheng@gmu.edu

Introduction
• Instructor
• Dr. Yue Cheng (web: cs.gmu.edu/~yuecheng)
• Email: yuecheng@gmu.edu
• Office hours: Wednesday 1:30 – 2:30 pm
• Research interests: Distributed and storage systems,

serverless and cloud computing, operating systems

• Graduate teaching assistant
• Michael Crawshaw
• Email: mcrawsha@masonlive.gmu.edu
• Office hours:

• Monday 1:30 – 2:30 pm + Thursday 2:30 – 3:30 pm

3Y. Cheng GMU CS571 Spring 2021

http://cs.gmu.edu/~yuecheng
mailto:yuecheng@gmu.edu
mailto:aroy6@masonlive.gmu.edu

Administrivia

4

• Required textbook
• Operating Systems: Three Easy Pieces,
By Remzi H. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau

• Recommended textbook
• Operating Systems Principles & Practices
By T. Anderson and M. Dahlin

• Prerequisites are enforced!!
• CS 310 Data Structures
• CS 367 Computer Systems & Programming
• CS 465 Computer Systems Architecture
• Be comfortable with C programming language

• Class web page
• https://tddg.github.io/cs571-spring21/
• Class materials will all be available on the class web page

Y. Cheng GMU CS571 Spring 2021

https://tddg.github.io/cs571-spring20/

Administrivia (cont.)

• Syllabus
• https://cs.gmu.edu/media/syllabi/Spring2021/CS_571ChengY.html

• Grading
• 50% projects
• 10% homework
• 20% midterm exam
• 20% final exam

• Reminders
• Honor code
• Late policy: 15% deducted each day. No credit after 3

days

5Y. Cheng GMU CS571 Spring 2021

https://cs.gmu.edu/media/syllabi/Spring2020/CS_571ChengY.html

Course schedule

• Materials, assignments, due dates

Y. Cheng GMU CS571 Spring 2021 6

Course format

• (Review) + lecture + (worksheets and/or demos)
• A short overview of the previous lecture to make sure

the old content is not completely forgotten
• Worksheet practices to make sure the lecture is well

understood
• Demos to help you gain a better understanding of the

materials taught
• e.g., OSTEP demos/simulators, tools

• We will also cover a few seminal research papers on
the way
• ARC, MapReduce

7Y. Cheng GMU CS571 Spring 2021

Course projects

• Goals:
1. To gain hands-on systems programming

experience with C
2. To gain experience building practical distributed

systems using Go

Y. Cheng GMU CS571 Spring 2021 8

Course projects
• Goals:

1. To gain hands-on systems programming experience
with C

2. To gain experience building practical distributed systems
using Go

• Five + one coding projects
• Project 0a (C warm-up): Linux utilities
• Project 0b: Intro to Go
• Project 1: Implement a Linux shell
• Project 2: Implement and analyze a suite of caching

policies
• Project 3: Implement a user-level green thread library
• Project 4: Implement a MapReduce framework using Go
• Project 5 (extra credits): Implement a Mason Distributed

File System (MDFS) using Go

Y. Cheng GMU CS571 Spring 2021 9

Course projects
• Goals:

1. To gain hands-on systems programming experience
2. To gain experience hacking a moderately sized system

codebase (OS/161)

• Five + one coding projects (50%+3%+7%)
• Project 0a (C warm-up): Linux utilities – 5%
• Project 0b: Intro to Go – 5%
• Project 1: Implement a Linux shell – 10%
• Project 2: Implement and analyze a suite of caching policies –

10%+3%
• Project 3: Implement a user-level green thread library – 10%
• Project 4: Implement a MapReduce framework using Go – 10%
• Project 5 (extra credits): Implement a Mason Distributed File

System (MDFS) using Go – 7%

Y. Cheng GMU CS571 Spring 2021 10

Homework assignments

• Three written homework assignments
• Assignment 0 (getting you prepared: 0%)
• Assignment 1 before the midterm (5%)
• Assignment 2 after the midterm (5%)

11Y. Cheng GMU CS571 Spring 2021

Getting help
• My office hours
• Wednesday 1:30 pm – 2:30 pm, on Zoom

• Michael’s office hours
• Monday 1:30 – 2:30 pm + Thursday 2:30 – 3:30 pm

• Piazza
• Good place to ask and answer questions

• About project and materials from lectures
• No anonymous posts or questions
• You are highly encouraged to answer questions

posted by your classmates
• Setting expectation: Michael and I will

monitor/respond to Piazza 1-2 times per day in a
burst of activity

Y. Cheng GMU CS571 Spring 2021 12

What is an OS?

13Y. Cheng GMU CS571 Spring 2021

What is an OS?

• OS manages resources
• Memory, CPU, storage, network
• Data (file systems, I/O)

• Provides low-level abstractions to applications
• Files
• Processes, threads
• Virtual machines (VMs), containers
• …

14Y. Cheng GMU CS571 Spring 2021

OS abstracts away low-level details

Y. Cheng GMU CS571 Spring 2021 15

Operating
System

Y. Cheng GMU CS571 Spring 2021 16

Operating
System

Sched

I/O

File system

Virtual mem

Dev drivers
Dev drivers

Dev drivers

OS abstracts away low-level details

Concurrency
control

Data
structures

Y. Cheng GMU CS571 Spring 2021 17

Operating
System

Sched

I/O

File system

Virtual mem

Dev drivers
Dev drivers

Dev drivers

Syscall Interfaces

Users Applications

OS abstracts away low-level details

Data
structures

Concurrency
control

OS abstracts away low-level details

Y. Cheng GMU CS571 Spring 2021 18

Operating
System

Virtualization

Concurrency

Persistence

OS abstracts away low-level details

Y. Cheng GMU CS571 Spring 2021 19

Operating
System

Virtualization

Concurrency

Persistence

Advanced…

What happens when a program runs?

• A running program executes instructions
1. The processor fetches an instruction from memory
2. Decode: Understand which instruction it is
3. Execute
4. The processor moves on to the next instruction and

so on

Y. Cheng GMU CS571 Spring 2021 20

How does a running program interact
with the OS?
• System calls allow a user application to tell the

OS what to do
• OS provides interfaces (APIs)
• Hundreds of system calls (for Linux)

• Run programs
• Access memory
• Access devices

Y. Cheng GMU CS571 Spring 2021 21

Virtualization

• OS virtualizes physical resources
• Gives illusion of private resources

Y. Cheng GMU CS571 Spring 2021 22

Virtualizing the CPU

• OS creates and manages many virtual CPUs
• Turning a single CPU into seemingly infinite number

of CPUs
• Allowing many programs to seemingly run at once

(concurrently)

Y. Cheng GMU CS571 Spring 2021 23

Demo

Y. Cheng GMU CS571 Spring 2021 24

Virtualizing memory

• The physical memory is an array of bytes
• A program keeps (most of) its data in memory
• Read memory (load): Access an address to fetch the

data
• Write memory (store): Store the data to a given

address

Y. Cheng GMU CS571 Spring 2021 25

Demo

Y. Cheng GMU CS571 Spring 2021 26

Virtualizing memory (cont.)

• Each process access its own private virtual
address space
• OS maps address space onto the physical memory
• A memory reference from a running program does

not affect the address space of other processes
• Physical memory is a shared resource managed by

OS

Y. Cheng GMU CS571 Spring 2021 27

Concurrency

• OS is juggling many things at once
• First running one process, then another, and so forth

• Multi-threaded programs also have concurrency
problem

Y. Cheng GMU CS571 Spring 2021 28

Demo

Y. Cheng GMU CS571 Spring 2021 29

Persistence

• Main memory (DRAM) is volatile
• How to persist data?
• Hardware: I/O devices such as hard disk drives

(HDDs)
• Software: File systems

Y. Cheng GMU CS571 Spring 2021 30

Advanced topics – Distributed systems

Y. Cheng GMU CS571 Spring 2021 31

Applications
Web
apps

Data
processing

Data
storage

Emerging
apps?

Resource management
Compute
resources

Memory
resources

Storage
resources

Network
resources

Datacenter infrastructure

Design goals

• Build up abstraction
• Make the system easy to use

• Provide high performance
• Minimize the overhead of OS
• Virtualization w/o excessive overhead

• Protection between applications
• Isolation: Bad behavior of one does not harm others

and the OS itself

Y. Cheng GMU CS571 Spring 2021 32

Why do you take this course?

33Y. Cheng GMU CS571 Spring 2021

General learning goals

34

1. Grasp basic knowledge about Operating
Systems and Computer Systems software

2. Learn important systems concepts in general
• Multi-processing/threading
• Concurrency and synchronization
• Scheduling
• Caching, memory, storage
• RPC, MapReduce
• And more…

3. Gain hands-on experience in
writing/hacking/designing moderately large
systems software

Y. Cheng GMU CS571 Spring 2021

Why do you take this course?

• The OS concepts are everywhere
• Fundamental OS techniques broadly generalize to

widely-used systems technique
• Scheduling
• Concurrency
• Memory management

• Caching
• …

35Y. Cheng GMU CS571 Spring 2021

Y. Cheng GMU CS571 Spring 2021 36

What is a process?

37Y. Cheng GMU CS571 Spring 2021

What is a process?

• Programs are code (static entity)
• Processes are running programs

• Java analogy
• class -> “program”
• object -> “process”

38Y. Cheng GMU CS571 Spring 2021

What is in a process?

39

Process

What things change as a program runs?

Y. Cheng GMU CS571 Spring 2021

What is in a process?

40

Process

What things change as a program runs?

Code
Heap

…
Stack

memory

Y. Cheng GMU CS571 Spring 2021

What is in a process?

41

Process

What things change as a program runs?

Code
Heap

…
Stack

memory
EAX
PC
SP
BP

registers

Y. Cheng GMU CS571 Spring 2021

What is in a process?

42

Process

What things change as a program runs?

Code
Heap

…
Stack

memory
EAX
PC
SP
BP

registers

FDs
I/O

Y. Cheng GMU CS571 Spring 2021

Peeking inside

• Processes share code, but each has its own
“context”
• CPU
• Instruction pointer (Program Counter)
• Stack pointer

• Memory
• Set of memory addresses (“address space”)
• cat /proc/<PID>/maps

• Disk
• Set of file descriptors
• cat /proc/<PID>/fdinfo/*

43Y. Cheng GMU CS571 Spring 2021

• Principal events that cause process creation
• System initialization
• Execution of a process creation system call by a

running process
• User request to create a process

44Y. Cheng GMU CS571 Spring 2021

Process creation

Process creation

45Y. Cheng GMU CS571 Spring 2021

Process creation

46Y. Cheng GMU CS571 Spring 2021

Process creation

47

PC

Y. Cheng GMU CS571 Spring 2021

Process creation (cont.)

48

• Parent process creates children processes,
which, in turn create other processes, forming a
tree (hierarchy) of processes

Y. Cheng GMU CS571 Spring 2021

An example process tree

49Y. Cheng GMU CS571 Spring 2021

How to view process tree in Linux?

• % ps auxf
• ‘f’ is the option to show the process tree

• % pstree

50Y. Cheng GMU CS571 Spring 2021

Process creation (cont.)

51

• Parent process creates children processes,
which, in turn create other processes, forming a
tree (hierarchy) of processes

• Questions:
• Will the parent and child execute concurrently?
• How will the address space of the child be related to

that of the parent?
• Will the parent and child share some resources?

Y. Cheng GMU CS571 Spring 2021

Process creation in Linux

52

• Each process has a process identifier (pid)
• The parent executes fork() system call to spawn

a child
• The child process has a separate copy of the

parent’s address space
oBoth the parent and the child continue execution at

the instruction following the fork() system call
oThe return value for the fork() system call is

o zero value for the new (child) process
o non-zero pid for the parent process

oTypically, a process can execute a system call like
execvp() to load a binary file into memory

Y. Cheng GMU CS571 Spring 2021

Process creation in Linux

53

• Each process has a process identifier (pid)
• The parent executes fork() system call to spawn

a child
• The child process has a separate copy of the

parent’s address space
oBoth the parent and the child continue execution at

the instruction following the fork() system call
oThe return value for the fork() system call is

o zero value for the new (child) process
o non-zero pid for the parent process

oTypically, a process can execute a system call like
execvp() to load a binary file into memory

This is the pid of the child process
Simply the return value of fork()
in the context of the new child
procY. Cheng GMU CS571 Spring 2021

The man page of fork()

http://man7.org/linux/man-pages/man2/fork.2.html

54Y. Cheng GMU CS571 Spring 2021

http://man7.org/linux/man-pages/man2/fork.2.html

A new system call: execvp()

• execvp() effectively reboots a process to run a
different program from scratch
• execvp() has many variants (execle, execlp,

and so forth. Type man execvp to see all of
them)
• We generally use execvp() in this course

Y. Cheng GMU CS571 Spring 2021 55

void main () {
int pid;

pid = fork();
if (pid < 0) {/* error_msg */}
else if (pid == 0) { /* child process */

execl(“/bin/ls”, “ls”, NULL); /* execute ls */
} else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
exit(0);

}
return;

}

56

Example program with fork()

Y. Cheng GMU CS571 Spring 2021

while (1) {
type_prompt();
read_command(cmd);
pid = fork();
if (pid < 0) {/* error_msg */}
else if (pid == 0) { /* child process */

execute_command(cmd);
} else { /* parent process */

wait(NULL);
}

}

57

A Very simple shell using fork()

Y. Cheng GMU CS571 Spring 2021

58

What happens to the value of number?

More example: fork 1

Y. Cheng GMU CS571 Spring 2021

Results

./forkexample1

Running the fork example
The initial value of number is 7
PID is 2137
PID is 0

In the child, the number is 49 -- PID is 0
In the parent, the number is 7

59Y. Cheng GMU CS571 Spring 2021

60

Further more example: fork 2

What happens to the value of number?

Y. Cheng GMU CS571 Spring 2021

Results
./forkexample2

Running the fork example
The initial value of number is 7
PID is 2164
PID is 0

In the child, the number is 49 -- PID is 0
In the child, the number is 49 -- PID is 0

In the parent, the number is 7

61Y. Cheng GMU CS571 Spring 2021

62

execl (or execvp) vs. fork

Y. Cheng GMU CS571 Spring 2021

Results
./execlexample
Running the execl example
PID is 2179
PID is 0

In the execl child, PID is 0

Running the fork example
The initial value of number is 7
PID is 2180
PID is 0

In the child, the number is 49 -- PID is 0
In the child, the number is 49 -- PID is 0

In the parent, the number is 7
In the parent, done waiting

63

forkexample2

Y. Cheng GMU CS571 Spring 2021

Today’s demo code

• You can fork it here: https://github.com/remzi-
arpacidusseau/ostep-code
• Three easy pieces: under intro/
• Process-related: under cpu-api/

Y. Cheng GMU CS571 Spring 2021 64

https://github.com/remzi-arpacidusseau/ostep-code

Assignment and project

• Assignment 0 (0%):
• Please sign-up for
• Please sign-up for Piazza
• Please finish the go programming exercise by Week

11

• Project 0 (10%)
• Project 0a due next Friday, 02/05, end of day
• Project 0b due (tentatively) on 04/09 – to familiarize

yourself with Go

Y. Cheng GMU CS571 Spring 2021 65

