Algorithmica (2012) 63:781-794
DOI 10.1007/s00453-011-9502-9

Caching Is Hard—Even in the Fault Model

Marek Chrobak - Gerhard J. Woeginger -
Kazuhisa Makino - Haifeng Xu

Received: 24 September 2010 / Accepted: 17 February 2011 / Published online: 10 March 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We prove strong NIP-completeness for the four variants of caching with
multi-size pages. These four variants are obtained by choosing either the fault cost or
the bit cost model, and by combining it with either a forced or an optional caching
policy. This resolves two questions in the area of paging and caching that were open
since the 1990s.

1 Introduction

The Caching Problem deals with page replacement policies in two-level memory
systems consisting of a small, fast cache and a large but slow main memory. This is a
classical and well-studied problem in the area of on-line algorithms (see, for example,
[7]), but in this paper we will be solely interested in its off-line version.

Formally, a caching instance specifies a sequence R of requests for memory pages.
The pages in R are requested one by one, and for each page p we are given its size
SIZE(p) and its faulting cost COST(p). The cache, whose size C is also specified in
the instance, can store a subset of memory pages whose total size does not exceed C.
When the requested page p is in the cache, the request is served at no cost. When the

M. Chrobak (B<)
Department of Computer Science, University of California, Riverside, Riverside, USA
e-mail: marek @cs.ucr.edu

G.J. Woeginger
Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, The Netherlands

K. Makino

Department of Mathematical Informatics, Graduate School of Information and Technology,
University of Tokyo, Tokyo, Japan

H. Xu

Department of Mathematics, Zhejiang University, Hangzhou, China

@ Springer


mailto:marek@cs.ucr.edu

782 Algorithmica (2012) 63:781-794

requested page p is not in the cache, a page fault of cost COST(p) occurs. In response
to a fault, p may be fetched into the cache. (Without loss of generality, we assume
that pages are fetched only in response to faults.) In order to make room for p, other
pages may have to be evicted from the cache. The objective is to decide which pages
one should retain in the cache at each step so as to minimize the overall page fault
cost.

There are two basic policies that determine how a page fault is resolved:

Forced: The faulted page p must be loaded and stored in the cache, where it occupies
SIZE(p) bits.

Optional: The faulted page p can either be loaded for later use into the cache (where
it occupies SIZE(p) bits), or it can be left outside the cache. In the latter case, the
next request to p will necessarily cause a fault.

We stress that the forced policy is the standard in the literature, and all results men-
tioned later-on in this section assume the forced policy. The optional policy was in-
troduced by Irani [13] in the context of web caching.

The literature contains four fundamental models of caching, defined by imposing
different assumptions on page sizes and fault costs (this classification can be found
in the work of Albers, Arora and Khanna [1]).

Bit model: For each page p we have COST(p) = SIZE(p). The fault cost is propor-
tional to the time it takes to bring the page into the cache. This model goes back
to Irani [13].

Cost model: For each page p we have SIZE(p) = 1. (This model is also known as
the weighted caching problem.) All pages have more or less the same size, but
they may have varying fault costs. This model goes (at least) back to Chrobak,
Karloff, Payne and Vishwanathan [10].

Fault model: For each page p we have COST(p) = 1. The setup cost for a fault is
huge, and hence the exact page sizes have no real influence on the fault cost. This
model was introduced by Irani [13].

General model: For each page cost and size can be arbitrary. This model was intro-
duced by Young [14].

What positive results are known about off-line caching? The simplest variant com-
bines the properties of bit, cost, and fault model, and only considers pages of unit
size and unit cost; it can be solved to optimality by Belady’s rule [6]: “Always evict
the cached page whose next request is furthest in the future”. Caching in the cost
model can be solved in polynomial time using network flow methods; see Chrobak et
al. [10]. Albers et al. [1] derived the first off-line approximation results for the bit,
fault, and general model. The strongest currently known approximation result for the
general model is a polynomial time 4-approximation algorithm by Bar-Noy et al. [5].

What negative results are known about off-line caching? In 1997, Fiat [11] con-
structed a reduction from the PARTITION problem to caching in the bit model, which
implies weak NP-completeness for the bit model as well as for the general model.
In 1999 Albers et al. [1] wrote in their concluding remark: “The hardness results for
caching problems are very inconclusive. The NIP-hardness result for the bit model
uses a reduction from PARTITION, which has pseudo-polynomial algorithms. Thus a

@ Springer



Algorithmica (2012) 63:781-794 783

similar algorithm may well exist for the bit model. We do not know whether comput-
ing the optimum in the fault model is NIP-hard.” In fact, this quote provides an exact
summary of the current state of knowledge (just before our paper), and the open
questions about the complexity of these problems have been formulated repeatedly
in the caching literature since 1999. The only other relevant work we are aware of is
that of Brehob et al. [8], who proved NP-hardness of caching in non-standard cache
architectures.

Contribution of this Paper. We establish that caching in the fault model and caching
in the bit model are strongly NIP-complete, under the forced as well as under the op-
tional policy. Note that for the bit model, our result excludes the possibility of a
pseudo-polynomial algorithm (unless P = NIP). These results finally settle the com-
plexity status of all the caching variants discussed above.

As an intermediate step in our construction, we also show NP-hardness of the
problem that we call interval packing, where the objective is to choose a maximum-
weight subset of a collection of weighted intervals, without exceeding a given bound
on its cuts (see the next section for a formal definition). The interval packing problem
is a special case of the unsplittable flow problem on line graphs that has been well
studied in the literature [2, 4], due to its close connections to a variety of optimization
problems arising in scheduling and resource allocation. Thus our work contributes to
better understanding of the complexity of these other problems as well.

The paper is organized as follows. In Sect. 2 we introduce two interval pack-
ing problems that play the central role in the paper and we show that strong NIP-
completeness of interval packing implies strong NP-completeness of caching. The
rest of the paper contains our main technical contribution: Sect. 3 discusses the used
gadgets and how they interact, Sect. 4 proves intractability of an intermediate aux-
iliary problem, and Sects. 5 and 6 finally contain the hardness proofs for interval
packing.

Other Related Work. In the literature, the caching problem for multi-size pages is
often called file caching or web caching. Most of the work on file caching is con-
cerned with its online version, where requests to pages arrive over time and the al-
gorithm needs to respond to each request before the next one arrives. In this online
version, the focus is on designing algorithms with low competitive ratios. Young
[14] and, independently, Cao and Irani [9] gave a C-competitive deterministic algo-
rithm for file caching with an arbitrary cost function (the general model), matching
the lower bound. Recently, an O (log? C)-competitive randomized algorithm for this
problem was given by Bansal, Buchbinder and Naor [3], with the ratio improved to
the asymptotically optimal bound O (logn) for the bit and fault models. More infor-
mation about online file caching and references to other results on this problem can
be found in the above-mentioned papers.

2 Caching Versus Interval Packing

This section introduces an auxiliary weighted interval packing problem where we
wish to choose a maximum number of given weighted intervals, subject to the con-

@ Springer



784 Algorithmica (2012) 63:781-794

straint that for any point the total weight of the covering intervals does not exceed a
given threshold.

We now give a more formal definition. Suppose we are given a set of N intervals
(si, 1), i =0,...,N — 1. We will identify these intervals by their indices, that is
“interval i” will refer to (s;, t;). For a subset S € {0, 1,..., N — 1} of intervals, we
define its weight in the natural way as w(S) = ), ¢ w;. Also, for any real number y,
we define cut, (S) ={i : s; <y <t;} to be the so-called cut of S at y, that is, the set
of intervals which contain y.

The weighted interval packing problem is to choose a maximum-cardinality subset
of intervals that satisfies w(cut, (§)) < W for all y. The decision version of this
problem, denoted INTVPACK-CARD, is formulated as follows.

Problem: INTVPACK-CARD
Instance: A set of N open intervals (s;,#;) for i =0,..., N — 1, where each
interval i has weight w; > 0. Positive integers W and ¢.

Question: Is there a subset S of £ intervals that satisfies w(cut, (S)) < W for
all real numbers y ?

In the following variation of INTVPACK-CARD, the objective changes from finding a
subset of large cardinality to finding a subset of large weight.

Problem: INTVPACK-WEIGHT

Instance: A set of N open intervals (s;,#;) for i =0,..., N — 1, where each
interval i has weight w; > 0. Positive integers W and L.

Question: Is there a subset S of the intervals with w(S) > L that satisfies
w(cut, (S)) < W for all real numbers y?

We will prove in Theorems 4 and 5 that both decision problems INTVPACK-CARD
and INTVPACK-WEIGHT are strongly NPP-complete.

Now let us draw the connection between interval packing and caching problems.
Here is a generic decision version of the caching variants that will be proved to be
intractable:

Problem: CACHING

Instance: A set of pages pi, ..., pr with sizes SIZE(p1), ..., SIZE(pg). A re-
quest sequence 71, ..., "y, € {p1,..., pk}. A cache size C, and a cost bound F.
Question: Is there a replacement policy that serves ry, ..., r, with a cache of

size C and incurs a total fault cost at most F'?

The four caching variants that arise from combining the generic decision problem
with the fault/bit model under an optional/forced caching policy are respectively de-
noted as CACHING(FAULT,OPTIONAL), CACHING(FAULT,FORCED), CACHING(BIT,
OPTIONAL), and CACHING(BIT,FORCED).

2.1 Hardness for Optional Policies

Our first reduction is from INTVPACK-CARD to CACHING(FAULT,OPTIONAL). In
a preprocessing step we perturb the INTVPACK-CARD instance such that the end-
points of the N intervals become pairwise distinct and coincide with the integer

@ Springer



Algorithmica (2012) 63:781-794 785

points 1,2,...,2N. This can be done while preserving the intersection patterns of
the intervals.

Now let us construct an instance of CACHING(FAULT,OPTIONAL). For every in-
terval i we introduce a corresponding page p; with SIZE(p;) = w;. The request se-
quence R consists of 2N requests. Every page p; is requested exactly twice, once at
position s; and once at position #; of the request sequence. The cache size is C = W,
and the bound on the number of page faults is /' =2N — £. We need to show that
the original instance of INTVPACK-CARD has a solution if and only if the instance
of CACHING(FAULT,OPTIONAL) that we just constructed has a solution.

(=) Suppose the INTVPACK-CARD instance has a solution set S. Then while
serving the page requests, we only load pages p; with i € § into the cache, and
we evict them right away after they have been requested for the second time. The
cut condition guarantees that at every point in time the cache can accommodate all
loaded pages. Since every page p; withi € S faults once and every page p; withi ¢ S
faults twice, this yields a total of at most 2N — ¢ page faults.

(<) Next, suppose that the caching instance has a solution with at most F =
2N — £ page faults. Every page p; must fault when it is requested the first time at s;.
Let S contain all intervals i for which p; does not fault when it is requested the
second time; this implies |S| > £. Since the pages p; with i € S occupy space in the
cache from request s; till request #;, the cache size W ensures that all cuts have weight
bounded by W.

All in all, this yields that the INTVPACK-CARD instance has a solution if and
only if the CACHING(FAULT,OPTIONAL) instance has a solution. In an almost iden-
tical fashion, we can reduce INTVPACK-WEIGHT to CACHING(BIT,OPTIONAL).
The only difference is that this time we define the bound on the total fault cost as
F = ZZIN 51 w; — L. All remaining arguments go through as before. With Theo-

rems 4 and 5, this yields the following.

Theorem 1 Decision problems CACHING(FAULT,OPTIONAL) and CACHING(BIT,
OPTIONAL) are strongly NP-complete.

2.2 Hardness for Forced Policies

Our next reduction will be from CACHING(FAULT,OPTIONAL) to CACHING(FAULT,
FORCED), and it is very simple. Take an instance of CACHING(FAULT,OPTIONAL),
keep all the old pages, and create two new pages p* and p** with SIZE(p*) =
SIZE(p**) = C + 1. The new cache size is C/ = 2C + 1. The new request sequence
R/ has length 3m, and it results from the old request sequence R by replacing every
request r; by the three consecutive requests r;, p*, p**. The new bound on the num-
ber of page faults is set to F/ = F 4 2m. Then R/, C/, F/ specify an instance of
CACHING(FAULT,FORCED).

We need to show that one instance has a solution if and only if the other one has
one. The idea of the proof is to use the extra space of size C + 1 for the requested
pages that were not loaded in the optional service for R, while the requests to p* and
p** are added so that the forced service cannot take advantage of having these pages
in the cache. A formal argument follows.

@ Springer



786 Algorithmica (2012) 63:781-794

(=) Suppose the CACHING(FAULT,OPTIONAL) instance has a solution with
cost F. In the cache of size C/ =2C + 1, we reserve a segment of length C for
handling the old pages. We serve request sequence R/ by mimicking the serving of
sequence R: Whenever the policy for R loads an old page into the cache, we load
the same old page into the reserved segment of the cache. The unreserved segment of
length C 4 1 is used for loading the other old pages (which the policy for R does not
load) and the new pages p* and p**. Then we only incur 2m additional faults for the
2m requests to p* and p**, and sequence R/ is served at a cost of F + 2m.

(«<) Next suppose that the CACHING(FAULT,FORCED) instance has a solution
with cost F 4 2m. Since the pages p* and p** do not fit simultaneously into the
cache, this solution must fault on every request to p* and p**. The old pages are
served at a total fault cost of at most F, and this induces a solution under the optional
policy of cost at most F.

That completes the proof for the fault model. In the bit model, our reduction from
CACHING(BIT,0PTIONAL) to CACHING(BIT,FORCED) is similar: Create a new in-
stance with the same page set, R/ and C/ as before. However, the new bound on
the cost of page faults this time is set to F' + 2m (C + 1). Other than this, the proof
remains essentially the same.

Theorem 2 The decision problems CACHING(FAULT,FORCED) and CACHING(BIT,
FORCED) are strongly NIP-complete.

3 Setting up the NP-completeness Proof

The hardness proof for INTVPACK-CARD is by reduction from the well-known NIP-
complete VERTEXCOVER problem; see Garey and Johnson [12]. An instance of
VERTEXCOVER consists of an undirected graph G = (V, E) with n = |V vertices
and m = |E| edges, and an integer k, 0 < k < n. The objective is to determine if G
has a vertex cover of cardinality k.

We will present a reduction that maps an instance G, k of VERTEXCOVER into a
corresponding instance of INTVPACK-CARD. Our construction can be viewed as con-
sisting of two somewhat independent gadgets: one gadget is responsible for choosing
a k-element vertex set—a candidate cover of G, while the other one verifies whether
this chosen set is indeed a correct cover.

We describe the reduction in several stages. In this section we introduce the main
ideas behind the cover-choosing gadget. Sect. 4 gives a construction for a variant
of interval packing with more complicated constraints on cut weights. Finally, in
Sects. 5 and 6 we will show how to wrap-up this construction and derive hardness of
INTVPACK-CARD and INTVPACK-WEIGHT.

The Set Dominance Relation. For two sets X,Y C {0, ...,n — 1} such that | X| =
|Y| =k, we write X <Y if there is a 1-1 mapping (matching) f : X — Y such that
f(x) > x forall x € X. We will also say that Y dominates X. We will write X <Y
if X <Y and X # Y. It is easy to show (and well-known) that ¥ dominates X if
and only if | X |-, > |Y |, forall x, where | Z| ., = [{z € Z : z < x}|. The dominance
relation is clearly transitive. Further, it satisfies the following important property:

@ Springer



Algorithmica (2012) 63:781-794 787

Fig. 1 A cover chooser for n = 8. The picture shows only a portion of the instance, with bundles shaded
alternately light and dark. Central slots are shaded

Lemma 1 Suppose that Zo < Z1 < --- < Z,. Thenr <k(n —k).

Proof Let ¢ =Y .., z. We have ¢ > (5), ¢ < (5) — ("3%). 50 ¢ — o < k(n —k).
Since ¢;4+1 > ¢; for all i, the lemma follows. O

Cover Chooser. Let P =k(n —k)+ 1 and B=mP + 1. We now consider the
instance of INTVPACK-CARD with bounds W =k and £ = kB, and with N =nB
intervals, each of length n: (sp ;, ;) = (bn +z,bn +z+4+n),forb=0,...,B — 1
and z =0,...,n — 1. All intervals have weight 1. (See Fig. 1 for illustration.) The
intervals are grouped into B bundles and all bundles, except for the last one, are
grouped into P phases, as follows:

— Bundle b, 0 <b < B — 1, consists of the intervals (sp,;, ), 2=0,...,n — 1.
— Phase p, 0 < p < P — 1, consists of the m bundles numbered pm, pm +
1,...,pm+m—1.

The last bundle B — 1 does not belong to any phase.

For an integer 0, 0 <o <nB + n — 1, the unit interval (o, o + 1) is called a slot.
For each bundle b, the slot (Ap, AZ) = (Sp.n—1,1p,0) = (bn +n — 1, bn 4 n) is called
the central slot of this bundle.

Consider some solution S of INTVPACK-CARD. Since all intervals in bundle b
overlap its central slot, S contains at most k intervals from each bundle. On the other
hand, S contains at least £ = kB intervals, so it must contain exactly k intervals from
each bundle. Denote by Sp, the set of k intervals from bundle b that are in S. We
will identify the intervals in S by their index with respect to the bundle, that is S,
contains those z for which (sp ;, ;) isin S.

Lemma 2 There is a phase p, 0 < p < P — 1 for which Sy = Spmy1 =+ =
Sp+1ym-

Proof We start with the following claim: S, < Sp41 forb =0, ..., B —2. (See Fig. 2
for illustration.) We prove this claim by contradiction. Suppose that S, £ Sp41 for
some b. Then choose any x for which |Sp|<, < [Spy1l<,- Let X ={z € 8p:2> x}
and Y ={z € Sp+1:z2 <x}. Then | X UY| > k and each interval in X U Y contains the
slot I = (bn +x +n,bn + x +n + 1). (More precisely, if z € X then I is contained
in (sp,z, tp,z), and if z € Y then I is contained in (sp+1,z, #p+1,;).) This contradicts the
feasibility of S.

@ Springer



788 Algorithmica (2012) 63:781-794

Fig. 2 An illustration of bundle dominance in the proof of Lemma 2. The instance is for n = 8 and
k = 4. Here we have five consecutive sets Sp = {0,1,3,4}, Sp41 ={0,2,3,4}, Sp42 =1{0,3,5,6},
Sp+3=1{1,3,5.7}, Sppa =12.5,6,7)

Call a phase good if it satisfies the lemma and bad otherwise. Each bad phase
must contain a bundle b for which S, < Sp41. By the claim above and Lemma 1, the
number of bad phases is at most P — 1, so, by the pigeon-hole principle, there must
exist a good phase, and the lemma follows. g

The intuition is this: The sets S; will correspond to a vertex cover and transitions
between consecutive bundles will be used to verify the correctness of this cover. Each
phase has m such transitions, each one corresponding to one edge and verifying if this
edge is covered. In order for this to work, all edges must be verified against the same
set Sp. Lemma 2 above guarantees that there will be some phase in which all the sets
Sp (and including one set right after phase b) will indeed be the same.

4 An Extension of Interval Packing

We now extend INTVPACK-CARD as follows: in addition to W, £ and the set of in-
tervals (s;,#),i =0,..., N — 1, we are also given a set I of pairs (o, 8) of numbers.
We want to decide whether there is a subset S of at least £ intervals that satisfies the
following two conditions:

(1) w(cuty,(S)) < W forall y (as before), and
(it) min{w(cuty(S)), w(cutg(S))} < W — 1 for each (o, ) €I

Intuitively, each pair (o, ) € I" represents a “bottleneck pair”’, where the weight
bound is lower by 1, but only one of these tighter bounds needs to be met, not neces-
sarily both. We will refer to this version as EXTINTVPACK.

Our goal in this section is to establish NIP-completeness of EXTINTVPACK. We
transform the given instance G = (V, E), k of VERTEXCOVER into an instance of
EXTINTVPACK. As in the previous section, let P =k(n —k)+1and B=mP + 1.
The instance of INTVPACK-CARD will have bounds W =k, £ = kB, and will contain
N =nB unit-weight intervals

S,z th ) =(n+z,bn+z+n—238p;),

forb=0,...,B—1and z=0,...,n — 1, where each §, ; € {0, %} is determined
as follows. For the last bundle B — 1, we let all §p_1,; = 0. Let b < B — 2. Each
such b is associated with one edge, with all bundles in each phase associated with
different edges. Assume that the edges of G are numbered, say E = {eg, ..., epn—1}-
If b = pm + a, for some phase p, then we say that b is associated with edge e,. If
eq = (u,v), then we set 8, ; = 5 for z € {u, v} and 8, = 0 for z ¢ {u, v}.

@ Springer



Algorithmica (2012) 63:781-794 789

Next we need to define I'. We let I' = {(ap, Bp)}p—o,... p—2, Where each pair
(ap, Bp) is defined as follows: If e, = (u, v) is the edge associated with b, then
ab:tb,u—i—%:bn—i—u—}—n— % and,Bb:tb,v—i—%:bn—i—v—}—n— %.

Theorem 3 Problem EXTINTVPACK is strongly NIP-complete.

Proof Let 7 be the instance of EXTINTVPACK constructed above. It is sufficient to
prove that G has a vertex cover of size k if and only if Z has a solution.

(=) Suppose that U is a vertex cover of G of cardinality k. We will specify the
solution S by the sets S, of intervals selected from each bundle . We simply let
Sp = U for each b. Since we choose the same k intervals from each bundle, we have
w(cuty, (S)) < k for all reals y; thus condition (i) is satisfied. To verify (ii), consider
any (ap, Bp) € I', for a bundle b associated with an edge e, = (u, v). Since U is
a vertex cover, we either have u € U or v € U. Without loss of generality, assume
u € U (the other case is symmetric). Then, by the construction of the intervals in Z,
we have 1, , < op < Sp+1,4, Which means that the intervals in S corresponding to u
do not intersect oy ; thus w(cuty, (S)) < k — 1, proving that condition (ii) holds.

(<) Now, suppose that 7 has a solution S. As before, letting each S, be the
set of intervals from bundle b that are in S, we must have |Sp| = k for all b. By
Lemma 2, there is a phase p for which S, = Spmy1 =--- = Sp+1)m. (Note that,
even though we adjusted end-points of some intervals, Lemma 2 still holds, since we
decreased these endpoints only by %, without changing their intersection pattern.) We
take U = Sy, and we claim that U is a vertex cover. Indeed, let e, = (u, v) € E be
any edge and take the bundle b = pm + a in phase p associated with edge e,. By
condition (ii) in the definition of EXTINTVPACK, we have w(cuty, (S)) <k —1 or
w(cutg, (S)) < k — 1. Without loss of generality, assume that w(cuty,(S)) <k — 1
(the other case is symmetric). All intervals {z € Sp, : z > u} from bundle b and all
intervals {z € Sp+1 : z < u} from bundle b + 1 intersect «p. Since Sp = Sp+1 = U,
this means that u € U, for otherwise this would give us k intervals intersecting o,
violating the bottleneck bound at «;,. This holds for all edges e,; therefore we can
conclude that U is indeed a vertex cover of G of size k. O

5 Strong NP-completeness of INTVPACK-CARD

We now show how to “implement” the construction from the previous section using
INTVPACK-CARD. Again, let G = (V, E), k be an instance of VERTEXCOVER. To
streamline the argument, we assume that n > 4, k <n — 2 and that vertices 0 and
n — 1 of G are isolated, so that, without loss of generality, they will not belong to
any vertex cover of size k. This assumption does not affect the NPP-completeness of
VERTEXCOVER. We transform G, k into an instance J of INTVPACK-CARD. J will
contain the same intervals as Z from the previous section, plus some additional ones.
However, we change the bounds W and ¢, and we add many more small intervals that
will be used to enforce the bound of k on the number of intervals chosen from each
bundle and to simulate the bottleneck pairs.

The general idea of the proof is this. The bound on the cut weight in 7 will be
W =2k + 1. It is useful to visualize a solution of J as a packing of a horizontal

@ Springer



790 Algorithmica (2012) 63:781-794

strip of height 2k + 1 where intervals are represented by rectangles whose heights
are equal to their weights. This strip is divided into two tracks: the “upper” track of
height k used to simulate the packing of Z from Sect. 4, and the “lower” track used
for additional intervals that we call obstacles. These obstacles are used to force the
packing of the top track to behave exactly as in the reduction in Sect. 4. For example,
we will have a large number of obstacles of weight £ + 1 in the central slots. There
will be so many of such obstacles that any solution will have to have at least one
such obstacle in each central slot, thus forcing the top track to have height at most k.
Each bottleneck pair («, 8) will be simulated by a gadget that has a number of other
obstacles, grouped into two appropriately overlapping chains, one corresponding to ¢«
and the other to 8. Any solution will be forced to include exactly one of these chains.

We now proceed with the formal proof. Choose first some large even constant D,
say D = 2n%. The bounds in the instance of INTVPACK-CARD will be W = 2k + 1
and ¢ = kB + D?*B + D(n — 1)(B — 1). We include in J the same nB unit-
weight intervals as in Z: namely all (sp;, ;) = (bn +z,bn +z+n — 8 ), for
b=0,...,B—1and z=0,...,n — 1, where each 6 ; € {0, %} is determined as
before, that is, 85 ; = % for intervals z that correspond to the endpoints of the edge
associated with b (see the previous section). We will refer to these intervals as bundle
intervals.

Now we add to J new intervals called obstacles. Most of the obstacles will have
length either € = 1/D or €2 and weight k + 1, but a few of them (two per bundle) will
have length ¢/2 and weight k + 2.

The first category of obstacle intervals is called plain obstacles. For each bun-
dle b, we introduce D? disjoint obstacles of length &2 that fill its central slot (A, Ay,
namely intervals (Ap +g82, A+ (g+ 1)82), forg =0,..., D? — 1. All these intervals
have weight k + 1. Thus we have D? B plain obstacles in the central slots.

More plain obstacles are introduced between central slots of any two consecutive
bundles. For each bundle » < B — 2 we proceed as follows. Let e, = (u, v) be the
edge associated with b, where u < v. Recall that, according to our assumption about
the instance of VERTEXCOVER, we have u > 1 and v <n — 2, so #, > )»}j and
Sh+1,v < Ap+1. We fill intervals (A}, #p.,,) and (Sp+1,v, Ap+1) With plain obstacles of
length ¢. These obstacles are (A, + ge, A, + (¢ + 1)¢), forg =0,..., D(u — %) -1,
and (Spy1,0 + g€ Sp+1,0 + (g + 1De),forg=0,...,Dn—v—-1) - 1.

Now, we introduce two groups of obstacles in the interval (¢, Sp+1.v). The in-
tervals in the first group are called «-obstacles and those in the other group f-
obstacles. We have D(v — u + %) obstacles of each of these two types. The first
a-obstacle is called the a-bottleneck, and it is the interval (¢4, + €/4, tp.u + 3€/4),
with length ¢/2 and weight k + 2. The remaining «-obstacles are (1, + 3¢/4 +
ge, tpy +3e/4+ (g + De), for g=0,...,Dv —u + %) — 2 and they all have
length ¢ and weight £ 4+ 1. Analogously, the B-obstacles (other than the last one)
are (tp, +¢/4+ge,tpby +€/4+ (g + le), for g=0,...,Dv —u + %) -2,
all with length ¢ and weight k + 1. The last B-obstacle, called the B-bottleneck, is
(Sp+1,0 — 3€/4, Sp+1,0 — €/4), and it has length ¢ /2 and weight k 4 2. (See Fig. 3, for
illustration.)

Note that between )\27 and Ap41 we have D (u — %) + D(n — v — 1) plain obstacles,

Dwv—u-+ %) a-obstacles, and D(v — u + %) B-obstacles.

@ Springer



Algorithmica (2012) 63:781-794 791

tb,u Sb+1 u tb,v sb+1,v
a-obstacles ; '

;

plain ; ;
obstacles aryy ' : ' B-obstacles
D R
. 2

Fig. 3 Three types of obstacle intervals. The heights of the rectangles represent their weights, k + 1 or
k+2

Lemma 3 (a) Any solution of instance J has at most D*B + D(n — 1)(B — 1)
obstacle intervals. (b) If some solution of instance J has exactly D*B +
D(n — 1)(B — 1) obstacle intervals then, for any bundle b < B — 2, it must con-
tain either the a-bottleneck or the B-bottleneck between )»Z and \py1.

Proof (a) Consider a bundle b < B — 2, and let (u, v) be the edge associated with b,
where 1 <u < v <n — 2. We claim that any solution contains at most D(v — u + %)
obstacles between #;, ,, and sp+1,,. This can be justified as follows: Order all the obsta-
cles in this range in order of increasing left endpoints, starting with the «-bottleneck
(and ending with the B-bottleneck). This will give us a sequence of 2D (v — u + %)
intervals where each one (except the last one) intersects the next one. No two inter-
secting obstacles can be in the solution, because of the weight constraint. Therefore
at most half of the obstacles in this sequence can be in the solution—proving our
claim.

There are D(u — %) + D(n — v — 1) plain obstacles between 1) and A, 1. By the
previous paragraph, any solution can contain at most D(v —u + %) a- or B-obstacles
in this range, for the total of D (n — 1) obstacles. Multiplying it by B — 1 bundles and
adding D? B plain obstacles in central slots, we obtain (a).

(b) Consider a bundle b < B — 2 whose associated edge is (u, v), for 1 <u <
v < n — 2. By the way the maximum number of obstacles in (a) is realized, it is
sufficient to show that if a solution contains D (v — u + %) obstacles between 5, and
Sp+1,v then it must contain at least one of the two bottlenecks in this range. Suppose,
towards contradiction, that it does not. Order these obstacles from left to right, as
in (a). Without the two bottlenecks, the ordering will contain 2D (v — u + %) -2
obstacles, and the solution can contain at most half of them, that is at most D(v —
u—+ %) — 1 intervals—a contradiction. Il

Theorem 4 Problem INTVPACK-CARD is strongly NP-complete.

@ Springer



792 Algorithmica (2012) 63:781-794

Proof Let J be the instance of INTVPACK-CARD constructed above. It is sufficient
to prove that G has a vertex cover of size k if and only if 7 has a solution. The proof
mimics the proof of Theorem 3, “simulating” the constraints from that proof using
obstacle intervals.

(=) Suppose that U is a vertex cover of G of cardinality k. By our assumption,
U does not contain vertices 0 and n — 1. We define a solution S of 7. The bundle
intervals in S are specified by the sets S, of intervals selected from each bundle b.
We simply let S, = U for each b, as before. This will give us kB intervals. Since
we choose the same k intervals from each bundle, these bundle intervals will have
total weight at most k at each cut point. Next, we add to S all D?B plain obstacles
in central slots. Finally, for each bundle » =0, ..., B — 2 we proceed as follows:
We add to S all D(u — %) 4+ D(n — v — 1) plain obstacles between )Jb and Ap4q. If
eq = (u,v), where | <u <v <n-—2,is the edge associated with b, then either u € U
orveU.Ifue U then we add to S all a-obstacles between )LZ and Ap41; otherwise
we add to § all B-obstacles in this range. In either case, we add D(v —u + %) of those
obstacles. Then the total number of obstacles between A and A1 willbe D(n — 1),
so, overall, we will have |S| =kB + D?B + Dn—-1)(B—1)=¢.

It remains to verify the bound on weight. Consider any y. This y is intersected by
at most one obstacle and at most k bundle intervals. If this obstacle is not an - or 8-
bottleneck, then its weight is k + 1, so w(cut, (S)) <k + (k+ 1) = W. Suppose that
this obstacle is the c-obstacle (the case of the S-obstacle is symmetric) between A
and Apy1, where b is associated with an edge e, = (u, v), for u < v. By the definition
of S, since we included the «-bottleneck in S, we must have u € U. Further, by the
definition of the «-bottleneck for b, we also have # , < y < sp41,,—1in other words,
y is not contained in any bundle interval corresponding to u. Thus at most £ — 1
bundle intervals intersect y, implying that w(cut), (S)) <k -1+ (k+2)=W.

(<) Now suppose that S is a solution for 7. First, we argue that S must contain
at least one obstacle in each central slot. The idea here is simple: since D is so large
and each central slot has D? obstacles, if we did not include any obstacles from some
central slot, S cannot have £ intervals, even if we included in S all other intervals in
the instance, ignoring feasibility. More formally, if S does not contain all intervals
from some central slot, then it has at most D%(B — 1) plain obstacles in central slots.
Since other obstacles have length at least £ /2, S can contain at most (Ap_1 — A6)2D <
2Dn B of those other obstacles. The number of bundle intervals in S is at most Bn.
By simple calculation, B < n*. So the total number of intervals in S would be at most
D3*(B—1)+2DnB+nB <D?*B—4n'2+4n'0 41> < D’B < ¢, as n > 4.

By the previous paragraph, S has at least one obstacle interval in each central slot.
This implies that S contains at most k intervals from each bundle. Thus, applying
Lemma 3, we obtain the following:

(a) S has at most k intervals from each of the B bundles,

(b) S has at most D? plain obstacles in each of the B central slots,

(c) S has at most D(n — 1) obstacles (of type plain, o or §) in each of the B — 1
intervals between two consecutive central slots.

Since £ = kB + D?B + D(n — 1)(B — 1), S must contain the exact numbers of
intervals given above in each of the categories (a), (b) and (c).

@ Springer



Algorithmica (2012) 63:781-794 793

The first important consequence of the observation above is that S contains exactly
k intervals from each bundle. Thus we can represent S, yet again, by the sets S of
intervals from each bundle b, and we will have |S,| = k for all k. Further, the previous
paragraph implies that each slot contains an obstacle, so at each cut the total weight
of the bundle intervals is at most k. Therefore, as in the previous section, we will
have Sp < Sp41 for b=0,..., B —2. By Lemma 2, there must be a phase p where
Spm = Spm+l == S(p+l)m~

As before, we claim that U = S, is a vertex cover. Recall that S contains D?B+
D(n — 1)(B — 1) obstacle intervals. By Lemma 3, the only way this is possible is
when S contains at least one bottleneck in each range between ) and A1, for each
bundle b=0,...,B—2.Lete, = (u,v) € E, where | <u <v <n —2,be any edge
and take the bundle » = pm + a in phase p associated with edge e,. Without loss of
generality, suppose that S contains the «-bottleneck between A and A1, that is the
interval (¢, +3¢/4 4+ ge, tp.y + 3¢/4 + (g + 1)¢). Taking any y from this interval,
this y must be intersected by at most k — 1 bundle intervals, which is possible only
if u € S, = U. In other words, ¢, is covered by U. Since this holds for any edge e,
we can conclude that U is a vertex cover of G. g

6 Strong NP-completeness of INTVPACK-WEIGHT

The NPP-completeness proof for INTVPACK-WEIGHT follows the idea from the pre-
vious section, with the following modifications: Change the size of the obstacles to
p(n), for some large polynomial p(). As before, the bottlenecks are 1 unit higher,
p(m) + 1. Now let’s take W = p(n) + k and L = kB + M, where M is the total
weight of plain obstacles plus the total weight of all «z-obstacles. Since p(n) is large,
any solution must take the maximum number of obstacles, which gives us the same
constraint as before, and the rest of the argument remains the same.

Theorem 5 Problem INTVPACK-WEIGHT is strongly NP-complete.

Acknowledgements This project was carried out, in part, at the workshop on ‘Adaptive, output-
sensitive, on-line, and parameterized algorithms’, Schloss Dagstuhl, Germany, April 19-24, 2009.
M. Chrobak has been supported by the NSF Grant CCF-0729071. G. Woeginger has been supported
by the Netherlands Organization for Scientific Research (NWO), grant 639.033.403, and by BSIK grant
03018.

We would also like to thank Khaled Elbassioni for pointing to us the connection between interval
packing and unsplittable flows on line graphs.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Albers, S., Arora, S., Khanna, S.: Page replacement for general caching problems. In: Proc. 10th
Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’99), pp. 31-40 (1999)

@ Springer



794 Algorithmica (2012) 63:781-794

2. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line
graphs. In: Proc. 38th Annual ACM Symposium on Theory of Computing (STOC’06), pp. 721-729
(2006)

3. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for generalized caching. In:
Proc. 40th Annual ACM Symposium on Theory of Computing (STOC’08), pp. 235-244 (2008)

4. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, M.R.: A logarithmic approximation for un-
splittable flow on line graphs. In: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’09), pp. 702-709 (2009)

5. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating
resource allocation and scheduling. J. ACM 48, 1069—1090 (2000)

6. Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5, 78-101
(1966)

7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge (1998)

8. Brehob, M., Wagner, S., Torng, E., Enbody, R.: Optimal replacement is NP-hard for non-standard
caches. IEEE Trans. Comput. 53, 73-76 (2004)

9. Cao, P, Irani, S.: Cost-aware www proxy caching algorithms. In: Proc. USENIX Symposium on
Internet Technologies and Systems, pp. 193-206 (1997)

10. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server problems. SIAM J.
Discrete Math. 4, 172-181 (1991)

11. Fiat, A.: Unpublished manuscript, 1997

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco (1979)

13. TIrani, S.: Page replacement with multi-size pages and applications to web caching. Algorithmica 33,
384-409 (1997)

14. Young, N.E.: On-line file caching. Algorithmica 33, 371-383 (2002)

@ Springer



	Caching Is Hard-Even in the Fault Model
	Abstract
	Introduction
	Contribution of this Paper.
	Other Related Work.

	Caching Versus Interval Packing
	Hardness for Optional Policies
	Hardness for Forced Policies

	Setting up the NP-completeness Proof
	The Set Dominance Relation.
	Cover Chooser.

	An Extension of Interval Packing
	Strong NP-completeness of IntvPack-Card
	Strong NP-completeness of IntvPack-Weight
	Acknowledgements
	References


