
Midterm Review

CS 571: Operating Systems (Spring 2020)
Lecture 6b

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



Midterm 

• Monday, March 16, March 23, 7:20pm – 9:20pm
• 120 min, closed book, closed note open book, open 

notes

• Covering topics from lec-1 to lec-5a
• Process vs. thread
• fork(), pthread_create()
• Race condition, spin lock, semaphore, CV
• Deadlock and starvation
• Scheduling: FIFO, SJF, RR, Priority, MLFQ

2Y. Cheng GMU CS571 Spring 2020



Process Creation in Linux

• System call fork()
• The return value of fork()

• Process tree

3Y. Cheng GMU CS571 Spring 2020



Process vs. Thread
• Multiple threads within a process share
• The memory address space
• Open files
• Global variables, etc.

• Why thread abstraction?
• Efficient utilization of the multi-/many-core 

architecture with only one process (Moore’s law 
ending)
• Efficient resource sharing, fast and flexible inter-

thread communication
• Less context switching overheads

4Y. Cheng GMU CS571 Spring 2020



Pthread

• Creating child threads using pthread_create()

• Parent thread waits for a certain child thread to 
terminate on pthread_join()

• Spawning multiple child threads, the execution 
order of each child thread is non-deterministic

5Y. Cheng GMU CS571 Spring 2020



Race Conditions

• Multiple processes or threads are writing to and 
reading from some shared data, and final result 
depends on who runs precisely when
• This situation is called a race condition

• To protect shared data and guarantee mutual 
exclusion
• We can use spin locks

• We can use semaphores

• We can use condition variables

6Y. Cheng GMU CS571 Spring 2020



Spin Locks

• A simple implementation of a spin lock
• Provide mutual exclusion with atomic instruction 
TestAndSet()
• Busy waiting: the waiting process/thread loops 

(spins) continuously at the entry point, until the lock is 
released

• Disadvantages?
• Fairness?

• Performance?

• Use binary locks to protect shared data 
structures

7Y. Cheng GMU CS571 Spring 2020



Semaphores

• Motivation: avoid busy waiting by blocking a 
process until some condition is satisfied

• Two operations
• sem_wait(s): decrease the value of s by 1, the 

caller is blocked with value < 0
• sem_post(s): increase the value of s by 1, if one or 

more process/thread is waiting, wake one

8Y. Cheng GMU CS571 Spring 2020



Condition Variables
• CV: an explicit queue that threads can put 

themselves when some condition is not as desired 
(by waiting on that condition)

• cond_wait(cond_t *cv, mutex_t *lock)
• assume the lock is held when cond_wait() is called
• puts caller to sleep + release the lock (atomically)
• when awaken, reacquires lock before returning

• cond_signal(cond_t *cv)
• wake a single waiting thread (if >= 1 thread is waiting)
• if there is no waiting thread, just return, doing nothing

9Y. Cheng GMU CS571 Spring 2020



Condition Variables (cont.)

• Traps when using CV
• A cond_signal() may only wake one thread, though 

multiple are waiting

• Signal on a CV with no thread waiting results in a lost 
signal

• Good rules of thumb when using CV
• Always do wait and signal while holding the lock

• Lock is used to provide mutual exclusive access to the 
shared variable
• while() is used to always guarantee to re-check if the 

condition is being updated by other thread

10Y. Cheng GMU CS571 Spring 2020



Deadlock and Starvation

• Subtle difference between deadlock and 
starvation
• Once a set of processes are in a deadlock, there is 

no future execution sequence that can get them out 
of it!
• In starvation, there does exist hope – some execution 

order may be favorable to the starving process 
although no guarantee it would ever occur

• Rollback and retry are prone to starvation
• Continuous arrival of higher priority process is 

another common starvation situation

11Y. Cheng GMU CS571 Spring 2020



Classic Problems of Synchronization

• Producer-consumer problem (CV-based version)

• Readers-writers problem

• Five dining philosophers problem

• Goal is to gain a deep understanding of how to 
use CVs and semaphores, through examples

12Y. Cheng GMU CS571 Spring 2020



CPU Scheduling Policies

• FIFO
• How it works?
• Its inherent issues (why we need SJF)?

• SJF
• How it works?
• Any limitations (why we need STCF)?

• STCF (preemptive SJF)
• How it works? How it solves SJF’s limitations?

13Y. Cheng GMU CS571 Spring 2020



Various Metrics

• Average waiting time
• Average turnaround time

• How to calculate each metric under a specific 
schedule (Gantt chart)

14Y. Cheng GMU CS571 Spring 2020



CPU Scheduling Policies (cont.)
• RR
• How it works?
• Why it is needed (compared to SJF & STCF)?

• The turnaround time vs. response time tradeoff
• Impact of quantum tuning on turnaround time

• Priority
• How it works?
• Problems of Priority scheduling and solution?

• MLFQ
• How it works?
• Rules that were discussed in lecture. Which rule 

solves what problem?

15Y. Cheng GMU CS571 Spring 2020


