I/O and Storage:
Disk Scheduling

CS 571: Operating Systems (Spring 2020)
Lecture 9c

Yue Cheng

Some material taken/derived from:
* Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Q: Given a stream of I/0 requests, in
what order should they be served?

Y. Cheng GMU CS571 Spring 2020 2

Disk Scheduling

Disk Scheduling

« OS is responsible for using hardware efficiently
— for the disk drives, this means having a fast
access time and high disk bandwidth utilization

« Strategy: f@(\)[gier requests to meet some goal
» Performance (e.g., by making /O sequential)
—> * Fairness

« Consistent latency

« Usually implemented in both OS and hardware

Y. Cheng GMU CS571 Spring 2020

24
. i} 15 \(L Y™ . “?k&‘ﬁ‘er,
Disk Scheduling """ "<«

teecl]

' . . . _.—)co’uw“?f-

* Performance objective: minimize seek-+rotation e e

time T [
. . . lYec"""u
* Minimize the distance the head needs to go —

W

m—

SN |
e Disk bandwidth:

* The total number of bytes transferred, divided by the
total time between the first request for service and the
completion of the last transfer

Y. Cheng GMU CS571 Spring 2020 5

Disk Scheduling

* There are many sources of disk /O requests:
_* OS
~>s System processes
» User processes

* |/O request:
» Read/write mode, disk address, memory address, number of

sectors to transfer) e
« OS maintains queue of requests, per disk or device
\-—"'_/____

* |dle disk can immediately work on |/O request, busy
disk means work must queue

« Optimization algorithms make sense only when a queue
exists —

_——\‘

Y. Cheng GMU CS571 Spring 2020 6

Disk Scheduling

» Note that drive controllers have small buffers and
can manage a queue of I/O requests (of varying
“depth”)

 Disk scheduling algorithms:
« Algorithms that schedule the orders of disk I/0O requests

Y. Cheng GMU CS571 Spring 2020 7

aYwm

. . ?\MH N
N
Disk Scheduling \<
» Disk scheduling algorithms: (S Cide

« Algorithms that schedule the orders of disk 1/0 géﬁﬁ'ests

* The analysis is trug for one or many platters .,

+ W ilustrate scheduling algorithms with an, tack ¥
example request queue (0-199) Sector
~—_—,————

’tYuck-#
—7p 98, 183, 37, 122, 14, 124, 65, é—a

Initially, head pointer pointing t

——— —~—— ——— ——— ~—

Y. Cheng GMU CS571 Spring 2020 8

FIFO

* |dea: Serve the |/O request in the order they arrive

) Rotedion.
FIFO. "%, ¢
« |dea: Serve the I/O[request in the order they arrive

queue = 98, 183, 37, 122, 14, 124, @@ el |

cvee head sﬁls at 53 LULITT
0 14 37 §3p567 @12)@4 (8d199 L |
I | | [|l | | SQC']'WN
W""Ng~ Cecto
2
W
65
62

Y. Cheng GMU CS571 Spring 2020 10

83 -3+ 3=} + (22-37
FIFO t0r-1¢
* Idea: Serve the I/O request in the order they arrive —+ ¢ -y

op'y Cove- gy, Queue = 98,183, 37,122, 14, 124, 65, 67 Ti2¢-4C
J o o™ @Y head starts at 53 + {745
g2 0 14 37 536567 98 122124 183199
| [Il I [l | I

A ' =tk
'\‘XI\M ‘x
ot
AT

\V

lllustration shows total head movement of 640 cylinders

Y. Cheng GMU CS571 Spring 2020 —N— |

Shortest Positioning Time First (SPTF)

* |dea: Selects the request that will take the least
time for seeking(and rotating)
A

» Also called Shortest Seek Time First (SSTF) if

rotational positioning Is not considered oss«pn '«

Y. Cheng GMU CS571 Spring 2020 12

Shortest Positioning Time First (SPTF) [S1E€_}

* |dea: Selects the request that will take the least
time for seeking arcHetating

W
/IS queue = 98, 183, 37, 122, 14, 124, 65, 67 ’\-0‘\'0\ 3’
f} —> head starts at 53 (0-ovda ring
0 14 37 53@367; 98 122124 183199
6¢ -\t | 1] | : el
off U

4
(83~ \f

- 136

V6
bl
—

5K

Th = lllustration shows total head movement of 236 cylinders.
Greedy algo: A form of SJF scheduling: may cause
Y. Cheng starvation of some requests! 13

Sty N [(Aw2va

SCAN et (G
‘ !
* [dea: Sweep back and forth, from one end of
disk to the other, serving requests as you go
* The disk arm starts at one end of the disk, and
L> moves toward the other end, servicing requests until

it gets to the other end of the disk, where the head
movement is reversed and servicing continues

« AKA Elevator Algorithm

S~—————

=

Y. Cheng GMU CS571 Spring 2020 14

SCAN o g ¢ Aﬁu'vs* Scan pwavel lc-ﬁ (S alter trocl *fs)

queue = 98, 183, 37, 122, 14, 124, 65, 67

~0
57’ head starts at 53
< 0 14 37 ©38567 098 122124 183199
I | | L | Ll I |
134
—— »

lllustration shows total head movement of 236 cylinders.
Issue: Cylinders in the middle get better service;
vcren ¥€QUESts at the other end wait the longest! e

C-SCAN (Circular-SCAN)

\/_/_/-_/—\

\)@tmv
* Idea: Only sweep in ONE direction (]D“"'M/
 \When it reaches the other end, however, it —

immediately returns to the beginning of the disk,
without servicing any requests on the return trip

* Provides a more uniform wait time than SCAN

—TTTMm—————— _
* Treats the cylinders as a circular list that wraps
around from the last cylinder to the first one

Y. Cheng GMU CS571 Spring 2020 16

C-SCAN (AQQULW‘P“"."“: Cem Uul} SCAn (h n‘z(ﬁ d(‘lﬂ'ci':l;&a

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53 @5 - IB
(}) 1|4 3|7 597 6|5| 67 9|8 122”124 13?3 —t Q“l"(— 6)
i 39 ~6
= 3¥2.

Total number of cylinders?
Y. Cheng GMU CS571 Spring 2020 17

C-LOOK

* |dea: Arm only goes as far as the last request in
each direction, then reverses direction
iImmediately, without first going all the way to the
end of the disk

* LOOK: A version of SCAN
* C-LOOK: A version of C-SCAN

C-LOOK gt chirectin

queue =98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
- | L1l 1 I | l?g—SZ
+ (- \¢
t31-\f
— 1
lq- — "o -

i : -’ : |
—
P — S—

Total number of cylinders?
Y. Cheng GMU CS571 Spring 2020 19

Work Conservation S \ocalttyy

_/. ’

» \Work conserving schedulers always try to do |/O
if there’s I/0O to be done

« Sometimes, it's better to wait (delay) instead if
you anticipate another request will appear
nearby

« Such non-work-conserving schedulers are called
anticipatory schedulers

Y. Cheng GMU CS571 Spring 2020 20

pFQ (Linux Default)

« Completely Fair Queueing

* Queue for each process

./\/\/\/\/\/_,_\

* Do weighted round-robin among queues, with slice
time proportional to priority

» Optimize order within queue

* Yield slice only if idle for a given time (anticipation)

Y. Cheng GMU CS571 Spring 2020

21

Summary:
Selecting A Disk Scheduling Algorithm

« SPTF is common and has a natural appeal
« Starvation oS

« SCAN and C-SCAN perform better for systems that place a
heavy load on the disk

» |_ess starvation
™ N

» Performance depends on the workload (i.e., number and
types of requests)

* The disk scheduling algorithm should be written as a
separate OS module, allowing it to be replaced with a
different algorithm if necessary

* Requests for disk service can be impacted by the file-
allocation method/pattern

« And metadata layout — topic of file systems

Y. Cheng GMU CS571 Spring 2020 22

