

I/O and Storage: Hard Disk Drives

CS 571: Operating Systems (Spring 2020) Lecture 9b

Yue Cheng

Some material taken/derived from:

• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Hard Disk Drives (HDDs)

Basic Interface

- A magnetic disk has a sector-addressable address space
 - You can think of a disk as an array of sectors
 - Each sector (logical block) is the smallest unit of transfer
- Sectors are typically 512 or 4096 bytes
- Main operations
 - Read from sectors (blocks)
 - Write to sectors (blocks)

Disk Structure

- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially
 - Sector 0 is the first sector of the first track on the outermost cylinder
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost
 - Logical to physical address should be easy
 - Except for bad sectors

Platter Covered with a magnetic film

A single track example

Spindle in the center of the surface

The track is divided into numbered sectors

A single track + an arm + a head

HDD Mechanism (3D view)

Let's Read Sector 0

Let's Read Sector 0

Don't Try This at Home!

https://www.youtube.com/watch?v=9eMWG3fwi EU&feature=youtu.be&t=30s

Disk Performance

• I/O latency of disks

$$\underline{\mathbf{L}_{I/O}} = \mathbf{L}_{seek} + \mathbf{L}_{rotate} + \mathbf{L}_{transfer}$$

• Disk access latency at millisecond level

- Seek may take several milliseconds (ms)
- Settling along can take 0.5 2ms
- Entire seek often takes 4 10ms

- Rotation per minute (RPM)
 - 7200 RPM is common nowadays
 - 15000 RPM is high end
 - Old computers may have 5400 RPM disks
- 1 / 7200 RPM = 1 minute / 7200 rotations =
 1 second / 120 rotations = 8.3 ms / rotation

- Rotation per minute (RPM)
 - 7200 RPM is common nowadays
 - 15000 RPM is high end
 - Old computers may have 5400 RPM disks
- 1 / 7200 RPM = 1 minute / 7200 rotations =

1 second / 120 rotations = 8.3 ms / rotation

• So it may take 4.2 ms on average to rotate to 2 = 4.15 mstarget (0.5 * 8.3 ms)

- Relatively fast
 - Depends on RPM and sector density
- 100+ MB/s is typical for SATA I (1.5Gb/s max)
 Up to 600MB/s for SATA III (6.0Gb/s)
- 1s / 100MB = 10ms / MB = 4.9us/sector • Assuming 512-byte sector

Workloads

- Seeks and rotations are slow while transfer is relatively fast
- What kind of workload is best suited for disks?

Workloads

- Seeks and rotations are slow while transfer is relatively fast
- What kind of workload is best suited for disks?
 - Sequential I/O: access sectors in order (transfer dominated)
- Random workloads access sectors in a random order (seek+rotation dominated) Out of core.
 - Typically slow on disks
 - Never do random I/O unless you must! E.g., Quicksort is a terrible algorithm for disk!

Disk Performance Calculation

• Seagate Enterprise SATA III HDD

Metric	Perf
RPM	7200
Avg seek	4.16ms
Max transfer	500MB/s

How long does an average 4KB read take?

Disk Performance Calculation

• Seagate Enterprise SATA III HDD

Metric	Perf
RPM	7200
Avg seek	4.16ms
Max transfer	500MB/s

• How long does an average 4KB read take? $transfer = \frac{1 \, sec}{500 \, MB} \times 4 \, KB \times \frac{1,000,000 \, us}{1 \, sec} = 8 \, us$

Disk Performance Calculation

• Seagate Enterprise SATA III HDD

$$transfer = \frac{1 \, sec}{500 \, MB} \times 4 \, KB \times \frac{1,000,000 \, us}{1 \, sec} = 8 \, us$$

$$Latency = 4.16 \, ms + 4.2 \, ms + 8 \, us = 8.368 \, ms$$

$$Avg Seek$$

$$MU CS571 Spring 2020$$