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I/O Devices



Why I/O?

• I/O == Input/Output

• What good is a computer without any I/O devices?
• Keyboard, display, disks…
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Why I/O?

• I/O == Input/Output

• What good is a computer without any I/O devices?
• Keyboard, display, disks…

• We want
• Hardware: which will provide direct physical interfaces
• OS: which can interact with different combinations
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Prototypical System Architecture
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Prototypical System Architecture
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Prototypical System Architecture
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Canonical I/O Device
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Canonical I/O Device
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OS reads from and writes to these



Canonical I/O Device
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OS reads from and writes to these



A Hard Disk Drive PCB Example
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A Basic I/O Protocol

while (STATUS == BUSY)
; // spin

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

; // spin
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A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
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A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
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A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
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A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
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A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
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A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
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Interrupts

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
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Interrupts

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
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Interrupts vs. Polling

• Any potential issues for interrupts?
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Interrupts vs. Polling

• Any potential issues for interrupts?

• Interrupts can lead to livelock
• E.g., flood of network packets
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Interrupts vs. Polling

• Any potential issues for interrupts?

• Interrupts can lead to livelock
• E.g., flood of network packets

• Techniques
• Hybrid approach: polling + interrupts
• Interrupt coalescing: batching a bunch interrupts in 

one go
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Where else Can We Optimize?

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
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Data Transfer

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
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Programmed I/O vs. Direct Memory Access

• PIO (Programmed I/O)
• CPU directly tells device what data is
• CPU involved in data transfer

• DMA (Direct Memory Access)
• CPU leaves data in memory
• DMA hardware does data copy
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PIO Data Flow
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Disk
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PIO Data Flow
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Disk

2. Copy data from
memory via CPU

Note: c == copy memory words



PIO Data Flow
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Disk

3. CPU initiates the I/O (w/ an OS 
interrupt) by copying the data 
from memory to disk, before 
running P2

OS interrupt preempts P1



PIO Data Flow
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Disk

4. Done with I/O, Disk 
interrupts P2 and re-
schedules P1 on CPU

Disk interrupt preempts P2



DMA Data Flow
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Disk

1. Executing P1 on CPU



DMA Data Flow
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Disk

2a. OS initiates DMA by telling the 
DMA engine where data lives in 
memory, how much to copy, and 
which device to send it to;
2b. DMA then copies the data from 
memory

OS interrupt preempts P1



DMA Data Flow
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Disk

3. DMA controller copies the data 
from memory to the disk



DMA Data Flow
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Disk

4. When DMA is complete, DMA 
controller raises an interrupt to let 
OS know P1 can resume

DMA interrupt 
preempts P2



DMA

while (STATUS == BUSY) //1
wait for interrupt;

Initiate DMA transfer //2a
Wait for interrupt //2b
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
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