
I/O and Storage: 
I/O Basics

CS 571: Operating Systems (Spring 2020)
Lecture 9a

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



2

I/O Devices



Why I/O?

• I/O == Input/Output

• What good is a computer without any I/O devices?
• Keyboard, display, disks…

3



Why I/O?

• I/O == Input/Output

• What good is a computer without any I/O devices?
• Keyboard, display, disks…

• We want
• Hardware: which will provide direct physical interfaces
• OS: which can interact with different combinations

4



Prototypical System Architecture

5



Prototypical System Architecture

6



Prototypical System Architecture

7



Canonical I/O Device

8



Canonical I/O Device

9

OS reads from and writes to these



Canonical I/O Device

10

OS reads from and writes to these



A Hard Disk Drive PCB Example

11



A Basic I/O Protocol

while (STATUS == BUSY)
; // spin

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

; // spin

12



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
13

CPU

Disk

A

C



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
14

CPU

Disk

A

C

Process A wants to do I/O



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
15

CPU

Disk

A

C

1



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
16

CPU

Disk

A

C

1 2

A

3



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
17

CPU

Disk

A

C

1 2

A

3 4



A Basic I/O Protocol

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

; // spin
18

CPU

Disk

A

C

1 polling 2

A

3 4 polling

Wasted CPU cycles



Interrupts

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
19

CPU

Disk

A

C

1 polling 2

A

3 4 polling



Interrupts

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
20

CPU

Disk

A

C

1 2

A

3, 4

B A B A



Interrupts vs. Polling

• Any potential issues for interrupts?

21



Interrupts vs. Polling

• Any potential issues for interrupts?

• Interrupts can lead to livelock
• E.g., flood of network packets

22



Interrupts vs. Polling

• Any potential issues for interrupts?

• Interrupts can lead to livelock
• E.g., flood of network packets

• Techniques
• Hybrid approach: polling + interrupts
• Interrupt coalescing: batching a bunch interrupts in 

one go

23



Where else Can We Optimize?

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
24

CPU

Disk

A

C

1 2

A

3, 4

B A B A



Data Transfer

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
25

CPU

Disk

A

C

1 2

A

3, 4

B A B A



Programmed I/O vs. Direct Memory Access

• PIO (Programmed I/O)
• CPU directly tells device what data is
• CPU involved in data transfer

• DMA (Direct Memory Access)
• CPU leaves data in memory
• DMA hardware does data copy

26



PIO Data Flow

27

Disk

1. Executing P1 on CPU



PIO Data Flow

28

Disk

2. Copy data from
memory via CPU

Note: c == copy memory words



PIO Data Flow

29

Disk

3. CPU initiates the I/O (w/ an OS 
interrupt) by copying the data 
from memory to disk, before 
running P2

OS interrupt preempts P1



PIO Data Flow

30

Disk

4. Done with I/O, Disk 
interrupts P2 and re-
schedules P1 on CPU

Disk interrupt preempts P2



DMA Data Flow

31

Disk

1. Executing P1 on CPU



DMA Data Flow

32

Disk

2a. OS initiates DMA by telling the 
DMA engine where data lives in 
memory, how much to copy, and 
which device to send it to;
2b. DMA then copies the data from 
memory

OS interrupt preempts P1



DMA Data Flow

33

Disk

3. DMA controller copies the data 
from memory to the disk



DMA Data Flow

34

Disk

4. When DMA is complete, DMA 
controller raises an interrupt to let 
OS know P1 can resume

DMA interrupt 
preempts P2



DMA

while (STATUS == BUSY) //1
wait for interrupt;

Initiate DMA transfer //2a
Wait for interrupt //2b
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;
35

CPU

Disk

A

C

1 2a,2b

A

B B B A

3,4

DMA A


