BEORGE UNIVERSITY

I/O and Storage: I/O Basics

CS 571: Operating Systems (Spring 2020) Lecture 9a

Yue Cheng

Some material taken/derived from:

• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

I/O Devices

Why I/O?

- I/O == Input/Output
- What good is a computer without any I/O devices?
 - Keyboard, display, disks...

Why I/O?

- I/O == Input/Output
- What good is a computer without any I/O devices?
 - Keyboard, display, disks...
- We want
 - Hardware: which will provide direct physical interfaces
 - OS: which can interact with different combinations

Prototypical System Architecture

Prototypical System Architecture

Prototypical System Architecture

Canonical I/O Device

Canonical I/O Device

Canonical I/O Device

A Hard Disk Drive PCB Example

Interrupts

while (STATUS == BUSY) //1
 wait for interrupt;
Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
 wait for interrupt;

Interrupts

while (STATUS == BUSY) //1
 wait for interrupt;
Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
 wait for interrupt;

Interrupts vs. Polling

• Any potential issues for interrupts?

Interrupts vs. Polling

- Any potential issues for interrupts?
- Interrupts can lead to livelock
 - E.g., flood of network packets

Interrupts vs. Polling

- Any potential issues for interrupts?
- Interrupts can lead to livelock
 - E.g., flood of network packets
- Techniques
 - Hybrid approach: polling + interrupts
 - Interrupt coalescing: batching a bunch interrupts in one go

Where else Can We Optimize?

while (STATUS == BUSY) //1
 wait for interrupt;
Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
 wait for interrupt;

Data Transfer

while (STATUS == BUSY) //1
wait for interrupt;
Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
wait for interrupt;

Programmed I/O vs. Direct Memory Access

- PIO (Programmed I/O)
 - CPU directly tells device what data is
 - CPU involved in data transfer
- DMA (Direct Memory Access)
 - CPU leaves data in memory
 - DMA hardware does data copy

CPU

Disk

DMA

while (STATUS == BUSY) //1
 wait for interrupt;
Initiate DMA transfer //2a
Wait for interrupt //2b
Write command to COMMAND register //3
while (STATUS == BUSY) //4
 wait for interrupt;