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Workload Examples

• A simple workload
• Workload consists of a working set of 100 pages
• Workload issues 10,000 access requests

• Four replacement policies
• OPT: The optimal 
• LRU: Least-recently used
• FIFO: First-in first-out
• RAND: Random
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The No-Locality Workload
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Each reference is to a random page within the set of accessed pages
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The 80-20 Workload
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80-20: 80% of the refs are made to 20% of the pages (“hot” pages)
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The Looping-Sequential Workload
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Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses
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The Looping-Sequential Workload
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Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses

49
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Thrashing
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Thrashing
• High-paging activity: The system is spending more 

time paging than executing

• How can this happen? 
• OS observes low CPU utilization and increases the degree of 

multiprogramming
• Global page-replacement algorithm is used, it takes away 

frames belonging to other processes
• But these processes need those pages, they also cause 

page faults
• Many processes join the waiting queue for the paging device, 

CPU utilization further decreases
• OS introduces new processes, further increasing the paging 

activity
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CPU Utilization vs. the Degree of 
Multiprogramming
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How to Avoid Thrashing?

• To avoid thrashing, earlier OS did admission 
control to only run a subset of processes 

• Some current OS takes more draconian 
approach
• E.g., some Linux runs an out-of-memory killer to 

choose a memory-intensive process and kill it
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Review: Demand Paging
• Bring a page into memory only when it is needed
• Less I/O needed
• Less memory needed 
• Faster response
• Support more processes/users

• Page is needed Þ use the reference to page
• If not in memory Þ must bring from the disk

• Demand paging versus swapping
• Fetching the page in only on demand vs. kicking out 

one victim then paging in one under mem pressure
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Demand Paging and Thrashing

• Why does demand paging work?
Locality model
• Process migrates from one locality to another
• Localities may overlap

• Why does thrashing occur?
S size of locality > total memory size
Or S working set size > total memory size

• Definition of working set size (WSS): number of 
unique items that are accessed 
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Impact of Program Structures on 
Memory Performance
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Impact of Program Structure on 
Memory Performance
• Consider an array named data with 128*128 elements
• Each row is stored in one page (of size 128 words)
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Impact of Program Structure on 
Memory Performance
• Consider an array named data with 128*128 elements
• Each row is stored in one page (of size 128 words)
• Program 1 

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i][j] = 0;

128 x 128 = 16,384 page faults 

16Y. Cheng GMU CS571 Spring 2020



Impact of Program Structure on 
Memory Performance
• Consider an array named data with 128*128 elements
• Each row is stored in one page (of size 128 words)
• Program 1 

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i][j] = 0;

128 x 128 = 16,384 page faults 

• Program 2 
for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)
data[i][j] = 0;

Only 128 page faults
17Y. Cheng GMU CS571 Spring 2020


