
Memory Management: 
Page Replacement Policies:

Miscellaneous Topics
CS 571: Operating Systems (Spring 2020)

Lecture 8c

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



2

Page Replacement Workload 
Examples

Y. Cheng GMU CS571 Spring 2020



Workload Examples

• A simple workload
• Workload consists of a working set of 100 pages
• Workload issues 10,000 access requests

• Four replacement policies
• OPT: The optimal 
• LRU: Least-recently used
• FIFO: First-in first-out
• RAND: Random

3Y. Cheng GMU CS571 Spring 2020



The No-Locality Workload

4

Each reference is to a random page within the set of accessed pages
Y. Cheng GMU CS571 Spring 2020



The 80-20 Workload

5

80-20: 80% of the refs are made to 20% of the pages (“hot” pages)
Y. Cheng GMU CS571 Spring 2020



The Looping-Sequential Workload

6

Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses
Y. Cheng GMU CS571 Spring 2020



The Looping-Sequential Workload

7

Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses

49

Y. Cheng GMU CS571 Spring 2020



8

Thrashing

Y. Cheng GMU CS571 Spring 2020



Thrashing
• High-paging activity: The system is spending more 

time paging than executing

• How can this happen? 
• OS observes low CPU utilization and increases the degree of 

multiprogramming
• Global page-replacement algorithm is used, it takes away 

frames belonging to other processes
• But these processes need those pages, they also cause 

page faults
• Many processes join the waiting queue for the paging device, 

CPU utilization further decreases
• OS introduces new processes, further increasing the paging 

activity

9Y. Cheng GMU CS571 Spring 2020



CPU Utilization vs. the Degree of 
Multiprogramming

10Y. Cheng GMU CS571 Spring 2020



How to Avoid Thrashing?

• To avoid thrashing, earlier OS did admission 
control to only run a subset of processes 

• Some current OS takes more draconian 
approach
• E.g., some Linux runs an out-of-memory killer to 

choose a memory-intensive process and kill it

11Y. Cheng GMU CS571 Spring 2020



Review: Demand Paging
• Bring a page into memory only when it is needed
• Less I/O needed
• Less memory needed 
• Faster response
• Support more processes/users

• Page is needed Þ use the reference to page
• If not in memory Þ must bring from the disk

• Demand paging versus swapping
• Fetching the page in only on demand vs. kicking out 

one victim then paging in one under mem pressure

12Y. Cheng GMU CS571 Spring 2020



Demand Paging and Thrashing

• Why does demand paging work?
Locality model
• Process migrates from one locality to another
• Localities may overlap

• Why does thrashing occur?
S size of locality > total memory size
Or S working set size > total memory size

• Definition of working set size (WSS): number of 
unique items that are accessed 

13Y. Cheng GMU CS571 Spring 2020



14

Impact of Program Structures on 
Memory Performance

Y. Cheng GMU CS571 Spring 2020



Impact of Program Structure on 
Memory Performance
• Consider an array named data with 128*128 elements
• Each row is stored in one page (of size 128 words)

15Y. Cheng GMU CS571 Spring 2020



Impact of Program Structure on 
Memory Performance
• Consider an array named data with 128*128 elements
• Each row is stored in one page (of size 128 words)
• Program 1 

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i][j] = 0;

128 x 128 = 16,384 page faults 

16Y. Cheng GMU CS571 Spring 2020



Impact of Program Structure on 
Memory Performance
• Consider an array named data with 128*128 elements
• Each row is stored in one page (of size 128 words)
• Program 1 

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i][j] = 0;

128 x 128 = 16,384 page faults 

• Program 2 
for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)
data[i][j] = 0;

Only 128 page faults
17Y. Cheng GMU CS571 Spring 2020


