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Page Replacement Workload
Examples



Workload Examples

* A simple workload
* Workload consists of a working set of 100 pages
» Workload issues 10,000 access requests

* Four replacement policies
* OPT: The optimal
* | RU: Least-recently used
* FIFO: First-in first-out
 RAND: Random



The No-Locality Workload

The No-Locality Workload
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Each reference is to a random page within the set of accessed pages
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The 80-20 Workload ~ tewperet o=t

The 80-20 Workload
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The Looping-Sequential Workload

The Looping-Sequential Workload
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The Looping-Sequential Workload

The Looping-Sequential Workload
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Thrashing



Thrashing

* High-paging activity: The system is spending more
time paging than executing

« How can this happen”?

« OS observes low CPU utilization and increases the degree of
multiprogramming

» Global page-replacement algorithm is used, it takes away
frames belonging to other processes

« But these processes need those pages, they also cause
page faults

* Many processes join the waiting queue for the paging device,
CPU utilization further decreases

« OS introduces new processes, further increasing the paging
activity
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How to Avoid Thrashing?

* To avoid thrashing, earlier OS did admission
control to only run a sulbset of processes

« Some current OS takes more draconian
approach

* E.g., some Linux runs an out-of-memory Killer to
choose a memory-intensive process and Kill it



Review: Demand Paging

* Bring a page into memory only when it is needed
* Less |/O needed
* Less memory needed
 Faster response
¢ SUPPOIrt More processes/users

* Page is needed = use the reference to page
* |[f not In memory = must bring from the disk

« Demand paging versus swapping

* Fetching the page in only on demand vs. kicking out
one victim then paging in one under mem pressure



Demand Paging and Thrashing

* Why does demand paging work? '—g

f
Locality model I (P\% hl— A8,

* Process migrates from one locality to another
 Localities may overlap —
Py

Lb %hy does thrashing occur?

size of locallty > total memory size

Or(i)worklng set size > total memory size
—

—

* Definition of working set size (WSS): number of
unique items that are accessed™
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Impact of Program Structures on
Memory Performance



Impact of Program Structure on

Memory Performance -
1
« Consider an array named data with 128*128 elements J,
« Each row is stored in one page (of size 128 words) N 5521 p,
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Impact of Program Structure on
Memory Performance on - deme-d

« Consider an array named data with 128+*128 elements
« Each row is stored in one page (of size 128 words) LR

« Program 1 R
° . - ] |-

for = 0; j <128; j++) 7

for = 0; i < 128; i++)
datali][}] = 0; % r
A A

2 2 ‘ﬁ
128 x 128 = 16,384 page faults * .

—N—
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Impact of Program Structure on
Memory Performance

« Consider an array named data with 128+*128 elements
« Each row is stored in one page (of size 128 words)

» Program 1 ( 2 Dicle
for (j = 0; j <128; j++)

for (1 = 0; 1 < 128; 1i++)
data[i][]J] = O; \/

\*

128 x 128 = 16,384 page faults

+ Program 2 Cpatial ““"‘"*?/
for (i)= 05 &< 128; i)
for j < 128; j++)

dat l][j] = 0;

Only 128 page faults
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