Memory Management:

Page Replacement Policies:

Miscellaneous Topics
CS 571: Operating Systems (Spring 2020)

Lecture 8¢
Yue Cheng
Some mt ial taken/der df om:
+ Wisc CS537mt ials created by Remzi Arpaci-Dusseau.

Licensedforuse nder a Creativ Cmm s Attribution-NonCommercial-ShareAlike 3.0 Unported Lice

Page Replacement Workload
Examples

Workload Examples

* A simple workload
* Workload consists of a working set of 100 pages
» Workload issues 10,000 access requests

* Four replacement policies
* OPT: The optimal
* | RU: Least-recently used
* FIFO: First-in first-out
 RAND: Random

The No-Locality Workload

The No-Locality Workload
100% -

L(o Paad-
80% -
(/a o 60%-
©
o
L 40%-
TopT]
20% A LRU
X FIFO
— RAND

- 0’

flie

Oo/o n

0 20 40 60 80 @
Cache Size (Blocks) pages

(2

Each reference is to a random page within the set of accessed pages

Y. Cheng GMU CS571 Spring 2020

The 80-20 Workload ~ tewperet o=t

The 80-20 Workload

100% -
_9 :% l
O? \ -~ """"',
80% - |
R SRS 7= ‘
- D 65"40— -
Fure/ POV 00s
© l
= |
T 40%- J
| OPT
20% - l LRU
\ X FIFO
| — RAND
OO/O I = T T T 1
0 20 40 60 80 100

Cache Size (Blocks)
80-20: 80% of the refs are made to 20% of the pages (“hot” pages)

Y. Cheng GMU CS571 Spring 2020

The Looping-Sequential Workload

The Looping-Sequential Workload

100% -
80% -
o 60%-
(4v]
o
L 40%-
OPT
20% A LRU
X FIFO
— RAND
Oo/o I toncoone ; RS ' y |
0 20 40 60 80 100

Cache Size (Blocks)

Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses
v\/\/
Y. Cheng GMU CS571 Spring 2020

The Looping-Sequential Workload

The Looping-Sequential Workload

100% 97— — — — —
ZFD —> JjOoD m

o- 49,

A\

80% -

60% -

47 50.

Hit Rate

40%

OPT

g
LRU

1 X EIE
AND

20% -

0% SRR T T 1
0 —20 7 40'l~§:6 60 80 100
Cache Size (Blocks)

Loop first 50 pages starting from 0 to 49 for a total of 10,000 accesses
Y. Cheng GMU CS571 Spring 2020 7

Thrashing

Thrashing

* High-paging activity: The system is spending more
time paging than executing

« How can this happen”?

« OS observes low CPU utilization and increases the degree of
multiprogramming

» Global page-replacement algorithm is used, it takes away
frames belonging to other processes

« But these processes need those pages, they also cause
page faults

* Many processes join the waiting queue for the paging device,
CPU utilization further decreases

« OS introduces new processes, further increasing the paging
activity

CPU Utilization vs. the Degree of

Multiprogramming
i |
S | thrashing .
5 Ty ke
S \ \R
- .
‘ : L&t(\ﬂ)(&
_ e

degree of multiprogramming

<€t

X

Y. Cheng GMU CS571 Spring 2020

How to Avoid Thrashing?

* To avoid thrashing, earlier OS did admission
control to only run a sulbset of processes

« Some current OS takes more draconian
approach

* E.g., some Linux runs an out-of-memory Killer to
choose a memory-intensive process and Kill it

Review: Demand Paging

* Bring a page into memory only when it is needed
* Less |/O needed
* Less memory needed
 Faster response
¢ SUPPOIrt More processes/users

* Page is needed = use the reference to page
* |[f not In memory = must bring from the disk

« Demand paging versus swapping

* Fetching the page in only on demand vs. kicking out
one victim then paging in one under mem pressure

Demand Paging and Thrashing

* Why does demand paging work? '—g

f
Locality model I (P\% hl— A8,

* Process migrates from one locality to another
 Localities may overlap —
Py

Lb %hy does thrashing occur?

size of locallty > total memory size

Or(i)worklng set size > total memory size
—

—

* Definition of working set size (WSS): number of
unique items that are accessed™

Y. Cheng GMU CS571 Spring 2020 13

Impact of Program Structures on
Memory Performance

Impact of Program Structure on

Memory Performance -
1
« Consider an array named data with 128*128 elements J,
« Each row is stored in one page (of size 128 words) N 5521 p,
\(. T
.

19 L Pn7~

Impact of Program Structure on
Memory Performance on - deme-d

« Consider an array named data with 128+*128 elements
« Each row is stored in one page (of size 128 words) LR

« Program 1 R
° . -] |-

for = 0; j <128; j++) 7

for = 0; i < 128; i++)
datali][}] = 0; % r
A A

2 2 ‘ﬁ
128 x 128 = 16,384 page faults * .

—N—

Y. Cheng GMU CS571 Spring 2020 16

Impact of Program Structure on
Memory Performance

« Consider an array named data with 128+*128 elements
« Each row is stored in one page (of size 128 words)

» Program 1 (2 Dicle
for (j = 0; j <128; j++)

for (1 = 0; 1 < 128; 1i++)
data[i][]J] = O; \/

*

128 x 128 = 16,384 page faults

+ Program 2 Cpatial ““"‘"*?/
for (i)= 05 &< 128; i)
for j < 128; j++)

dat l][j] = 0;

Only 128 page faults

Y. Cheng GMU CS571 Spring 2020 17

