
Memory Management: 
Page Replacement Policies:

FIFO, Random
CS 571: Operating Systems (Spring 2020)

Lecture 8c

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



2

What to Evict?

Y. Cheng GMU CS571 Spring 2020



Page Replacement
• Page replacement completes the separation 

between the logical memory and the physical 
memory 
• Large virtual memory can be provided on a smaller 

physical memory

• Impact on performance
• If there are no free frames, two page transfers needed at 

each page fault!

• We can use a modify (dirty) bit to reduce overhead 
of page transfers – only modified pages are written 
back to disk

3Y. Cheng GMU CS571 Spring 2020



Page Replacement Policy

• Formalizing the problem
• Cache management: Physical memory is a cache for 

virtual memory pages in the system
• Primary objective:

• High performance
• High efficiency
• Low cost

• Goal: Minimize cache misses
• To minimize # times OS has to fetch a page from disk 
• -OR- maximize cache hits 

4Y. Cheng GMU CS571 Spring 2020



Average Memory Access Time

• Average (or effective) memory access time (AMAT) is 
the metric to calculate the effective memory 
performance

• TM: Cost of accessing memory
• TD: Cost of accessing disk
• PHit: Probability of finding data in cache (hit)
• Hit rate

• PMiss: Probability of not finding data in cache (miss)
• Miss rate

5Y. Cheng GMU CS571 Spring 2020



An Example

• Assuming 
• TM is 100 nanoseconds (ns), TD is 10 milliseconds 

(ms)
• PHit is 0.9, and PMiss is 0.1

• AMAT = 0.9*100ns + 0.1*10ms = 90ns + 1ms = 
1.00009ms
• Or around 1 millisecond

• What if the hit rate is 99.9%?
• Result changes to 10.1 microseconds (or us)
• Roughly 100 times faster!

6Y. Cheng GMU CS571 Spring 2020



7

First-In First-Out (FIFO)

Y. Cheng GMU CS571 Spring 2020



First-in First-out (FIFO)

• Simplest page replacement algorithm 

• Idea: items are evicted in the order they are 
inserted

• Implementation: FIFO queue holds identifiers of 
all the pages in memory
• We replace the page at the head of the queue
• When a page is brought into memory, it is inserted at 

the tail of the queue

8Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

9Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

10

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

11

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

12

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

13

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

14

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

15

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

16

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• Idea: items are evicted in the order they are 

inserted

• Issue: the “oldest” page may contain a heavily 
used data
• Will need to bring back that page in near future

17Y. Cheng GMU CS571 Spring 2020



FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

18

Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5



FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

19

Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1
2
3
4
1
2
5
1
2
3
4
5



FIFO Replacement Policy
• FIFO: items are evicted in the order they are inserted
• Example workload: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

20

Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 2,3,4
1 no 3,4,1
2 no 4,1,2
5 no 1,2,5
1 yes 1,2,5
2 yes 1,2,5
3 no 2,5,3
4 no 5,3,4
5 yes 5,3,4

(a) size 3 (b) size 4
Access Hit State (after)
1 no 1
2 no 1,2
3 no 1,2,3
4 no 1,2,3,4
1 yes 1,2,3,4
2 yes 1,2,3,4
5 no 2,3,4,5
1 no 3,4,5,1
2 no 4,5,1,2
3 no 5,1,2,3
4 no 1,2,3,4
5 no 2,3,4,5



Belady’s Anomaly
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Size-3 (3-frames) case results in 9 page faults
• Size-4 (4-frames) case results in 10 page faults

• Program runs potentially slower w/ more memory!

• Belady’s anomaly
• More frames è more page faults for some access pattern

21

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5
10 page faults

44 3
Y. Cheng



22

Random

Y. Cheng GMU CS571 Spring 2020



Random Policy
• Idea: picks a random page to replace

• Simple to implement like FIFO

• No intelligence of preserving locality

23Y. Cheng GMU CS571 Spring 2020



Random Policy
• Idea: picks a random page to replace

• Example workload: 0 1 2 0 1 3 0 3 1 2 1 

24

assume 
cache size 3

Y. Cheng GMU CS571 Spring 2020



How Random Policy Performs?

• Depends entirely on how lucky you are

• Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

25

Random performance over 10000 trials

Y. Cheng GMU CS571 Spring 2020



How Random Policy Performs?

• Depends entirely on how lucky you are

• Example workload: 0 1 2 0 1 3 0 3 0 1 2 1 

26

Same as 
optimal

Extremely 
bad result!

Random performance over 10000 trials

Y. Cheng GMU CS571 Spring 2020


