Memory Management:

Page Replacement Policies:
FIFO, Random

CS 571: Operating Systems (Spring 2020)
Lecture 8c

Yue Cheng

Some material taken/derived from:
* Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

What to Evict?

Page Replacement /leclanicw

_ -+ Page replacement completes the separation
between the logical memory and the physical
memory

Swepp: ¥

?&V*rhﬁlﬂ\

 Large virtual memory can be provided on a smaller //
/

physical memory

* Impact on performance

S\w[’ .

\’ /l'V" oL
mem P
hrO

> -« If there are no free frames, two page transfers needed at

—

each page fault!
~— UTetinn

» \We can use a modify (dirty) bit to reduce overhead
of page transfers — only modified pages are written

back to disk

Y. Cheng GMU CS571 Spring 2020

Page Replacement Policy

* Formalizing the problem

 Cache management: Physical memory is a cache for
virtual memory pages in the system
* Primary objective:
« High performance
 High efficiency
* Low cost
» Goal: Minimize\cache misses
« To minimize # times OS has to fetch a page from disk
* -OR- maximize cache hits

Y. Cheng GMU CS571 Spring 2020

Average Memory Access Time

 Average (or effective) memory access time (AMAT) is
the metric to calculate the effective memory
performance

Ly AMAT = (Pyi: - Tanr) + (Pasiss - Th)

* T, Cost of accessing memory

* T,: Cost of accessing disk

->PHit: Probability of finding data in cache (Qit)
 Hit rate

_ 2 Py;gs Probability of not finding data in cache (miss)
« Miss rate A

Y. Cheng GMU CS571 Spring 2020

An Example

* Assuming
* Ty is 100 nanoseconds (ns), Ty is 10 milliseconds
(ms) — — e
cnetrh s
« P, is 0.9, and Py, is 0.1 "i’; 3 T

e AMAT = 0.9*100ns + 0.1*%10ms = 90ns + 1lms =
Sl.OOOO9ms) %q/ - o

e Or around 1 millisecond ——

* What if the hit rate is 99.9%7
* Result changes to 10.1 microseconds (or@

M

* Roughly 100 times faster!

e

Y. Cheng GMU CS571 Spring 2020 6

First-In First-Out (FIFO)

First-in First-out (FIFO)
« Simplest page replacement algorithm

e |dea: items are evicted in the order they are
Inserted

 Implementation: FIFO queue holds identifiers of
all the pages in memory
* We replace the page at the head of the queue

* When a page is brought into memory, it is inserted at
the tail of the queue

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

 Example workload: 01201303121 --

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

\
\I \l X’ Resulting assu mi@

Access Hit/Miss? Evict Cache State EgChe Siz

——

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2020 10

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

(evyp WY Resulting \7 assume
e Access Hit/Miss? Evict Cache State cache size 3
id 0 Miss First-in— 0

(— 1 Miss First-in— 1
(2) Miss Figst-in— @ 1,2
1
3
0
3
1
2
1

Y. Cheng GMU CS571 Spring 2020 I

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
0 Miss First-in— 0
1 Miss First-in— 35 |
2 Miss First-in— 0,1,2
s 0 Hit First-in— 0,d)2
1
3
0
3
1
2
1

Y. Cheng GMU CS571 Spring 2020 12

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 2

|
’;_x
~

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2020 13

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me

Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 0,1,2
Miss

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2020 14

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3

Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1, 2
Hit First-in— 0,1, 2
Hit First-in— 0,1, 2
Miss @ Firstin— 1,2,3 &—

/]

R NN, WOWRFRLRONRFRO

Y. Cheng GMU CS571 Spring 2020 15

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Mjss? Evict Cache State cache size 3
0 Miss First-in— 0
1 l Miss First-in— 35 |
2 Miss First-in— 0,1, 2
0 Hit First-in— 0,1, 2
1 Hit First-in— 0,1, 2
3 Miss FB\ First-in— 1,2,3
0 Miss 1 First-in— 2,3,0
3 Hit First-in— 2,3,0
1 Miss 2 First-in— 3,0, 1
2 Miss 3 First-in— 0,1,2
1 Hit —— Firstiin—» 0,1,2

~
~

Y. Cheng GMU CS571 Spring 2020 16

FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

* Issue: the “oldest” page may contain a heavily
used data

* Will need to bring back that page in near future

FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
—p ¢ Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4 _

N\~
Access | Hit | State (aitor) [l Access | Hit | State (aiten

o B~ WO N = 00NV = B W N =
o B~ WO N = 00NV = B W N =

FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
 Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 % hits. (b) size 4
Acoess | Hit | State (aiter) [Nl Access | Hit | State (afer)
1 no 1 1
2 no 1,2 2
3 no 1,2,3 3
4 no 2,3,4 4
1 no 3,4,1 1
2 no 41,2 2
5 no 1,2,5 5
1 yes l 1,2,5 1
2 yes 1,2,5 2
3 no 2,5,3 3
4 no 5,3,4 4
5 yes | 5,3,4 5

FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
 Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 xo(b) size 4
Access | Hit | State (atter) [Nl Access | it | State (after)

1 no 1 1 no 1
2 no 1,2 2 no 1,2
3 no 1,2,3 3 no 1,2,3
4 no 2,3,4 4 no 1,2,3,4
1 no 3,4,1 1 “yes' 1,2,3,4
2 no 41,2 2 (yes \ 1,2,3,4
5 no 1,2,5 5 o 2345
1 yes 1,2,5 1 no 3,4,5,1
2 yes 1,2,5 2 no 451,2
3 no 2,5,3 3 no 5,1,2,3
4 no 53,4 4 no 1,2,3,4
5 yes 5,3,4 5 no 2,3,4,5

, \lea,(w‘l/ Fodt Q.. G"fi)
BeIAady s Anomaly -5 {105 ¢ 5

» Reference string:\1, 2,3, 4,1) 2, 5,@, 2,3, 4, 5l<v-
« Size-3 (3-frames) case results in 9 page faults

« Size-4 (4-frames) case results in 10 page faults
A - = ~—

* Program runs potentially slower w/ more memory!
\/'_/—w

* Belady’s anomaly
* More frames =2» more page faults for some access pattern

212 |1 3 9page faults 10 page faults

H WD
W DN
N

Y. Cheng 21

Random

Random Policy

* |dea: picks a random page to replace
« Simple to implement like FIFO

* No intelligence of preserving locality

Random Policy

* |dea: picks a random page to replace
e Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss 0 assume

1 Miss 0,1 cache size 3

2 Miss D2

0_ Hit 0,1,2

1 omip G 0,1,2

Miss % 1,23

"«“:ﬁﬁﬁ 2.3,0

Hit 2. 3.0

%) Miss ©) 2:01

Hit 2.0 1

1 Hit 24031

Y. Cheng GMU CS571 Spring 2020 24

How Random Policy Performs?

* Depends entirely on how lucky you are
* Example workload: 012013030121

Random performance over 10000 trials

50 _ /‘\—-—v
40
>
2 30 -
()]
=
8 20 -
LL
10 -
0 || 1 I 1 1
/o 1 2 3 4 5 6 @
weret Number of Hits ——— \vaC‘(‘.

Y. Cheng GMU CS571 Spring 2020 25

How Random Policy Performs?

* Depends entirely on how lucky you are
* Example workload: 012013030121

Random performance over 10000 trials

50 - ———
(N\
> — i
404 ! i
> Extremely : !
C 30 A ' l
o bad result! : - Same as
& 20- l | - i
ks l , ! optimal
10 -) :
; [e I !
ERRTCNOIS SR TOTE

Number of Hits
Y. Cheng GMU CS571 Spring 2020 26

