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What to Evict?



Page Replacement /leclanicw

_ -+ Page replacement completes the separation
between the logical memory and the physical
memory
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 Large virtual memory can be provided on a smaller //
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* Impact on performance
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> -« If there are no free frames, two page transfers needed at

—

each page fault!
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» \We can use a modify (dirty) bit to reduce overhead
of page transfers — only modified pages are written

back to disk
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Page Replacement Policy

* Formalizing the problem

 Cache management: Physical memory is a cache for
virtual memory pages in the system
* Primary objective:
« High performance
 High efficiency
* Low cost
» Goal: Minimize\cache misses
« To minimize # times OS has to fetch a page from disk
* -OR- maximize cache hits
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Average Memory Access Time

 Average (or effective) memory access time (AMAT) is
the metric to calculate the effective memory
performance

Ly AMAT = (Pyi: - Tanr) + (Pasiss - Th)

* T, Cost of accessing memory

* T,: Cost of accessing disk

->PHit: Probability of finding data in cache (Qit)
 Hit rate

_ 2 Py;gs Probability of not finding data in cache (miss)
« Miss rate A
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An Example

* Assuming
* Ty is 100 nanoseconds (ns), Ty is 10 milliseconds
(ms) — — e
cnetrh s
« P, is 0.9, and Py, is 0.1 "i’; 3 T

e AMAT = 0.9*100ns + 0.1*%10ms = 90ns + 1lms =
Sl.OOOO9ms) %q/ - o

e Or around 1 millisecond ——

* What if the hit rate is 99.9%7
* Result changes to 10.1 microseconds (or@

M

* Roughly 100 times faster!

e
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First-In First-Out (FIFO)



First-in First-out (FIFO)
« Simplest page replacement algorithm

e |dea: items are evicted in the order they are
Inserted

 Implementation: FIFO queue holds identifiers of
all the pages in memory
* We replace the page at the head of the queue

* When a page is brought into memory, it is inserted at
the tail of the queue



FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

 Example workload: 01201303121 --



FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

\
\I \l X’ Resulting assu mi@

Access Hit/Miss? Evict Cache State EgChe Siz

——

R NN, WOWRFRLRONRFRO
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FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

(evyp WY Resulting \7 assume
e Access Hit/Miss? Evict Cache State cache size 3
id 0 Miss First-in— 0

(— 1 Miss First-in— 1
(2) Miss Figst-in— @ 1,2
1
3
0
3
1
2
1
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FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
0 Miss First-in— 0
1 Miss First-in— 35 |
2 Miss First-in— 0,1,2
s 0 Hit First-in—  0,d)2
1
3
0
3
1
2
1
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FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 2

|
’;_x
~

R NN, WOWRFRLRONRFRO
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FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me

Access Hit/Miss? Evict Cache State cache size 3
Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1,2
Hit First-in— 0,1,2
Hit First-in— 0,1,2
Miss

R NN, WOWRFRLRONRFRO
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FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Miss? Evict Cache State cache size 3

Miss First-in— 0
Miss First-in— 35 |
Miss First-in— 0,1, 2
Hit First-in— 0,1, 2
Hit First-in— 0,1, 2
Miss @ Firstin— 1,2,3 &—

/ ]

R NN, WOWRFRLRONRFRO
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FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

« Example workload: 01201303121

Resulting assu me
Access Hit/Mjss? Evict Cache State cache size 3
0 Miss First-in— 0
1 l Miss First-in— 35 |
2 Miss First-in— 0,1, 2
0 Hit First-in— 0,1, 2
1 Hit First-in— 0,1, 2
3 Miss FB\ First-in— 1,2,3
0 Miss 1 First-in— 2,3,0
3 Hit First-in— 2,3,0
1 Miss 2 First-in— 3,0, 1
2 Miss 3 First-in— 0,1,2
1 Hit ——  Firstiin—» 0,1,2

~
~
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FIFO Replacement Policy

* |dea: items are evicted in the order they are
Inserted

* Issue: the “oldest” page may contain a heavily
used data

* Will need to bring back that page in near future



FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
—p ¢ Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 (b) size 4 _

N\~
Access | Hit | State (aitor) [l Access | Hit | State (aiten

o B~ WO N = 00NV = B W N =
o B~ WO N = 00NV = B W N =



FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
 Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 % hits. (b) size 4
Acoess | Hit | State (aiter) [Nl Access | Hit | State (afer)
1 no 1 1
2 no 1,2 2
3 no 1,2,3 3
4 no 2,3,4 4
1 no 3,4,1 1
2 no 41,2 2
5 no 1,2,5 5
1 yes l 1,2,5 1
2 yes 1,2,5 2
3 no 2,5,3 3
4 no 5,3,4 4
5 yes | 5,3,4 5



FIFO Replacement Policy

* FIFO: items are evicted in the order they are inserted
 Example workload: 1,2, 3,4,1,2,5,1,2,3,4,5

(a) size 3 xo(b) size 4
Access | Hit | State (atter) [Nl Access | it | State (after)

1 no 1 1 no 1
2 no 1,2 2 no 1,2
3 no 1,2,3 3 no 1,2,3
4 no 2,3,4 4 no 1,2,3,4
1 no 3,4,1 1 “yes' 1,2,3,4
2 no 41,2 2 (yes \ 1,2,3,4
5 no 1,2,5 5 o 2345
1 yes 1,2,5 1 no 3,4,5,1
2 yes 1,2,5 2 no 451,2
3 no 2,5,3 3 no 5,1,2,3
4 no 53,4 4 no 1,2,3,4
5 yes 5,3,4 5 no 2,3,4,5



, \lea,(w‘l/ Fodt Q.. G"fi)
BeIAady s Anomaly -5 {105 ¢ 5

» Reference string:\1, 2,3, 4,1) 2, 5,@, 2,3, 4, 5l<v-
« Size-3 (3-frames) case results in 9 page faults

« Size-4 (4-frames) case results in 10 page faults
A - = ~—

* Program runs potentially slower w/ more memory!
\/'\_/—w

* Belady’s anomaly
* More frames =2» more page faults for some access pattern

212 |1 3 9page faults 10 page faults

H WD
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N

Y. Cheng 21



Random



Random Policy

* |dea: picks a random page to replace
« Simple to implement like FIFO

* No intelligence of preserving locality



Random Policy

* |dea: picks a random page to replace
e Example workload: 01201303121

Resulting
Access Hit/Miss? Evict Cache State
0 Miss 0 assume

1 Miss 0,1 cache size 3

2 Miss D2

0_ Hit 0,1,2

1 omip G 0,1,2

Miss % 1,23

"«“:ﬁﬁﬁ 2.3,0

Hit 2. 3.0

%) Miss ©) 2:01

Hit 2.0 1

1 Hit 24031
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How Random Policy Performs?

* Depends entirely on how lucky you are
* Example workload: 012013030121

Random performance over 10000 trials

50 _ /‘\—-—v
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/o 1 2 3 4 5 6 @
weret Number of Hits ——— \vaC‘(‘.
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How Random Policy Performs?

* Depends entirely on how lucky you are
* Example workload: 012013030121

Random performance over 10000 trials

50 - ———
( N\
> — i
404 ! i
> Extremely : !
C 30 A ' l
o bad result! : - Same as
& 20- l | - i
ks l , ! optimal
10 - ) :
; [ e I !
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Number of Hits
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