

Memory Management: Page Replacement Policies: LRU

CS 571: Operating Systems (Spring 2020) Lecture 8c

Yue Cheng

Some material taken/derived from:

Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
 Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Least-Recently-Used (LRU)

- Use the recent pass as an approximation of the near future (using history)
- Idea: evict the page that has not been used for the longest period of time

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State
Access	THU WHSS:	EVICE	Cache State
0			
1			
2			
0			
1			
3			
0			
3			
1			
2			
1	CMI	CSETI Spring 2	020

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0					
1					
3					
0					
3					
1					
2					
1					

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU{\rightarrow}$	1, 2, 0	
1					
3					
0					
3					
1					
2					
1	CMU	CC571.C :	2020		

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU{\rightarrow}$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1	Hit		$LRU{\rightarrow}$	2, 0, 1	
3					
0					
3					
1					
2					
1					

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU{\rightarrow}$	0, 1, 2	
0	Hit		$LRU {\rightarrow}$	1, 2, 0	
1	Hit		$LRU \rightarrow$	2, 0, 1	
3	Miss	2	$LRU \rightarrow$	0, 1, 3	
0					
3					
1					
2					
1					

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU {\rightarrow}$	0, 1, 2	
0	Hit		$LRU {\rightarrow}$	1, 2, 0	
1	Hit		$LRU{\rightarrow}$	2, 0, 1	
3	Miss	2	$LRU {\rightarrow}$	0, 1, 3	
0	Hit		$LRU {\rightarrow}$	1, 3, 0	
3					
1					
2					
1					

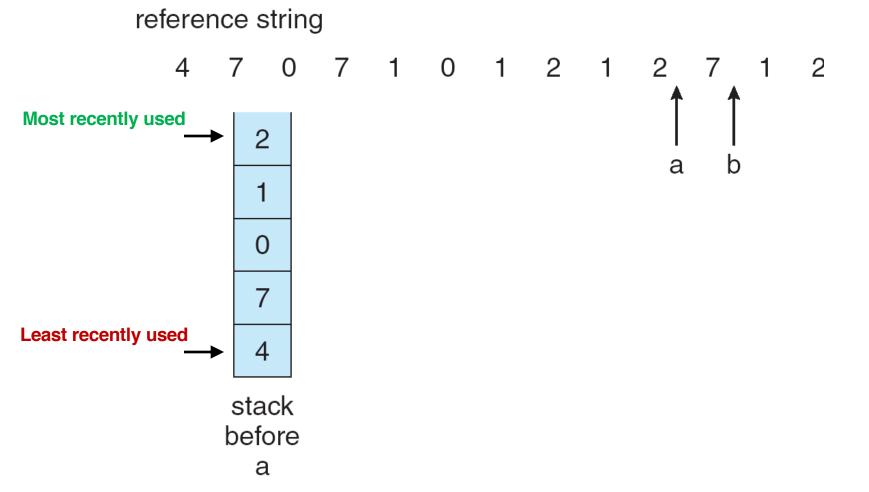
- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU{\rightarrow}$	0, 1, 2	
0	Hit		$LRU{\rightarrow}$	1, 2, 0	
1	Hit		$LRU{\rightarrow}$	2, 0, 1	
3	Miss	2	$LRU{\rightarrow}$	0, 1, 3	
0	Hit		$LRU{\rightarrow}$	1, 3, 0	
3	Hit		$LRU{\rightarrow}$	1, 0, 3	
1					
2					
1					

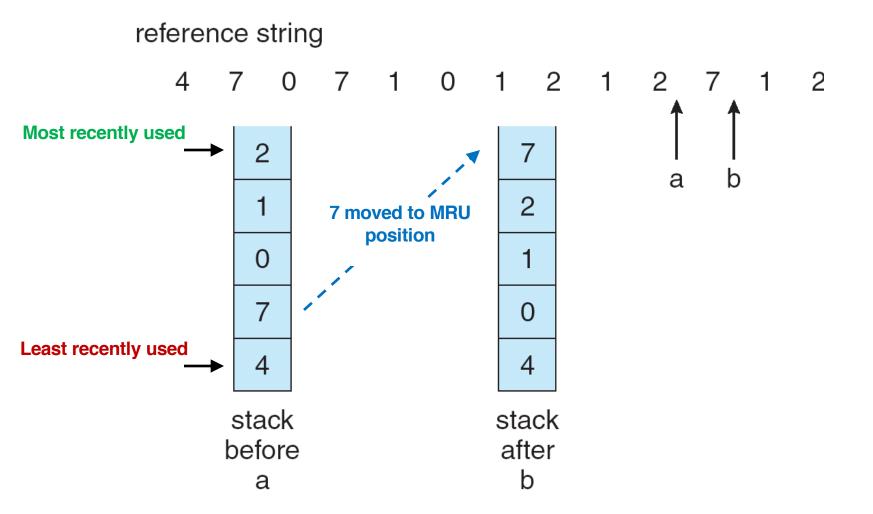
- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU{\rightarrow}$	0, 1, 2	
0	Hit		$LRU{\rightarrow}$	1, 2, 0	
1	Hit		$LRU{\rightarrow}$	2, 0, 1	
3	Miss	2	$LRU {\rightarrow}$	0, 1, 3	
0	Hit		$LRU{\rightarrow}$	1, 3, 0	
3	Hit		$LRU{\rightarrow}$	1, 0, 3	
1	Hit		$LRU {\rightarrow}$	0, 3, 1	
2					
1	CMU	CCE71 Camina	2020		

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1


			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0, 1	
2	Miss		$LRU{\rightarrow}$	0, 1, 2	
0	Hit		$LRU{\rightarrow}$	1, 2, 0	
1	Hit		$LRU \rightarrow$	2, 0, 1	
3	Miss	2	$LRU{\rightarrow}$	0, 1, 3	
0	Hit		$LRU{\rightarrow}$	1, 3, 0	
3	Hit		$LRU{\rightarrow}$	1, 0, 3	
1	Hit		$LRU{\rightarrow}$	0, 3, 1	
2	Miss	0	$LRU{\rightarrow}$	3, 1, 2	
1	Hit		$LRU{\rightarrow}$	3, 2, 1	

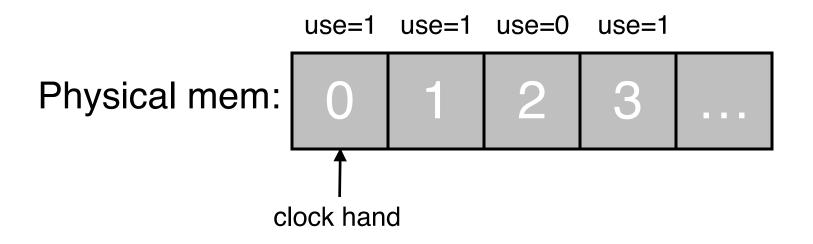
Y. Cheng

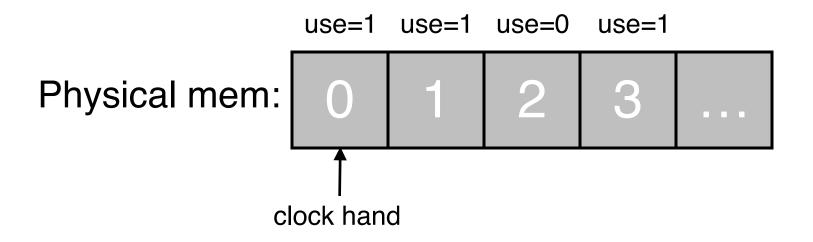

LRU Stack Implementation

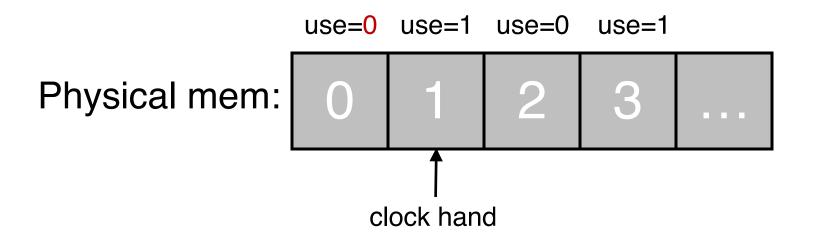
- Stack implementation: keep a stack of page numbers in a doubly linked list form
 - Page referenced, move it to the top
 - Requires quite a few pointers to be changed
 - No search required for replacement operation!

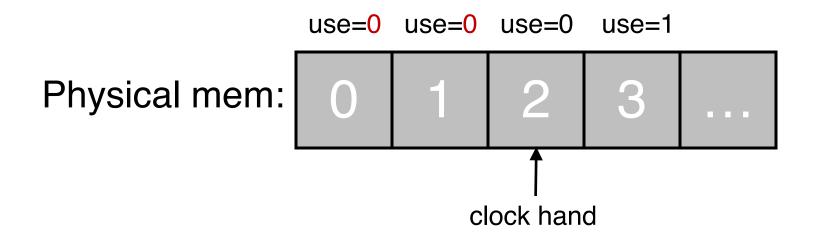
Using a Stack to Approximate LRU

Using a Stack to Approximate LRU

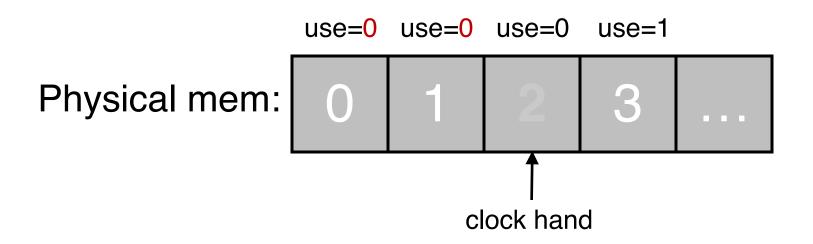


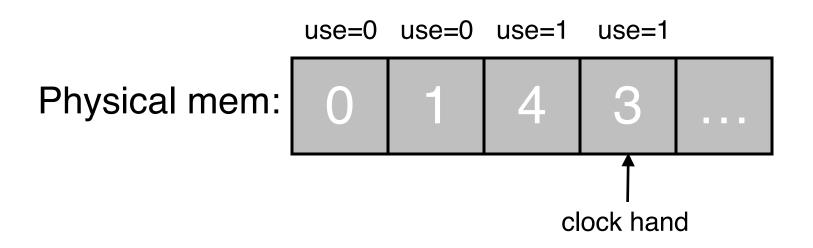

LRU Hardware Support

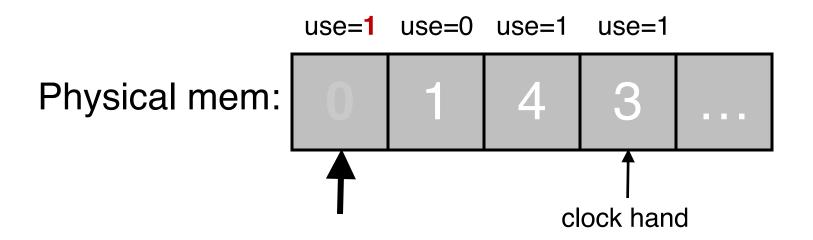

- Sophisticated hardware support may involve high overhead/cost!
- Some limited HW support is common:

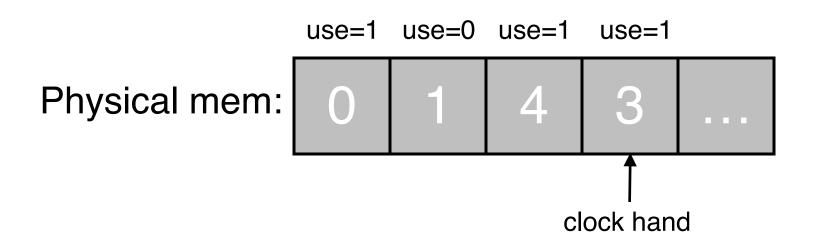

Reference (or use) bit

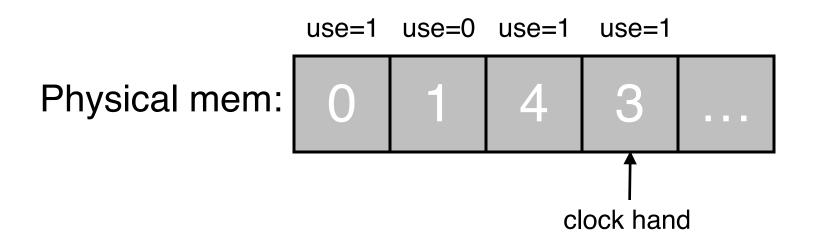
- With each page associate a bit, initially set to 0
- When the page is referenced, bit set to 1
- By examining the reference bits, we can determine which pages have been used
- We do not know the *order* of use, however!
- Cheap approximation
 - Useful for clock algorithm

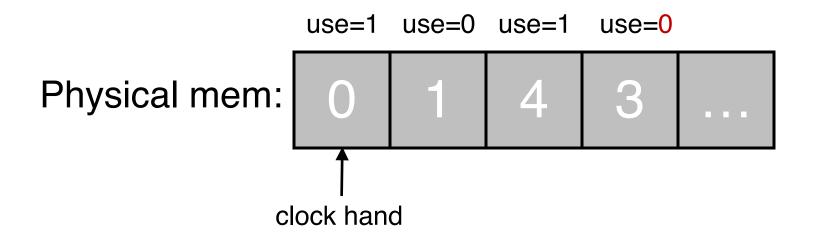


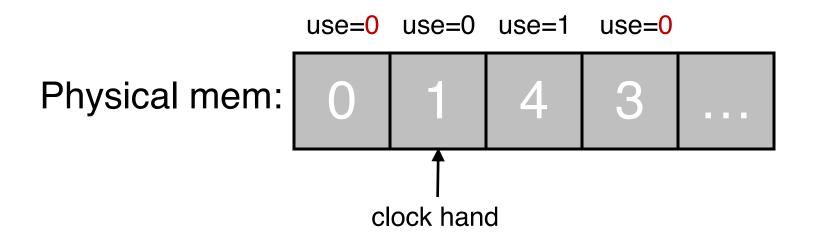


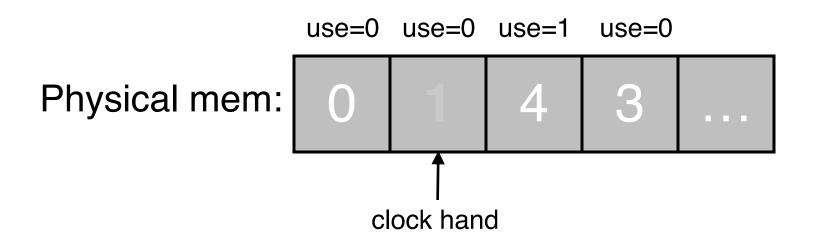

Evict page 2 because it has not been recently used

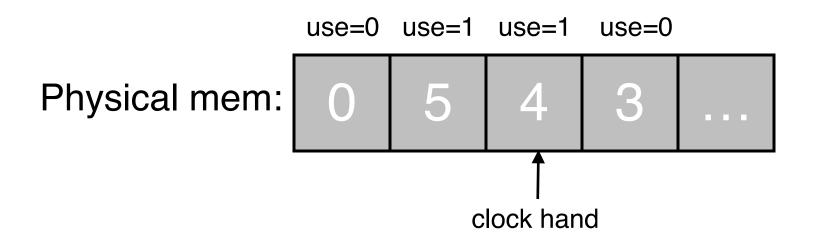





Clock: Access a Page


page 0 is accessed





Evict page 1 because it has not been recently used

- FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"

- FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"
- Random
 - Sometimes non intelligence is better

FIFO

- Why it might work? Maybe the one brought in the longest ago is one we are not using now
- Why it might not work? No real info to tell if it's being used or not
- Suffers "Belady's Anomaly"

Random

• Sometimes non intelligence is better

OPT

- Assume we know about the future
- Not practical in real cases: offline policy
- However, can be used as a best case baseline for comparison purpose

• FIFO

- Why it might work? Maybe the one brought in the longest ago is one we are not using now
- Why it might not work? No real info to tell if it's being used or not
- Suffers "Belady's Anomaly"

Random

Sometimes non intelligence is better

OPT

- Assume we know about the future
- Not practical in real cases: offline policy
- However, can be used as a best case baseline for comparison purpose

I RU

- Intuition: we can't look into the future, but let's look at past experience to make a good guess
- Out "bet" is that pages used recently are ones which will be used again (principle of locality)