Memory Management: Page Replacement Policies: LRU

CS 571: Operating Systems (Spring 2020) Lecture 8c

Yue Cheng

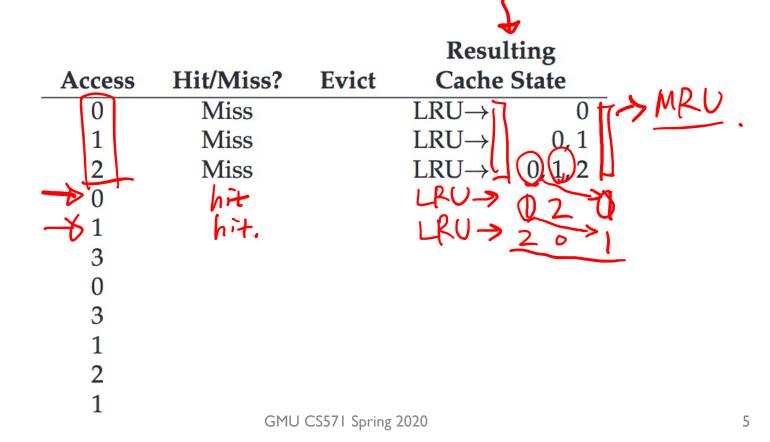
Some material taken/derived from:

Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.

GEORGE

Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Least-Recently-Used (LRU)



- Use the recent past as an approximation of the near future (using history)
- Idea: evict the page that has not been used for the longest period of time

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

Access	Hit/Miss?	Evict	Resulting Cache State
0			
1			
2			
0			
1			
3			
0			
3			
1			
2			
1	GMU	CS571 Spring 2	2020

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0,1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1					
3					
0					
3					
1					
2					
1			2020		

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting			
Access	Hit/Miss?	Evict	Cache	State		
0	Miss		$LRU \rightarrow$	0		
1	Miss		$LRU \rightarrow$	0, 1		
2	Miss		$LRU \rightarrow$	0, 1, 2		
0	Hit		$LRU \rightarrow$	1, 2, 0		
1	Hit		$LRU \rightarrow$	2, 0, 1		
3	Miss.	2	LRU->	0126	MRU.	
	Mics. Hit		Liku->	0136	MRU.	
3	•					
1	•					
2	•					
1	_					
	GMU	CS571 Spring	2020			

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0,1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1	Hit		$LRU \rightarrow$	2, 0, 1	
3	Miss	2	$LRU \rightarrow$	0, 1, 3	
0					
3					
1					
2					
1					

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0,1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1	Hit		$LRU \rightarrow$	2, 0, 1	
3	Miss	2	$LRU \rightarrow$	0, 1, 3	
0	Hit		$LRU \rightarrow$	1, 3, 0	
3					
1					
2					
1					

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

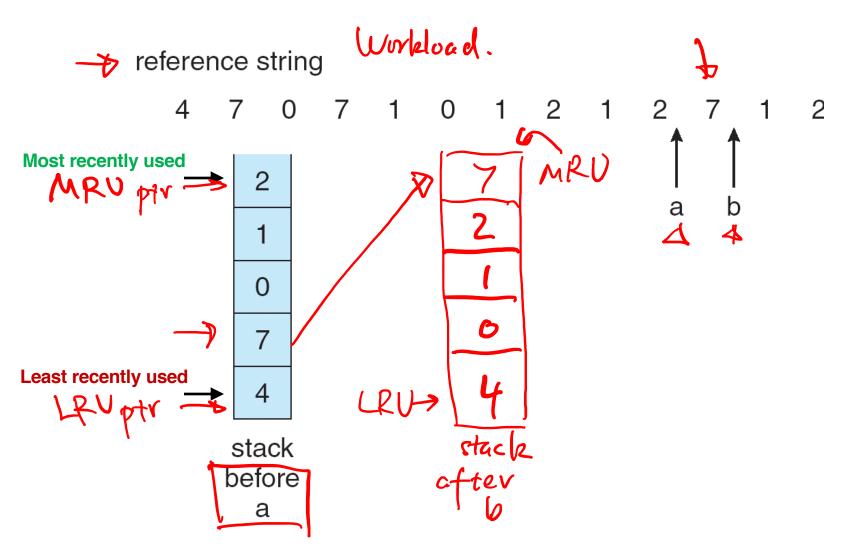
Access	Hit/Miss?	Evict	Resul Cache	0
0	Miss		$LRU \rightarrow$	0
1	Miss		$LRU \rightarrow$	0,1
2	Miss		$LRU \rightarrow$	0, 1, 2
0	Hit		$LRU \rightarrow$	1, 2, 0
1	Hit		$LRU \rightarrow$	2, 0, 1
3	Miss	2	$LRU \rightarrow$	0, 1, 3
0	Hit		$LRU \rightarrow$	1, 3, 0
3	Hit		$LRU \rightarrow$	1, 0, 3
1				
2				
1				

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1

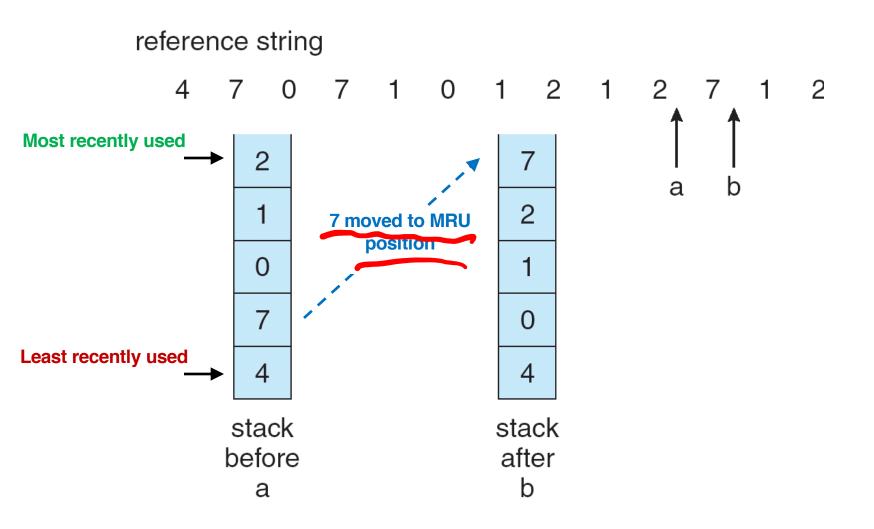
Access	Hit/Miss?	Evict	Resulting Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0,1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1	Hit		$LRU \rightarrow$	2, 0, 1	
3	Miss	2	$LRU \rightarrow$	0, 1, 3	
0	Hit		$LRU \rightarrow$	1, 3, 0	
3	Hit		$LRU \rightarrow$	1, 0, 3	
1	Hit		$LRU \rightarrow$	0, 3, 1	
2					

1

- Idea: evict the page that has not been used for the longest period of time
- Example workload: 0 1 2 0 1 3 0 3 1 2 1


			Resulting		
Access	Hit/Miss?	Evict	Cache State		
0	Miss		$LRU \rightarrow$	0	
1	Miss		$LRU \rightarrow$	0,1	
2	Miss		$LRU \rightarrow$	0, 1, 2	
0	Hit		$LRU \rightarrow$	1, 2, 0	
1	Hit		$LRU \rightarrow$	2, 0, 1	
3	Miss	2	$LRU \rightarrow$	0, 1, 3	
0	Hit		$LRU \rightarrow$	1, 3, 0	
3	Hit		$LRU \rightarrow$	1, 0, 3	
1	Hit		$LRU \rightarrow$	0, 3, 1	
2	Miss	0	$LRU \rightarrow$	3, 1, 2	
1	Hit		$LRU \rightarrow$	3, 2, 1	

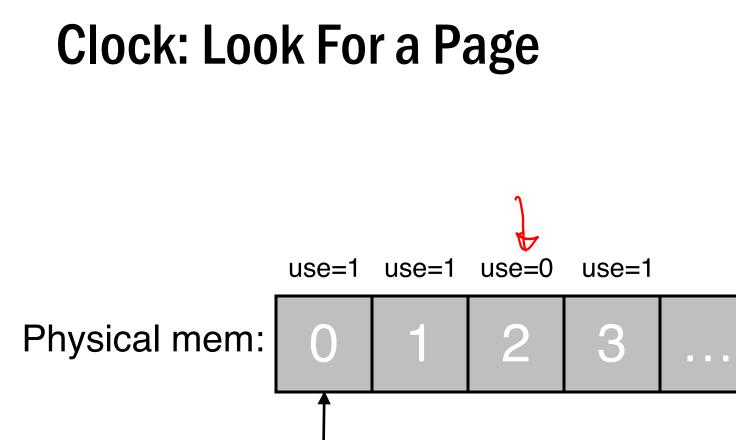
LRU Stack Implementation


- Stack implementation: keep a stack of page numbers in a doubly linked list form
 - Page referenced, move it to the top ← MRU
 - Requires quite a few pointers to be changed
 - No search required for replacement operation!

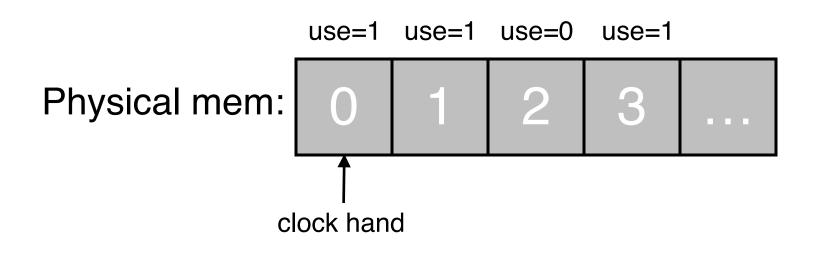
LRU->

Using a Stack to Approximate LRU

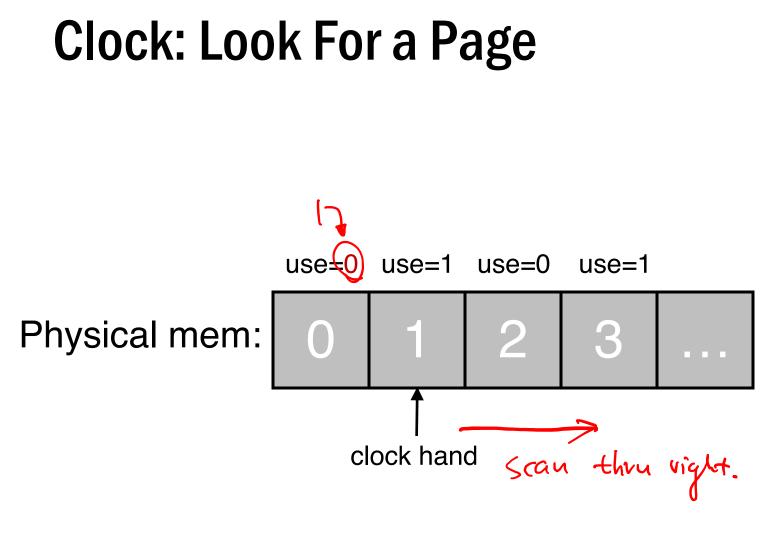
Using a Stack to Approximate LRU

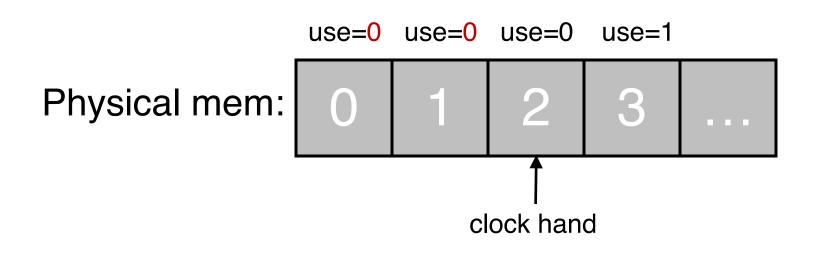


LRU Hardware Support

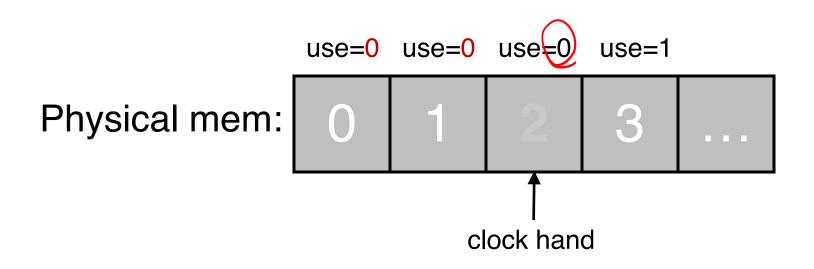

- Sophisticated hardware support may involve high overhead/cost!
- Some limited HW support is common:

Reference (or use) bit

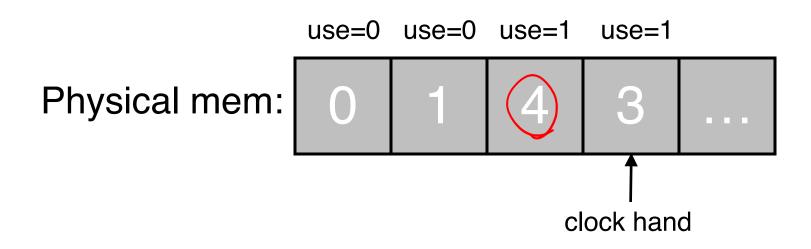

- With each page associate a bit, initially set to 0
- When the page is referenced, bit set to 1
- By examining the reference bits, we can determine which pages have been used
- We do not know the *order* of use, however!
- Cheap approximation
 - Useful for clock algorithm


clock hand

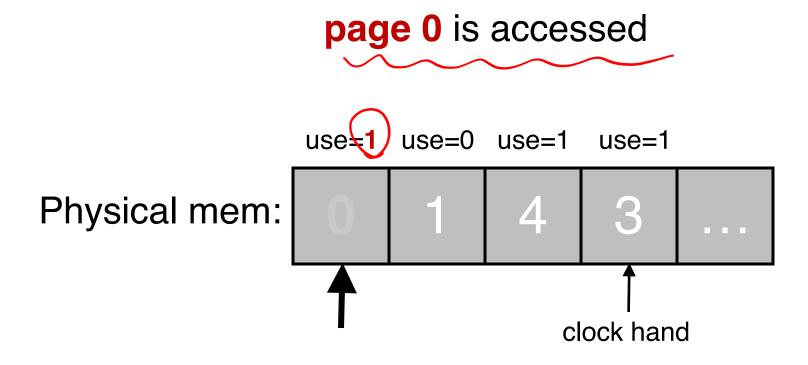
Mem is full, and to evict a page to make room

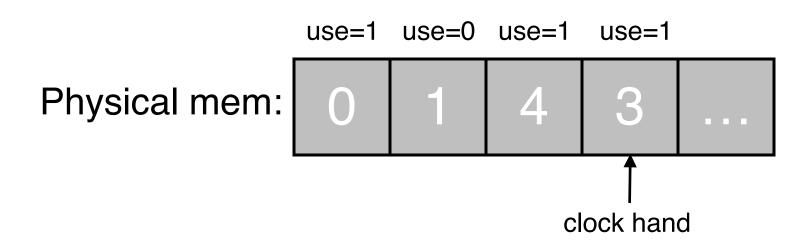

Mem is full, and to evict a page to make room

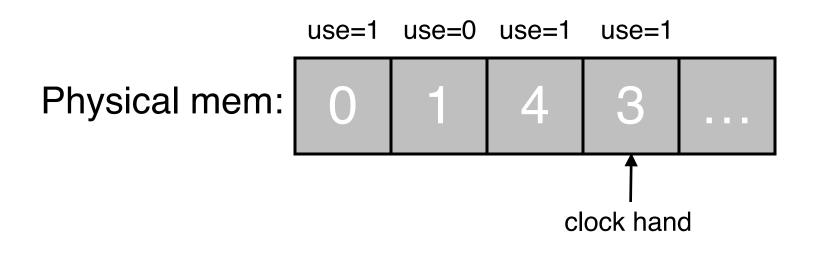
Mem is full, and to evict a page to make room

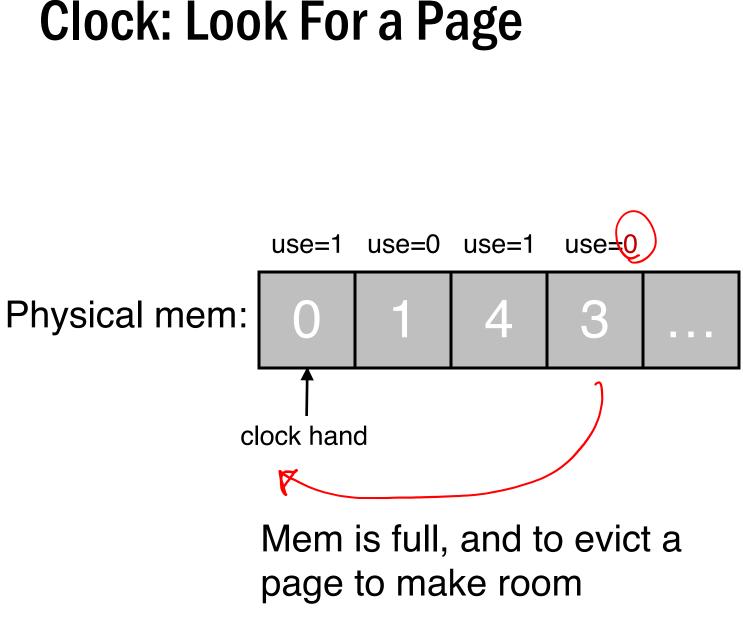

GMU CS571 Spring 2020

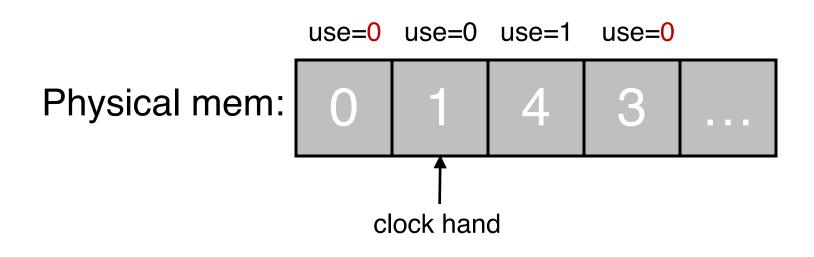
Evict page 2 because it has not been recently used



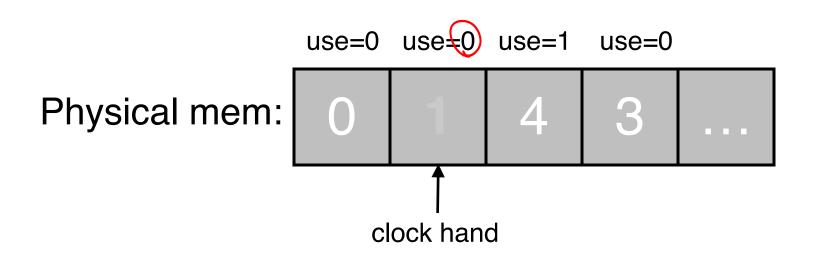

Mem is full, and to evict a page to make room

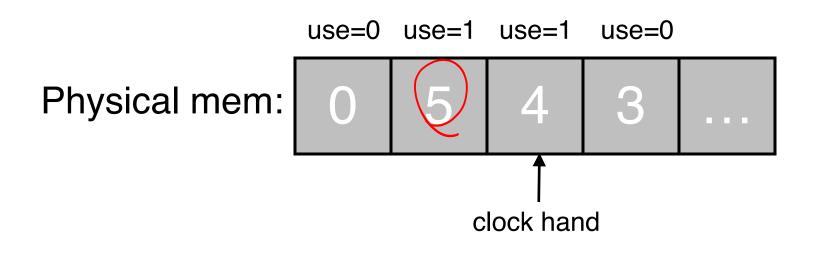

GMU CS571 Spring 2020


Clock: Access a Page



Mem is full, and to evict a page to make room


GMU CS571 Spring 2020


Mem is full, and to evict a page to make room

GMU CS571 Spring 2020

Evict page 1 because it has not been recently used

Mem is full, and to evict a page to make room

- FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"

- FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"
- Random
 - Sometimes non intelligence is better

- FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"
- Random
 - Sometimes non intelligence is better
- OPT Offlie.
 - Assume we know about the future
 - Not practical in real cases: offline policy
 - However, can be used as a best case baseline for comparison purpose

- FIFO
 - Why it might work? Maybe the one brought in the longest ago is one we are not using now
 - Why it might not work? No real info to tell if it's being used or not
 - Suffers "Belady's Anomaly"
- Random
 - Sometimes non intelligence is better
- OPT
 - Assume we know about the future
 - Not practical in real cases: offline policy
 - However, can be used as a best case baseline for comparison purpose
- LRU
 - Intuition: we can't look into the future, but let's look at past experience to make a good guess
 - Out "bet" is that pages used recently are ones which will be used again (principle of locality)