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Swapping: 
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How to Know Where a Page Lives?
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Present Bit

• With each PTE a present is associated 
• 1 è in-memory, 0 è out in disk

• During address translation, if present bit in PTE is 0 
è page fault

14

An 32-bit X86 page table entry (PTE)

Present bit
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What if NO Memory is Left?
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Why not Leave Page on Disk?
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Storage Hierarchy
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Main memory:
Smaller capacity
Faster accesses

Secondary storage:
Larger capacity

Way slower accesses



Why not Leave Page on Disk?

• Performance: Memory vs. Disk

• How long does it take to access a 4-byte int
from main memory vs. disk?
• DRAM: ~100ns
• Disk: ~10ms
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Beyond the Physical Memory

• Idea: use the disk space as an extension of main 
memory

• Two ways of interaction b/w memory and disk
• Demand paging

• Swapping
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Demand Paging

• Bring a page into memory only when it is needed 
(demanded)
• Less I/O needed
• Less memory needed 
• Faster response
• Support more processes/users

• Page is needed Þ use the reference to page
• If not in memory Þ must bring from the disk
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Swapping

• Swapping allows OS to support the illusion of a 
large virtual memory for multiprogramming
• Multiple programs can run “at once”
• Better utilization
• Ease of use

• Demand paging vs. swapping
• On demand vs. page replacement under memory 

pressure 
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Swapping
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Swap Space
• Part of disk space reserved for moving pages back 

and forth 
• Swap pages out of memory
• Swap pages into memory from disk

• OS reads from and writes to the swap space at 
page-sized unit

34

In this example,
Process 3 is all swapped to 

disk



Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

• Q: Which steps are expensive??
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Page Fault

• The act of accessing a page that is not in 
physical memory is called a page fault

• OS is invoked to service the page fault
• Page fault handler

• Typically, PTE contains the page address on disk
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Page-Fault Handler (OS)

PFN = FindFreePage()

if (PFN == -1)

PFN = EvictPage()

DiskRead(PTE.DiskAddr, PFN)

PTE.present = 1

PTE.PFN = PFN

retry instruction
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Major Steps of A Page Fault
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Impact of Page Faults

• Each page fault affects the system performance 
negatively
• The process experiencing the page fault will not be able 

to continue until the missing page is brought to the main 
memory
• The process will be blocked (moved to the waiting state)
• Dealing with the page fault involves disk I/O 

• Increased demand to the disk drive 
• Increased waiting time for process experiencing page fault
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Memory as a Cache

• As we increase the degree of multiprogramming, 
over-allocation of memory becomes a problem

• What if we are unable to find a free frame at the 
time of the page fault? 

• OS chooses to page out one or more pages to 
make room for new page(s) OS is about to bring 
in
• The process to replace page(s) is called page 

replacement policy
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Memory as a Cache

• OS keeps a small portion of memory free 
proactively
• High watermark (HW) and low watermark (LW)

• When OS notices free memory is below LW (i.e., 
memory pressure)
• A background thread (i.e., swap/page daemon) starts 

running to free memory
• It evicts pages until there are HW pages available
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