
Memory Management: 
Swapping

CS 571: Operating Systems (Spring 2020)
Lecture 8b

Yue Cheng

Some material taken/derived from: 
• Wisconsin CS-537 materials created by Remzi Arpaci-Dusseau.
Licensed for use under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.



2

Swapping: 
Beyond Physical Memory

Y. Cheng GMU CS571 Spring 2020



3

Virtual memory

Program

code
data

Disk

Y. Cheng GMU CS571 Spring 2020



4

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1

Y. Cheng GMU CS571 Spring 2020



5

Virtual memory

Program

code
data

Disk

code
data
heap

stack
Process 1

What’s in code?

Y. Cheng GMU CS571 Spring 2020



6

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

Many large libraries, some of which are rarely/never used

LibA LibB

LibC Prog

LibA LibB

LibC Prog

What’s in code?

Y. Cheng GMU CS571 Spring 2020



7

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

How to avoid wasting physical pages to 
back rarely used virtual pages?

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Y. Cheng GMU CS571 Spring 2020



8

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog

Y. Cheng GMU CS571 Spring 2020



9

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Prog

Y. Cheng GMU CS571 Spring 2020



10

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgProcess 1 accesses LibB

Y. Cheng GMU CS571 Spring 2020



11

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC ProgOS copies LibB to mem
LibB

Y. Cheng GMU CS571 Spring 2020



12

Virtual memory

Program
data

Disk

data
heap

stack
Process 1

LibA LibB

LibC Prog

LibA LibB

LibC Prog

Physical memory

LibC Progcalled “swapping in” or
“paging in” LibB

Y. Cheng GMU CS571 Spring 2020



13

How to Know Where a Page Lives?

Y. Cheng GMU CS571 Spring 2020



Present Bit

• With each PTE a present is associated 
• 1 è in-memory, 0 è out in disk

• During address translation, if present bit in PTE is 0 
è page fault

14

An 32-bit X86 page table entry (PTE)

Present bit

Y. Cheng GMU CS571 Spring 2020



Present Bit

15

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Page tableY. Cheng GMU CS571 Spring 2020



Present Bit

16

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

Y. Cheng GMU CS571 Spring 2020



Present Bit

17

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Y. Cheng GMU CS571 Spring 2020



Present Bit

18

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

8 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Y. Cheng GMU CS571 Spring 2020



19

What if NO Memory is Left?

Y. Cheng GMU CS571 Spring 2020



Present Bit

20

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

FULL

Y. Cheng GMU CS571 Spring 2020



Present Bit

21

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL

Y. Cheng GMU CS571 Spring 2020



Present Bit

22

PFN valid prot present

5 1 r-x 1

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

FULL

evict

Y. Cheng GMU CS571 Spring 2020



Present Bit

23

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict

Y. Cheng GMU CS571 Spring 2020



Present Bit

24

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

evict

called “swapping out” 
or “paging out”

Y. Cheng GMU CS571 Spring 2020



Present Bit

25

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

60 1 rw- 0

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

Y. Cheng GMU CS571 Spring 2020



Present Bit

26

PFN valid prot present

63 1 r-x 0

- 0 - -

- 0 - -

5 1 rw- 1

- 0 0 -

- 0 0 -

- 0 0 -

4 1 rw- 1

64 1 rw- 0

Disk

Phys memory

access

again, another “swapping in” 
or “paging in” GMU CS571 Spring 2020Y. Cheng



27

Why not Leave Page on Disk?

Y. Cheng GMU CS571 Spring 2020



Storage Hierarchy

Y. Cheng GMU CS571 Spring 2020 28

Main memory:
Smaller capacity
Faster accesses

Secondary storage:
Larger capacity

Way slower accesses



Why not Leave Page on Disk?

• Performance: Memory vs. Disk

• How long does it take to access a 4-byte int
from main memory vs. disk?
• DRAM: ~100ns
• Disk: ~10ms

29Y. Cheng GMU CS571 Spring 2020



Beyond the Physical Memory

• Idea: use the disk space as an extension of main 
memory

• Two ways of interaction b/w memory and disk
• Demand paging

• Swapping

30Y. Cheng GMU CS571 Spring 2020



Demand Paging

• Bring a page into memory only when it is needed 
(demanded)
• Less I/O needed
• Less memory needed 
• Faster response
• Support more processes/users

• Page is needed Þ use the reference to page
• If not in memory Þ must bring from the disk

31Y. Cheng GMU CS571 Spring 2020



Swapping

• Swapping allows OS to support the illusion of a 
large virtual memory for multiprogramming
• Multiple programs can run “at once”
• Better utilization
• Ease of use

• Demand paging vs. swapping
• On demand vs. page replacement under memory 

pressure 

32Y. Cheng GMU CS571 Spring 2020



Swapping

• Swapping allows OS to support the illusion of a 
large virtual memory for multiprogramming
• Multiple programs can run “at once”
• Better utilization
• Ease of use

33Y. Cheng GMU CS571 Spring 2020



Swap Space
• Part of disk space reserved for moving pages back 

and forth 
• Swap pages out of memory
• Swap pages into memory from disk

• OS reads from and writes to the swap space at 
page-sized unit

34

In this example,
Process 3 is all swapped to 

disk



Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

• Q: Which steps are expensive??

35Y. Cheng GMU CS571 Spring 2020



Address Translation Steps
Hardware: for each memory reference:

Extract VPN from VA
Check TLB for VPN
TLB hit: 

Build PA from PFN and offset
Fetch PA from memory

TLB miss:
Fetch PTE
if (!valid): exception [segfault]
else if (!present): exception [page fault: page miss]
else: extract PFN, insert in TLB, retry

• Q: Which steps are expensive??

36

(cheap)

(expensive)

(cheap)

(cheap)

(cheap)

(expensive)
(expensive)
(expensive)

Y. Cheng GMU CS571 Spring 2020



Page Fault

• The act of accessing a page that is not in 
physical memory is called a page fault

• OS is invoked to service the page fault
• Page fault handler

• Typically, PTE contains the page address on disk

37Y. Cheng GMU CS571 Spring 2020



Page-Fault Handler (OS)

PFN = FindFreePage()

if (PFN == -1)

PFN = EvictPage()

DiskRead(PTE.DiskAddr, PFN)

PTE.present = 1

PTE.PFN = PFN

retry instruction

38Y. Cheng GMU CS571 Spring 2020



Page-Fault Handler (OS)

PFN = FindFreePage()

if (PFN == -1)

PFN = EvictPage()

DiskRead(PTE.DiskAddr, PFN)

PTE.present = 1

PTE.PFN = PFN

retry instruction

Q: which steps are expensive?

39Y. Cheng GMU CS571 Spring 2020



Page-Fault Handler (OS)

PFN = FindFreePage()

if (PFN == -1)

PFN = EvictPage()

DiskRead(PTE.DiskAddr, PFN)

PTE.present = 1

PTE.PFN = PFN

retry instruction

Q: which steps are expensive?

40

(expensive)

(cheap)

(cheap)

(depends)

(cheap)

(cheap)

(cheap)

Y. Cheng GMU CS571 Spring 2020



Page-Fault Handler (OS)

PFN = FindFreePage()

if (PFN == -1)

PFN = EvictPage()

DiskRead(PTE.DiskAddr, PFN)

PTE.present = 1

PTE.PFN = PFN

retry instruction

41

(expensive)

(cheap)

(cheap)

(cheap)

(cheap)

(cheap)

What to evict?
What to read?

Y. Cheng GMU CS571 Spring 2020

(depends)



Major Steps of A Page Fault

42Y. Cheng



Impact of Page Faults

• Each page fault affects the system performance 
negatively
• The process experiencing the page fault will not be able 

to continue until the missing page is brought to the main 
memory
• The process will be blocked (moved to the waiting state)
• Dealing with the page fault involves disk I/O 

• Increased demand to the disk drive 
• Increased waiting time for process experiencing page fault

43Y. Cheng GMU CS571 Spring 2020



Memory as a Cache

• As we increase the degree of multiprogramming, 
over-allocation of memory becomes a problem

• What if we are unable to find a free frame at the 
time of the page fault? 

• OS chooses to page out one or more pages to 
make room for new page(s) OS is about to bring 
in
• The process to replace page(s) is called page 

replacement policy

44Y. Cheng GMU CS571 Spring 2020



Memory as a Cache

• OS keeps a small portion of memory free 
proactively
• High watermark (HW) and low watermark (LW)

• When OS notices free memory is below LW (i.e., 
memory pressure)
• A background thread (i.e., swap/page daemon) starts 

running to free memory
• It evicts pages until there are HW pages available

45Y. Cheng GMU CS571 Spring 2020


